Composable Reliability for Asynchronous Systems

Sunghwan Yoo'> Charles Killian!
YPurdue University

Abstract

Distributed systems often employ replication to solve
two different kinds of availability problems. First, to pre-
vent the loss of data through the permanent destruction or
disconnection of a distributed node, and second, to allow
prompt retrieval of data when some distributed nodes re-
spond slowly. For simplicity, many systems further han-
dle crash-restart failures and timeouts by treating them as
a permanent disconnection followed by the birth of a new
node, relying on peer replication rather than persistent
storage to preserve data. We posit that for applications
deployed in modern managed infrastructures, delays are
typically transient and failed processes and machines are
likely to be restarted promptly, so it is often desirable
to resume crashed processes from persistent checkpoints.
In this paper we present MaceKen, a synthesis of com-
plementary techniques including Ken, a lightweight and
decentralized rollback-recovery protocol that transpar-
ently masks crash-restart failures by careful handling of
messages and state checkpoints; and Mace, a program-
ming toolkit supporting development of distributed ap-
plications and application-specific availability via repli-
cation. MaceKen requires near-zero additional developer
effort—systems implemented in Mace can immediately
benefit from the Ken protocol by virtue of following the
Mace execution model. Moreover, Ken allows multiple,
independently developed application components to be
seamlessly composed, preserving strong global reliabil-
ity guarantees. Our implementation is available as open
source software.

1 Introduction

Our work matches failure handling in distributed ap-
plications to deployment environments. In managed in-
frastructures, unlike the broader Internet, crash-restart
failures are common relative to permanent-departure
failures. Moreover, correlated failures are more likely:
Application nodes are physically co-located, increasing
their susceptibility to simultaneous environmental fail-
ures such as power outages; routine maintenance will
furthermore restart machines either simultaneously or se-
quentially. Our toolkit masks crash-restart failures, pre-
venting both brief and correlated failures from caus-
ing data loss or increased protocol overhead due to
application-level failure handling.

Terence Kelly?
2HP Labs

Hyoun Kyu Cho?? Steven Plite!

3University of Michigan

Traditional wide-area distributed systems replicate
data for two different reasons. First, to prevent the loss
of data through the permanent destruction or disconnec-
tion of a node, and second, to allow prompt data re-
trieval when some nodes respond slowly. Persistent stor-
age can protect data from crash-restart failures, but it
must be handled very carefully to avoid replica incon-
sistency or data corruption. For example, recovering a
key-value store node requires checking data integrity and
freshness and forwarding data to the new nodes respon-
sible for it if the mapping has changed. Recovery can be
quite tricky, particularly as little is known of the disk and
network I/O in progress when the failure occurred. Re-
covery is further complicated if multiple independently
developed distributed systems interact. Given that repli-
cation will be used anyway to ensure availability, and be-
cause correctly recovering persistent data after failures
is difficult, many distributed systems choose to handle
crash-restart failures and timeouts by treating them as a
permanent disconnection followed by the birth of a new
node, relying on peer replication, rather than persistent
storage, to preserve data.

As new applications are increasingly deployed in man-
aged environments, one appealing approach is to deploy
wide-area distributed systems directly in these managed
environments. However, without persistent storage, a si-
multaneous failure of all nodes (e.g., a power outage)
would destroy all data. A more modest failure scenario
in which machines are restarted sequentially for main-
tenance may be acceptable for a distributed system that
does not employ persistent storage, but only if the sys-
tem can process churn and update peer replicas quickly
enough that all copies of any individual datum are not si-
multaneously destroyed. Wide-area distributed systems,
such as P2P systems, are therefore often not well-suited
to tolerate the correlated failures more likely to occur in
managed infrastructures, despite being designed to toler-
ate a high rate of uncorrelated failures. If crash-restart
failures can be masked, however, such systems can ig-
nore challenging correlated failures while still provid-
ing replication-based availability. Additionally, as per-
manent node departures are infrequent, and performance
less variable across managed nodes, in some cases fewer
replicas will suffice to meet availability requirements.

At the other end of the spectrum, some applications
that run in managed infrastructures do not require strong
availability, e.g., distributed batch-scientific computing

applications can seldom afford replication because they
often operate at the limits of available system memory.
If a failure occurs in these applications, they wish to lose
as little time to re-computation as possible. In the worst
case, a computation can be restarted from the input data.
If we can mask crash-restart failures, we remove a large
class of possible failures for distributed batch computing
applications in managed clusters, as the cluster machines
are unlikely to fail permanently during any given job.

In this paper, we describe the design and imple-
mentation of Ken, a protocol that transforms integrity-
threatening crash-restart failures into performance prob-
lems, even across independently developed systems
(Section 3). Ken uses a lightweight, decentralized, and
uncoordinated approach to checkpoint process state and
guarantee global correctness. Our benchmarks demon-
strate that Ken is practical under modest assumptions and
that non-volatile memory will improve its performance
substantially (Section 5.1).

We further explain how Ken is a perfect match for
a broad class of event-driven programming techniques,
and we describe the near-transparent integration of Ken
and the Mace [20] toolkit, yielding MaceKen (Section 4).
Systems developed for Mace can be run using MaceKen
with little or no additional effort. We evaluate MaceKen
in both distributed batch-computing environments and
a distributed hash table (Sections 5.2 and 5.3), demon-
strating how Ken enables unmodified systems to toler-
ate otherwise debilitating failures. We also developed a
novel technique to accurately emulate host failures using
Linux containers [26]—basic process death, e.g., from
killing the process, causes socket failures to be promptly
reported to remote endpoints, which does not occur in
power failures or kernel panics. We show how enabling
Ken for a system developed for the Internet can prepare
it for deployment in managed environments susceptible
to correlated crash-restart failures. Existing application
logic to route around slow nodes will continue to address
unresponsive nodes, while safely remaining oblivious to
quick process restarts.

Finally, we illustrate a broader, fundamental contribu-
tion of the Ken protocol: the effortless composition of
independently developed systems and services, retaining
the same reliability guarantees when the systems interact
with each other without coordination, even during fail-
ure. In a test scenario involving auctions and banking,
failures would normally lead to loss of money or loss of
trade. Ken avoids all such problems under heavy injected
failures (Section 5.4).

2 Background

Before describing the Ken protocol, we first review rele-
vant concepts surrounding fault-tolerant distributed com-

outside
world

processes

31

time ——

Figure 1: Abstract distributed computation

puting. Ken allows the developer simply to treat failed
processes and hosts as slowly responding nodes, even
across independently developed systems. We explain
how Ken provides distributed consistency, output valid-
ity, and composable reliability.

To understand these concepts, consider Figure 1, illus-
trating standard concepts of distributed computing [12].
In the figure, time advances from left to right. Distributed
computing processes pp, p2, and p3 are represented by
horizontal lines. Processes can exchange messages with
each other, represented by diagonal arrows, and take
checkpoints of their local state, represented by black
rectangles. A crash, represented by a red “X,” destroys
process state, which may be restored from a checkpoint
previously taken by the crashed process. Processes may
also receive inputs from, and emit outputs to, the outside
world. The outside world differs from the processes in
two crucial ways: It cannot replay inputs, nor can it roll
back its state. Therefore inputs are at risk of loss before
being checkpointed and outputs are irrevocable.

2.1 Distributed Consistency

Checkpoints by two different processes are termed in-
consistent if one records receiving a message the other
does not record sending, because the message was sent
after the sender’s last checkpoint. Checkpoints c¢j; and
¢21 in the figure are inconsistent because ¢y records the
receipt of the message from p; to p, but c¢;; does not
record having sent it. A set of checkpoints, one per pro-
cess, is called a recovery line if no pair of checkpoints
is inconsistent. A recovery line represents a sane state to
which the system may safely be restored following fail-
ure. A major challenge in building rollback-recovery sys-
tems lies in the efficient maintenance of recovery lines. If
a process were simply to take checkpoints at fixed time
intervals, some may not be suitable for any recovery line.
A checkpoint is termed useless if it cannot legally be part
of any recovery line. Checkpoint c;; is useless, as it is in-
consistent with both checkpoints ¢ and cy.

One of the best-known approaches to constructing re-
covery lines is the Lamport-Chandy algorithm [5]. This
algorithm requires distributed coordination, adding over-

heads, especially if checkpoints are taken frequently. Ad-
ditionally, coordinated checkpoints may be impractical if
independently developed/deployed applications are com-
posed as discussed in Section 2.3.

2.2 QOutput Validity

Outputs emitted to the outside world raise special diffi-
culties. Because the outside world by definition cannot
roll back its state, we must assume that it “remembers”
all outputs externalized to it. Therefore the latter may
not be “forgotten” by the distributed system that emit-
ted them, lest inconsistency arise. Distributed systems
must obey the output commit rule: All externalized out-
puts must be recorded in a recovery line. In Figure 1, the
output by process p; violates the output commit rule, and
the subsequent crash causes the system to forget having
emitted an irrevocable output.

Failures (crashes and message losses) may disturb a
distributed computation. We say that a distributed system
satisfies the property of output validity if the sequence of
outputs that it emits to the outside world could have been
generated by failure-free operation. Lowell et al. discuss
closely related concepts in depth [25].

2.3 Composable Reliability

Even if individual applications support distributed con-
sistency and output validity, these properties need not
apply to the union of the applications when the lat-
ter interact. Composing together independently devel-
oped and independently deployed/managed applications
is very common in practice. In such scenarios, the global
guarantees of distributed consistency and output valid-
ity require maintaining a recovery line spanning multiple
independently developed applications, coordinating roll-
back across independently managed systems to reach a
globally-consistent recovery line, and globally enforcing
the output commit rule across administrative domains.
We show that Ken provides a local solution, maintaining
recovery lines, enforcing output commit, and recovering
from failures without cross-application coordination.

3 Reliability Mechanism

Below we describe the Ken protocol as we have im-
plemented it, its programming model, and its proper-
ties. The name and the essence of the protocol are taken
from Waterken, an earlier Java distributed platform that
presents different programming abstractions [6, 17].

3.1 Protocol

Ken processes exchange discrete, bounded-length mes-
sages with one another and interact with the outside
world by receiving inputs and emitting outputs. Incom-
ing messages/inputs trigger computations with two kinds
of consequences: outbound messages/outputs, and local
state changes. Each Ken process contains a single input-
handling loop, an iteration of which is called a turn.

Ken turns are transactional: either all of their conse-
quences are fully realized, or else it is as though the mes-
sage or input that triggered the turn never arrived. Dur-
ing a turn, outbound messages and outputs are buffered
locally rather than being transmitted. At the end of a turn
all such messages/outputs and local state changes caused
by the turn are atomically checkpointed to durable stor-
age. On checkpoint success, the buffered messages/out-
puts become eligible for transmission; otherwise they are
discarded and process state is rolled back to the start of
the turn. The Ken protocol does not prescribe a storage
medium; implementation-specific requirements of fault
tolerance, monetary cost, size, speed, density, power con-
sumption, and other factors may guide the choice of stor-
age. Ken simply requires the ability to recover intact all
checkpointed data following any tolerated failure.

Messages from successful turns are re-transmitted un-
til acknowledged. An acknowledgment indicates that the
recipient has not only received the message but has
also processed it to completion. The ACK assures the
sender that the turn triggered by the message ended
well, i.e., all of its consequences were fully realized
and atomically committed. The sender may therefore
cease re-transmitting ACK’d messages and delete them
from durable storage. Message sequence numbers en-
sure FIFO delivery between each sender-receiver pair
and ensure that each message is processed exactly once.
Outside-world interactions may have weaker semantics
than messages exchanged among the “inside world” of
protocol-compliant Ken processes, because by definition
the outside world cannot be relied upon to replay inputs
or acknowledge outputs. Crashes may destroy an input
upon arrival, and may destroy evidence of a successful
output a moment after such evidence is created. Specific
input and output devices and corresponding drivers that
mediate outside-world interactions may be able to offer
stronger guarantees than at-most-once input processing
and at-least-once output externalization, depending on
the details of the devices concerned [17]. Our Ken im-
plementation allows drivers to communicate with a Ken
process via stdin and stdout.

Recovery in Ken is straightforward. Crashes destroy
the contents of local volatile memory. Recovery con-
sists of restoring local state from the most recent check-
point and resuming re-transmission of messages from

successfully completed turns. Recovery is a purely lo-
cal affair and does not involve any interaction with other
Ken processes nor any message/input/event replay. Be-
cause Ken’s transactional turns externalize their full con-
sequences if and only if they complete successfully, a
Ken process that crashes and recovers is indistinguish-
able from one that is merely slow.

Two sources of nondeterminism may affect Ken com-
putations: local nondeterminism in the hardware and
software beneath Ken’s event loop, and nondeterminism
in the interleaving of messages from several senders at
a single receiver. Ken ignores both. A crash may there-
fore change output from what it would have been had the
crash not occurred. Consider a turn that intends to output
the local time but crashes before the turn completes. Fol-
lowing recovery, the time will be emitted, but it will dif-
fer compared with failure-free behavior. Next, consider a
Ken process that intends to concatenate incoming mes-
sages from multiple sources and output a checksum of
the concatenation. The order in which messages from
different senders arrive at the checkpoint process may
differ in a crash/recovery scenario versus failure-free op-
eration; as a result the checksum output will also differ.
In both cases, crashes result in outputs that are different
but not unacceptable compared with failure-free outputs.
As there exists a hypothetical failure-free execution with
the same outputs, output validity holds.

Two further examples illustrate how Ken’s approach to
nondeterminism is sometimes positively beneficial. First,
consider an overflow-intolerant “accumulator” process
that accepts signed integers as messages, and adds them
to a counter, initially zero. If three messages contain-
ing INT_MAX, 1, and INT__MIN arrive from differ-
ent senders in that order, the 1 will crash the accumu-
lator. Following recovery, the re-transmitted 1 may ar-
rive after INT__MIN, averting overflow. Next, consider
a Ken-based “square root server.” Requests containing 4,
9, and 25 elicit replies of 2, 3, and 5 respectively. Un-
fortunately the server is unimaginative—e.g., it crashes
when asked to compute v/~ 1. Requests containing per-
fect squares, however, will continue to be served cor-
rectly whenever they reach the server between crashes
caused by undigestible requests; mishandled requests im-
pair performance but do not cause incorrect replies to
acceptable requests. Wagner calls this guarantee defen-
sive consistency [10]. Ken ensures defensive consistency
provided that bad inputs crash turns before they com-
plete (e.g., via assertion failures). Our simple examples
represent the kinds of corner-case inputs and “Heisen-
bugs” that commonly cause problems in practice. Ken
sometimes allows naturally occurring nondeterminism to
work in our favor: forgiving recovery with zero program-
mer effort is a natural side effect of abandoning deter-
ministic replay as a goal. See Lowell et al. for a detailed

other Ken

outside
world

. outbound messages

inputs

_ tum# # _ tum# #
externalizer patcher

plpe process - process

handler ()
r— function

memory

in—memor
persistent heap

outbound [B ! dirty
mcssagcs
outputs pdges

file system

cksum

end-of-turn file on—disk state blob

Figure 2: Ken internals

discussion of the potentials and limitations of approaches
that leverage nondeterminism to “erase” failures [25].

3.2 Implementation

Implementing generic support infrastructure for transac-
tional event loops requires factoring out several difficult
problems that would otherwise need to be solved by in-
dividual applications, e.g., efficient incremental check-
pointing and reliable messaging. Furthermore it is not
enough merely to provide these generic facilities sepa-
rately; they must be carefully integrated to provide Ken’s
strong global correctness guarantees (distributed consis-
tency and output validity). We describe first the program-
ming model then the internal details of our Ken imple-
mentation in C for POSIX-compliant Unix systems such
as Linux and HP-UX. Figure 2 illustrates the basic com-
ponents and their flow of data.

Ken supports an event-driven programming paradigm
familiar to many systems programmers and, thanks
to JavaScript/AJAX, many more application program-
mers [29]. Whereas a conventional C program defines
a main() function executed whenever the program is
invoked, a Ken program defines a handler() function
called by the Ken infrastructure in response to inputs,
messages from other Ken processes, and alarm expira-
tions. The handler may send() messages to other Ken
processes, identified as network addresses, or emit out-
puts by specifying “stdout” as the destination in a
send() call. Application software can ask the Ken in-
frastructure whether a given message has been acknowl-
edged. The handler may also manipulate a persistent
heap via ken__alloc() and ken_ free() functions anal-
ogous to their conventional counterparts. The handler
must eventually return (versus loop infinitely), and it may
specify via its integer return value a time at which it

should be invoked again if no messages or inputs arrive.
A return value of —1 indicates there is no such timeout.

The Ken infrastructure contains the event loop that
calls the application-level handler() function, passing
inputs/messages as arguments. The sender of the mes-
sage is also passed as an argument; in the case of inputs,
the sender is “stdin.” As the handler executes, the infras-
tructure appends outbound messages from send() calls
to an end-of-turn (EOT) file whose filename contains the
turn number. The infrastructure also manages the Ken
persistent heap, tracking which memory pages have been
modified: At the start of every turn the Ken heap is read-
only. The first STORE to a memory page generates a seg-
mentation fault; Ken catches the SIGSEGYV, notes the
page, and makes it writable. When the handler function
returns, the infrastructure appends the turn’s dirty pages
to the EOT file along with appropriate metadata. Finally,
Ken appends a 32-bit checksum to the EOT file.

As illustrated in Figure 2, a logical Ken process con-
sists of three Unix processes: The handler process con-
tains both the application-level handler function and
most of the Ken infrastructure. The externalizer process
re-transmits outbound messages until they are acknowl-
edged. The patcher process merges dirty pages from
EOT files into the state blob file, which contains the Ken
persistent heap plus a few pages of metadata.

When the handler process concludes a turn, it sends
the turn number to the externalizer via a pipe. The exter-
nalizer responds by fsync()ing both the EOT file and its
parent directory, which commits the turn and allows the
EOT file’s messages/outputs to be externalized and its
dirty pages to be patched into the state blob file; it also
allows the incoming message that started the turn to be
acknowledged. The externalizer writes outputs to stdout
and transmits messages to their destinations in UDP data-
grams. Messages are re-transmitted until ACK’d.

The externalizer tells the patcher a turn concluded suc-
cessfully by writing the turn number to a second pipe.
The patcher considers EOT files in turn order, pasting
the dirtied pages into the state blob file at the appropri-
ate offsets then fsync()ing the state blob. When all pages
in an EOT file have been incorporated, and all messages
in the EOT file have been acknowledged, the EOT file is
deleted. As the patching process is idempotent, crashes
during patching are tolerated and any state blob corrup-
tion caused by such crashes is repaired upon recovery.

Ken’s three-Unix-process design complicates the im-
plementation somewhat, but it carries several benefits.
It decouples the handling of incoming messages, which
generates EOT files, from the processing and deletion
of EOT files. The fsync()s required to ensure durabil-
ity occur in parallel with execution of the next turn, be-
cause the former are performed by the externalizer pro-
cess and the latter occurs in the handler process. If the

handler process generates EOT files faster than the ex-
ternalizer and patcher can consume them, the pipes con-
taining completed turn numbers eventually fill, causing
the handler process to block until the externalizer and
patcher processes catch up.

Resurrecting a crashed Ken process begins by ensur-
ing that all three of the Unix processes constituting its
former incarnation are dead. A simple shell script suf-
fices to detect a crash, thoroughly kill the failed Ken pro-
cess, and restart it.! Ken’s recovery code typically dis-
covers that the most recent EOT file does not contain a
valid checksum; the file is then deleted. The dirty pages
in remaining EOT files are patched into the state blob
file, which is then mmap()’d into the address space of
the reincarnated handler process. We rely on mmap()
to place the state blob at an exact address, otherwise
pointers within the persistent heap would be meaning-
less. POSIX does not guarantee that mmap() will honor
a placement address hint, but Linux and HP-UX ker-
nel developers confirm that both OSes always honor the
hint. In our experience mmap() always behaves as re-
quired. The externalizer process of a recovered Ken pro-
cess simply resumes the business of re-transmitting un-
acknowledged messages.

3.3 Programming Guidelines

Ken programmers observe a handful of guidelines that
follow from the abstract protocol, and our current imple-
mentation imposes a few additional restrictions.

The most important guideline is easy to follow: Write
code as though tolerated failures cannot occur. Applica-
tion programs running atop Ken never need to handle
such failures, nor should they attempt to infer them. The
most flagrant violation of output validity would be a Ken
process that counts the number of times that it crashed
and outputs this information. To provide a safe outlet for
debugging diagnostics, we treat the standard error stream
as “out of band” and exempt from Ken rules. Devel-
opers may use stderr in the customary fashion, with a
few caveats: The three Unix processes of a logical Ken
process share the same stderr descriptor, and to prevent
buffering from causing badly interleaved error messages
Ken applications should write() rather than fprintf() to
stderr. Furthermore stderr should pass through a pipe
before being redirected to a file because POSIX guar-
antees sane interleaving only for small writes to a pipe.
Most importantly, stderr is “write-only”: Data written to
stderr in violation of Ken’s turn discipline must not find
its way back into the system.

' A Ken process that wishes to terminate permanently may convey to
the resurrection script a “do not resuscitate” order via, e.g., an exit code,
after confirming that sent messages have been acknowledged; terminat-
ing earlier would break the basic model and void Ken’s warranties.

Experienced programmers typically resist the next rule
initially, then gradually grow to appreciate it: Deliber-
ately crashing a Ken program is always acceptable and
sometimes recommended, e.g., when corruption occurs
and is detected during a turn. Crashing returns local Ken
process state to the start of the turn, before the corruption
occurred. Note that Ken substantially relaxes the tradi-
tional fail-stop recommendation that applications should
try to crash as soon as possible after bugs bite [25]. Ken
programmers may safely postpone corruption detection
to immediately before the handler() function returns,
i.e., Ken allows invariant verification and corruption de-
tection to be safely consolidated at a single well-defined
point. Assertions provide manual, application-specific
invariant verification. Correia et al. describe a generic
and automatic complementary mechanism for catching
corruption due to hardware failures, e.g., bit flips [7].

Crashing a Ken program can do more than merely
undo corruption. Memory exhaustion provides a good il-
lustration of how crashing a Ken process can solve the
root cause of a problem: The virtual memory footprint
of a Unix process is the number of memory pages dirt-
ied during execution, and a Ken process is no exception.
Unlike an ordinary Unix process, however, Ken effec-
tively migrates data in the persistent heap to the file sys-
tem as a side effect of crash recovery. Upon recovery
the Ken persistent heap is stored in the state blob file
and the resurrected handler process contains only a read-
only mapping, requiring no RAM or swap [30]. Persis-
tent heap data will be copied into the process’s address
space on demand. Cold data consumes space in the file
system rather than RAM or swap, which are typically far
less abundant than file system space. A Ken program that
crashes when RAM and swap fill thereby solves the un-
derlying resource scarcity problem.

Ken applications must conform to the transactional
turn model. Handler functions that cause externally vis-
ible side effects, e.g., by calling legacy library functions
that transmit messages under the hood during a turn, void
Ken’s warranties. Conventional writes to a conventional
file system from the handler function similarly break the
transactional turn model because a crash between writes
visibly leaves ordinary files in an inconsistent state. The
preferred Ken way to store data durably, of course, is to
use the persistent heap, though a basic filesystem driver
could be implemented using Ken inputs and outputs.

Static, external, and global variables should be avoided
because they are not preserved across crashes; Ken pro-
vides alternative means of finding entry points into the
persistent heap. For example, Ken includes a hash table
interface to heap entry points that is nearly as conve-
nient as the static and global variables it is often used
to replace. The biggest problem in practice is legacy
libraries that employ static storage, e.g., old-fashioned

non-reentrant random number generators and the stan-
dard strtok() function. In most cases safe alternatives
are available, e.g., strtok_ r(). The conventional mem-
ory allocator should not be used because the conven-
tional heap doesn’t survive crashes. Ken novices should
limit themselves to the Ken persistent heap; knowledge-
able programmers might consider, e.g., using alloca()
for intra-turn scratch space.

Multithreading within a turn is possible in principle,
but not recommended because Ken currently does not
automatically preserve thread stacks across crashes. One
easy pattern is guaranteed to work: Threads spawned by
the handler function terminate before it returns. Trickier
patterns involving threads that persist across handler in-
vocations require more careful programming. Much of
our own work explores shared-nothing message-passing
computation, which plays to Ken’s strengths, and we are
often able to avoid the use of threads altogether.

Ken supports reliable unidirectional “fire and forget”
messages, not blocking RPCs. We have not implemented
RPCs for several reasons. First, they can be suscepti-
ble to distributed circular-wait deadlock whereas unidi-
rectional messages are not. Furthermore output commit
requires checkpointing all relevant process state prior
to externalizing an RPC request, and in this case rele-
vant state would include the stack, making checkpoints
larger. If RPCs were supported by a checkpoint-on-send
protocol—the well-known “dual” of Ken—applications
would need to prevent persistent heap corruption via in-
variant checks immediately before every request or reply
is sent, which seems less natural and less convenient than
Ken’s end-of-turn invariant checks. More complex proto-
cols could avoid the shortcomings of checkpoint-on-send
but would introduce coordination overheads during both
recovery and failure-free operation. In our experience it
is often easy to design a distributed computation in an
event-driven style based on reliable unidirectional mes-
sages. The popularity of event-driven frameworks such
as AJAX suggests that programming without RPCs is
widely applicable.

A final area that requires care is system configura-
tion. Most importantly, data integrity primitives such as
fsync() must ensure durability. Volatile write caches in
storage devices must therefore be disabled because they
do not tolerate power failures. On some systems a small
number of UDP datagrams can fill the default socket
send/receive buffers; configuring larger ceilings via the
sysctl utility allows Ken to increase per-socket buffers
via setsockopt(), which reduces the likelihood of data-
gram loss. Other system parameters that sometimes re-
ward thoughtful tuning are those that govern memory
overcommitment and the maximum number of memory
mappings. Multiple Ken processes running on a single

machine should be run in separate directories for better
performance.

3.4 Properties

Ken turns impose atomic, isolated, and durable changes
on application state. If the application-level handler
function always leaves the persistent heap in a consis-
tent state when it returns—hopefully the programmer’s
intention!—then Ken provides ACID transactions that
ensure local application state integrity. Ken also guaran-
tees reliable pairwise-FIFO messages with exactly-once
consumption. These benefits accrue without any overt act
by the programmer; reliability is transparent.

By contrast, a common pattern in existing commercial
software for achieving both application state and mes-
sage reliability is to use a relational database to ensure
local data integrity and message-queuing middleware
to ensure reliable communications. In the RDBMS/MQ
pattern it is the programmer’s responsibility to orches-
trate the delicate interplay between transactions evolving
application data from one consistent state to the next and
operations ensuring message reliability. The slightest er-
ror can easily violate global correctness, e.g., by over-
looking the output commit rule or allowing a crash to in-
troduce distributed inconsistencies. Transparent reliabil-
ity is valuable even for relatively simpler batch scientific
programs, where experience has shown that even experts
find it very difficult to insert appropriate checkpoints [1].

When used as directed, Ken makes it impossible for
the programmer to compromise distributed consistency
or output validity. Distributed consistency in Ken follows
directly from the fact that Ken performs an output com-
mit atomically with every turn’s messages and outputs.
The set of most recent per-process checkpoints in a sys-
tem of Ken processes always constitutes a recovery line.
Output validity follows from the fact that failures (mes-
sage losses and/or crashes) put a system of Ken processes
into a state that could have resulted instead from message
delays. For a formal discussion of distributed consistency
and output validity see [17].

Ken’s most interesting property is composable relia-
bility. Consider two systems of independently developed
Ken processes. The two systems separately and individ-
ually enjoy the strong global correctness guarantees of
distributed consistency and output validity. If they begin
exchanging messages with one another, then the global
correctness guarantees immediately expand to cover the
union of the systems. The developers of the two systems
took no measures whatsoever to make this happen. In
particular they did not need to anticipate inter-operation
between the two systems. Ken’s reliability measures re-
quire no coordination among processes for checkpoint-

ing during failure-free operation, for recovery, or for out-
put.

Ken furthermore brings important “social” benefits to
software development. Because its reliability measures
are purely local and independent, Ken contains dam-
age rather than propagating it and focuses responsibility
rather than diffusing it. For example, a crash of one Ken
process does not trigger rollbacks of any other process;
a remarkable number of prior rollback-recovery schemes
do not have this property. The net effect is that Ken is un-
likely to cause finger-pointing among teams responsible
for designing and operating different components.

Finally, Ken is implementation-friendly in several
ways. It is frugal with durable storage. Because recov-
ery requires only the most recent local checkpoint, older
checkpoints may be deleted. Ken never takes useless
checkpoints [17]. Checkpoints are small as they include
only the persistent heap, not the stack or kernel state;
whole-process checkpoints taken at the OS or virtual ma-
chine monitor layer would be larger. An implementa-
tion may take checkpoints incrementally, as ours does.
It is furthermore possible to delta-encode and/or com-
press checkpoints, though our current implementation
does neither. Finally, Ken admits implementation as a
lightweight, compact, portable library. Our stand-alone
Ken implementation is available as open source soft-
ware [16].

4 Event-Driven State Machine Integration

In this section, we describe integration of the Ken re-
liability protocol with an event-driven state machine
toolkit. The concepts of common event-driven program-
ming paradigms and Ken are complementary, allowing a
seamless integration nearly transparent to developers.

4.1 Design

Event-driven programming has long been used to de-
velop distributed systems because it matches the asyn-
chronous environment of a networked system. In event-
driven programming, a distributed system is a collection
of event handlers reacting to incoming events. For ex-
ample, events may be network events like message de-
livery, or timer events like a peer response timeout. To
prevent inconsistency and avoid deadlock, event-driven
systems frequently execute atomically, allowing a single
event handler at a time. Event handlers are non-blocking,
so programmers use asynchronous I/O, continuing exe-
cution as needed through dispatching subsequent events.

All execution therefore takes place during event han-
dlers, and importantly, all outputs are generated therein.
Typically, a single input is fed to the event handler, and
it must run to completion without further inputs. This

while (running) {
readyEvents = waitForEvents(sockets ,timers);
for (Event ¢ in readyEvents) {
if (Ken.isDupEvent(e)) { continue; }
Ken. blockOutput ();
dispatchEvent(e); //becomes ken_handler()
Ken. writeEOTFile ();
Ken. transmitAckAndOutputs(e);
b}

Figure 3: Common event loop with Ken integration

single-input model is typically enforced by I/O libraries
specific to the event-driven toolkit, allowing event han-
dlers to send messages through the library, but receipt of
messages occurs only through subsequent event handler
invocations (i.e., fire-and-forget messaging).

Figure 3 shows a typical event loop for a distributed
system. A single thread waits for network and timer
events, then dispatches all ready events by calling their
event handlers in turn. To integrate Ken, we need only
verify that the input is new, block outputs by buffering
them in the event library, and then acknowledge the in-
put and externalize the outputs once the end-of-turn file
is written to durable storage. As there is only one thread,
the EOT file will be consistent with the turn state. Finally,
we replace the dispatch function with the Ken handler
function, to provide access into the persistent heap.

4.2 Implementation

We now describe the integration of the Ken protocol with
Mace [20], an open-source, publicly available distributed
systems toolkit. To fully integrate Ken into Mace, we re-
placed the networking libraries with Ken reliable mes-
saging, replaced the facility for scheduling application
timers with a Ken callback mechanism, replaced memory
allocation in Mace with ken__malloc(), and connected
the Ken handler() function to the Mace event process-
ing code. Finally, we relinquished control over applica-
tion startup to Ken.

Mace and Ken appeared to be a perfect fit for each
other, as Mace provided non-blocking atomic event han-
dlers, explicit persistent state definition, and fire-and-
forget messaging. However, in the implementation inte-
grating Mace and Ken we ran across numerous compli-
cating details. Thankfully, these are largely transparent
to the users of MaceKen, and need only be implemented
in the MaceKen runtime. We now discuss a few of these.

State checkpoints. Mace provides explicit state defini-
tion, so we intended to checkpoint the explicit state only.
However, many of the variables were collections based
on the C++ Standard Template Library (STL), which in-
ternally handles memory management. This complicates
checkpointing as the STL collections contained refer-
ences to many dynamic objects. Instead, we replaced the

global allocator, requiring all Mace heap variables to be
maintained by Ken, even transient and temporary state.
This exercise also caused us to streamline some runtime
libraries to reduce the number of memory pages unnec-
essarily dirtied.

Initialization. Unlike Mace, Ken requires that the im-
plementation of main() be defined within Ken, and not
by a user program. This gives Ken control over applica-
tion initialization, to set up Ken state appropriately with-
out application interference, and to conceal restarts. As
Mace allowed substantial developer flexibility on appli-
cation initialization, this created some tension. We had
to incorporate a MaceKen-specific initialization function
that MaceKen would call on each start, to properly ini-
tialize certain state; however, this is hidden from users to
preserve the MaceKen illusion that a program never fails.
Ultimately, it makes both Mace and MaceKen easier to
use—developers need not worry about complex system
initialization.

Event Handlers. Mace provides atomic event han-
dling by using a mutex to prevent multiple events from
executing simultaneously. This design allows multiple
threads to attempt event delivery, such as one set of
threads delivering network messages, and another set of
threads delivering timer expirations. This design is at
odds with other common event dispatch designs where
all event processing is done through a common event
loop executed by a single thread. Ken assumes such a
common, monolithic event loop, which required adding
an event-type (e.g., message delivery, timer expiration,
etc.) dispatch layer prior to the event handler dispatch
Mace already used, adding additional overhead.

Transport Variants. By default Ken re-transmits mes-
sages until acknowledged, doubling the timeout inter-
val with each re-transmission (i.e., exponential backoff).
This strategy is based on the principle that in our tar-
get environments, network losses are infrequent and most
retransmissions will be due to restarting Ken processes.
However for communication-intensive applications, e.g.,
our graph analysis (Section 5.2), the volume and rate
of communication increase the chances of loss due to
limited buffer space in the network or hosts. To pre-
vent excess retransmissions, we implemented two addi-
tional transport variants in addition to the original Ken
default: First, we added Go-Back-N flow control atop the
UDP-based protocol to minimize latency for message-
intensive applications in situations where receive buffers
are likely to fill. We have also implemented a TCP-based
transport that simply re-transmits in response to bro-
ken sockets. The distributed graph analysis experiment
of Section 5.2 and the distributed storage tests of Sec-
tion 5.3 employ the TCP transport; the microbenchmarks
of Section 5.1 used the default Ken mechanism.

Logging. Mace contains a sophisticated logging li-
brary that is not suitable for unbuffered stderr output.
As a result, we had to rewrite the library to specially
use standard heap objects, in many cases replacing pro-
vided containers whose allocation we could not control.
As with stderr, logging must be used as a write-only
mechanism or MaceKen warranties are voided.

Our MaceKen implementation will be released as open
source software [18].

5 Evaluation

We tested both our stand-alone Ken implementation and
also MaceKen to verify that they deliver Ken’s strong
fault tolerance guarantees, to measure performance, and
to evaluate usability.

5.1 Microbenchmarks

We conducted microbenchmark tests to measure Ken
performance (turn latency and throughput) on current
hardware and to estimate performance on emerging non-
volatile memory (NVRAM). One or more pairs of Ken
processes on the same machine pass a zero-initialized
counter back and forth, incrementing it by one in each
turn, until it reaches a threshold. The rationale for using
two Ken processes rather than one is that our test sce-
nario involves two reliability guarantees, local state reli-
ability and reliable pairwise-FIFO messaging, whereas
incrementing a counter once per turn in a single Ken
process would not involve any of Ken’s message layer.
We ran our tests on a 16-core server-class machine with
2.4 GHz Xeon processors, 32 GB RAM, and a mirrored
RAID storage system containing two 72 GB 15K RPM
enterprise-class disks; the RAID controller contained
256 MB of battery-backed write cache. The storage sys-
tem is configured to deliver enterprise-grade data dura-
bility, i.e., all-important foundations such as fsync() and
fdatasync() work as advertised (our tests employ the
latter, which is sufficient for Ken’s guarantees).

We tested Ken in three configurations: the default
mode in which fdatasync() calls guarantee checkpoint
durability at the end of every turn; “no-sync” mode, in
which we simply disable end-of-turn synchronization;
and “tmpfs” mode, in which Ken commits checkpoints
to a file system backed by ordinary volatile main mem-
ory rather than our disk-backed RAID array. The no-sync
case allows us to measure performance for weakened
fault tolerance—protection against process crashes only
and not, e.g., power interruptions or kernel panics. The
tmpfs tests foreshadow performance on future NVRAM.

We measure light-load latency by running only two
Ken processes that pass a counter back and forth, in-
crementing it to a final value of 15,000 (150,000 for the

tmpfs scenario). Default reliable Ken with fdatasync()
averages 4.27 milliseconds per turn. Recall from Sec-
tion 3.2 that Ken synchronizes twice at the end of
each turn, once for the end-of-turn (checkpoint) file and
once for the parent directory. The expected time for
each call should roughly equal a half-rotation latency,
which on our 15K RPM disks is 2 ms. Without end-
of-turn synchronization, Ken’s turns average 0.575 ms,
roughly 7.4 x faster; tmpfs further reduces turn latency
to 0.468 ms.

The throughput of a single pair of Ken processes in
our “counter ping-pong” test is limited by turn latency
because the two Ken processes’ turns must strictly al-
ternate. To measure the aggregate turn throughput ca-
pacity of our machine, we vary the number of Ken pro-
cesses running. As in our latency test, pairs of Ken pro-
cesses increment a counter as it passes back and forth
between them. With data synchronization on our RAID
array, throughput increases gradually to a plateau, even-
tually peaking at over 1,750 turns per second when sev-
eral hundred Ken processes are running. Without end-
of-turn data synchronization, throughput peaks at over
6,000 turns per second when roughly sixteen Ken pro-
cesses are running. On tmpfs, peak throughput exceeds
20,700 turns per second with 22 Ken processes running.

As expected, Ken’s performance depends on the un-
derlying storage technology and its configuration. Our
enterprise-grade RAID array provides reasonable perfor-
mance for a disk-based system. Our no-sync measure-
ments show that latency drops substantially and through-
put increases more than 3 x if we relax our fault toler-
ance requirements. NVRAM would provide the best of
both worlds: even lower latency and an additional 3x
throughput increase over the no-sync case, without com-
promising fault tolerance. We have not yet conducted
tests on flash storage but we expect that SSDs will of-
fer substantially better latency and throughput compared
to disk-based storage. At the other end of the spectrum,
on a system with simple conventional disk storage, we
have measured Ken turn latencies as slow as 26.8 ms.

For applications that must preserve data integrity in
the face of failures, the important question is whether
general-purpose integrity mechanisms such as Ken make
efficient use of whatever physical storage media lie be-
neath them. In tests not reported in detail here, we found
that Ken’s transactional turns are roughly as fast as
ACID transactions on two popular relational databases,
MySQL and Berkeley DB. On a machine similar to
the one used in our experiments, ACID transactions
take a few milliseconds for both Ken as well as the
RDBMSes. This isn’t surprising because the underly-
ing data synchronization primitives provided by general-
purpose operating systems are the same in these three
systems, and the underlying primitives dominate light-

load latencies. Our finding merely suggests that gratu-
itous inefficiencies are absent from all three. Ken of-
fers different features and ergonomic tradeoffs compared
to relational databases—it provides reliable communica-
tions and strong global distributed correctness guaran-
tees, but not relational algebra or schema enforcement,
for example—and comprehensive fair comparisons are
beyond the scope of the present paper.

5.2 Transparent Checkpoints:
Distributed Graph Analysis

Recent work has applied Mace to scientific computing
problems far removed from the systems for which Mace
was originally intended [36]. In a similar vein, we further
tested MaceKen’s versatility by employing it for a graph
analysis problem used as a high-performance comput-
ing benchmark [14]: The maximal independent set (MIS)
problem. Given an undirected graph, we must find a sub-
set of vertices that is both independent (no two vertices
joined by an edge) and maximal (no vertex may be added
without violating independence). A graph may have sev-
eral MISes of varying size; the problem is simply to find
any one of them.

We implemented a distributed MIS algorithm [31]
that lends itself to MaceKen’s event-driven style of pro-
gramming. Like many distributed MIS solvers, this al-
gorithm has a high ratio of communication to computa-
tion and so distribution carries a substantial inherent per-
formance penalty. Our fault-tolerant distributed solver
is actually slower than a lean non-fault-tolerant single-
machine MIS solver when applied to random Erd&s-
Rényi graphs that fit into main memory on a single ma-
chine. However distribution is the only way to tackle
graphs too large for a single machine’s memory, and
our MaceKen solver can exploit an entire cluster’s mem-
ory. More importantly, our MaceKen solver can survive
crashes, which is important for long-running jobs.

To test MaceKen’s resilience in the face of highly cor-
related failures, we ran our MIS solver on a graph with
8.3 million vertices and 1 billion edges on 20 machines
and then simultaneously killed all MaceKen processes
during the job. When we re-started the processes, the
distributed computation resumed where it left off and
completed successfully. We carefully verified that its out-
put was identical to that of a known-correct reference
implementation of the same algorithm. Our experiences
strengthen our belief that MaceKen can be appropriate
for scientific computing, and furthermore demonstrate
that Ken can transparently add fault tolerance with zero
programmer effort.

The largest graph that our MaceKen MIS solver has
tackled contains 67 million vertices and 137 billion
edges; a straightforward and frugal representation of this

10

100000 ¢
10000 ¢
1000 ¢
100 ¢
10 ¢

1 L

0.1 ¢
0.01

MaceKen o
on cluster

single
machine

solution time (sec)

224 228 232 236
graph size (number of edges)

Figure 4: MIS: single machine vs. MaceKen cluster

graph requires over 1.1 TB. Running on a 200-machine
cluster, our MaceKen MIS solver took 8.96 hours to gen-
erate this random graph and 17.07 hours to compute an
MIS with end-of-turn data synchronization disabled. Fig-
ure 4 compares this run time with the run times of a
lean and efficient single-machine MIS solver on smaller
graphs; all graphs are Erd6s-Rényi graphs and the num-
ber of edges is 2048 x the number of vertices. The single-
machine solver is not based on Ken or MaceKen and it
is not fault tolerant. Our distributed MaceKen solver can
tackle graphs 8x larger than our single-machine solver.
Figure 4 suggests that, given enough memory, the single-
machine solver would probably run faster, but we do not
have access to a single machine with 1.1 TB of RAM.
Our results suggest that a MaceKen graph analysis run-
ning on sufficiently fast durable storage (NVRAM) can
provide both fault tolerance and reasonable performance.

5.3 Survivability: Distributed Storage

We conducted experiments on a Mace implementation
of the Bamboo Distributed Hash Table (DHT) proto-
col [32] in the face of churn. No modifications were made
to Bamboo to enable the Ken protocol—the Mace im-
plementation compiled and ran directly with MaceKen.
We chose to work with the Bamboo protocol because
it was specifically designed to tolerate and survive net-
work churn (short peer node lifespan). Bamboo uses a
rapid join protocol and periodic recovery protocols to
correct routing errors and optimize routing distance. Our
own work [19, 20] has confirmed the results of others
that Bamboo delivers consistent routing under aggres-
sive churn. However, this work has focused on consistent
routing, not the preservation of DHT data maintained
atop Bamboo routing, which was expected to pose addi-
tional challenges and not be durable. The DHT is a sep-
arate implementation that uses Bamboo for routing, but
is responsible for storage, replication, and recovery from
failure. As the consistency and durability of data stored
at failed DHT nodes on peer computers are suspect at
best, traditional designs use in-memory storage only, and

tolerate failures through replication instead. If a node re-
boots, it will rejoin the DHT and reacquire its data from
peer replicas. Mace includes such a basic DHT, which
we used for testing.

In exploring the Bamboo protocol’s resilience to
churn, we initially discovered that even under periods
of relatively high churn (mean lifetime of 20 seconds),
the Bamboo DHT is able to recover quickly and main-
tain the copies of stored data. While pleasantly surprised,
we determined that this occurred as a direct result of
the fast failure notification that surviving peers receive
when a remote DHT process terminates and sockets are
cleaned up by operating systems. However, in the case
of power interruptions, kernel panics, or hardware resets,
the socket state is not cleaned up but rather is erased with
no notice at all. TCP further will not time-out the con-
nection for several minutes after the surviving endpoint
attempts to send data, delaying failure recovery. Once the
physical machine has resumed operation, the OS will re-
spond to old-socket-packets with a socket reset, causing
the failure to be detected sooner. However, in both cases,
failure is not detected unless the surviving endpoint at-
tempts to send new data. As obtaining access to a large
cluster where we can control the power cycling of ma-
chines is impractical, we devised an alternate mechanism
to conduct data survivability and durability tests.

Linux Containers (LXCs) [26] are a lightweight virtu-
alization approach based on the concepts of BSD jails.
Importantly, network interfaces can be bound within an
LXC, with their own network stack of which the host
operating system is unaware. We configured our exper-
iment to use LXCs for running DHT nodes. For each
LXC, a virtual Ethernet device is created, with one end-
point inside the LXC and the other in the host OS. The
host OS then routes packets from the LXC to the physical
network over the real Ethernet device. When we wished
to fail a DHT node, we could first remove the host’s
virtual Ethernet device endpoint to prevent the network
stack in the LXC from sending any packets. While killing
the processes next caused attempts to cleanup the socket
state, these failed due to lack of connectivity. Finally, de-
stroying the LXC destroyed all evidence of the socket,
allowing the LXC to be restarted without having TCP at-
tempt to resend the socket FIN.

We conducted experiments to mimic failure scenarios
likely to be observed in managed infrastructures. We ran
300 DHT nodes on 12 physical machines, using Mod-
elNet [34] to emulate a low-latency topology with three
network devices, and 100 DHT nodes connected to each.
In our experiments, after an initial stabilization period,
DHT clients would periodically put new data in the DHT,
and request data, split between just-added data (Get)
and previously-added data (Prior). Get requests com-
mence ten minutes after start. Prior requests commence

11

after 45 min to ensure that the DHT contains sufficient
data. Our experimental setup places many DHT nodes on
each physical machine, and if DHT nodes called fsync()
the machine’s storage system would be overloaded. We
therefore emulate the latency of fsync() calls by adding
26 ms sleep delays. The slowest Ken per-turn latencies
that we have observed are roughly 26 ms; since a Ken
turn involves two fsync() calls, by adding 26 ms to each
fsync() call our experiments measure Ken performance
very pessimistically/conservatively.

Since a DHT uses replication to increase availability
and data survivability upon crashes, we have configured
the unmodified Mace DHT implementation to have five
replicas including the primary store. With Ken enabled,
no replication is needed to survive crash-restart failures,
so the MaceKen DHT stores data only on the primary
store in these experiments.

In the middle of the experiment we tested two kinds
of failures: first a “power interruption” that restarted all
DHT nodes except a distinguished bootstrap node, and
second a “rolling restart” that restarted each node twice
over a period of 5 minutes, such as for urgent, unplanned
maintenance to the entire cluster. Each restarted node is
offline for only 5 seconds before being restarted—chosen
to maximize the unmodified (i.e., non-Ken) Mace DHT
implementation’s ability to recover quickly—real operat-
ing systems currently take considerably longer to restart.

Figures 5 and 6 present success fractions of types of
DHT lookups. For both experiments, when using the
MaceKen runtime, no impact can be seen in the cor-
rect operation of the DHT storage, either for Get or
Prior. When the unmodified Mace runtime is used, fail-
ures cause a period of disruption to DHT requests. When
nodes failed simultaneously, after the period of disrup-
tion the Get requests resume delivering fast, success-
ful responses, but most Prior requests fail due to per-
manent data loss when all replicas of the data simul-
taneously failed. In the rolling-restart case, some data
survived because the DHT could detect failure of some
replicas while other replicas still survived and could fur-
ther replicate the data. If all machines failed before any
of them detected failures and could replicate, then the
data were lost.

Figures 7 and 8 show average latency for all the re-
quests in each minute. MaceKen overheads roughly dou-
ble the cost of the DHT lookups compared to Mace,
but this is reasonable performance, particularly given
the success fractions, and the slow storage device be-
ing simulated. During and immediately after the failures,
MaceKen performance is slower because it is performing
recovery, patching, and reliable data retransmission.

As we made no modifications to Bamboo to use
MaceKen, and based on the fact that with Ken, all data
survived regardless of whether it was stored before, dur-

oL Ken get Ken prior 1 Ken get Ken prior
[“‘ c Plain get Af
o | o \a T2 £
6 0.75 ‘4 Plain get 5 0.75 \ xv e
© | ©
= | =
F Sell
§ 05 § 0.5 Plain prior o ﬂ% kbiY
Q Q 9 by
[$) o
3 0.25 Plain prior S 0.25 . =
w [}
ol ol 2 : 4. Clear
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 s/ % v
Time (min) Time (min) 2 %‘
=
Figure 5: Simultaneous Failure Figure 6: Rolling-restart 3 §
10 ¢ 10 =\ e <
9F 9 S >
—_ 8 £ —_ 8
3 7F 8 7 Ken prior 6 “a“giet
K2y K2 M«m
3 5F W Ken prior (>)\ 5 Buyer
C 4t f Kenget ! C 4 f Kenget
Q o [} &
-ES' 3 R -Ej' 3 . 113 EY)
£ L, =, Figure 9: “kBay” e-commerce
10 1
0 0

10 20

Time (min)

Figure 7: Simultaneous Failure

ing, or after injected node failures, we conclude that the
MaceKen runtime is both easy to use and ensures the sur-
vivability of existing peer-to-peer systems.

5.4 Composable Reliability: E-Commerce

Decentralized software development is the rule rather
than the exception for complex distributed computing
systems. To take a familiar example, “mashups” com-
pose independently developed and managed Internet ser-
vices in client Web browsers [35]. Other important exam-
ples, e.g., supply-chain management software, lack a sin-
gle point of composition but nonetheless require end-to-
end reliability across software components designed and
deployed by teams separated by time, geography, and or-
ganizational boundaries. Ken is well suited to such con-
ditions because it guarantees reliability that composes
globally despite being implemented locally.

Our “kBay” e-commerce scenario (Figure 9) stress-
tests Ken’s composable reliability. Sellers create auctions
and advertise items for sale among friends, who bid on
items. The kBay server clears auctions and notifies win-
ners. Winning bidders must transfer money from sav-
ings to checking accounts before sending checks to sell-
ers. Sellers deposit checks, causing a transfer from the
buyer’s checking account to the seller’s savings account.
If the check does not “bounce” the seller sends the pur-
chased item to the buyer. Without Ken, crashes and mes-
sage losses could create several kinds of mischief for
kBay, e.g., causing the bank to destroy money or cre-
ate counterfeit, causing the auction site to prematurely

30

12

40 50 60 70 80 90

Time (min)

Figure 8: Rolling-restart

remove unsold items from the marketplace or award the
same item to multiple buyers, causing checks to bounce
or causing check writers to forget having written them.
Similar problems have long plagued real banks [2] and
e-commerce sites [3, 33].

Given complete control over all kBay software, a sin-
gle careful development team could in principle guar-
antee global distributed consistency and output validity.
Ken’s composable reliability makes it easy for separate
teams to implement components independently and still
achieve global reliability without coordination. We im-
plemented atop Ken all of the components depicted in
Figure 9. In our tests, 32 clients offer items for sale
via the auction server and advertise them among five
other clients. Injected failures repeatedly crash the auc-
tion server, the bank, and the clients, which ran on three
separate machines. We verified output validity by check-
ing that every item is eventually sold to exactly one
buyer and that the sum of money in the system is con-
served. Our results confirm our expectations: Ken guar-
antees global correctness even in the presence of re-
peated crash/restart failures of stateful components de-
signed without coordinated reliability.

6 Related Work

Previous work related to our efforts falls under three
main umbrellas. First, there is currently a popular set of
systems for managing cluster computation. These spe-
cial case systems, while effective for their goals, are not
general enough to support the range of applications we

are targeting. Second, a host of toolkits for building va-
rieties of distributed systems exist. However, these have
typically targeted developing wide-area peer-to-peer sys-
tems. They do not provide the proposed combination of
data center optimization, performance tuning, and re-
liability. Finally, the Ken design follows on a line of
rollback-recovery research, applied to general purpose
systems. Our proposed work shows how to apply the ad-
vances Ken makes in this line in a generic way to the
development of a broad class of applications.

Cluster Computation Systems Cluster comput-
ing infrastructures include two broad classes. First, job
scheduling engines such as Condor [11,22] are designed
to support batch processing for distributed clusters of
computers. These schedulers tend to be focused on effi-
cient scheduling of a large set of small-scale tasks, such
as for a single machine, across a wide set of resources.
More recently, systems such as MapReduce [8], Ciel [28]
and Dryad [15], have emerged, and focus on how to parti-
tion single, large-scale data-parallel computations across
a cluster of machines. Both classes support process fail-
ures, but the implementation is predominantly focused
on batch processing. In batch processing, failure han-
dling is much simpler, because only the eventual result
is emitted as final output. Failures can therefore be tol-
erated by simply re-computing the result, possibly using
cached partial earlier results.

MaceKen is suitable for developing non-batch appli-
cations that emit results continuously and for applica-
tions with continuous inputs and outputs. In non-batch
applications, simply restarting crashed processes does
not guarantee distributed correctness. In particular, we
focus our design on approaches yielding distributed con-
sistency and output validity, where the output remains
acceptable despite tolerated failures. Consider, for exam-
ple, the CeNSE application [23]. CeNSE includes a large
group of sensors and actuators embedded in the environ-
ment, connected with an array of networks. These actu-
ators provide near-real-time outputs, so the application’s
job is not to perform batch computations, but rather to
generate outputs continuously. In contexts like CeNSE,
output validity is critical.

Programming Distributed Systems There are many
toolkits for building distributed systems. We built our
system on top of the Mace toolkit, which includes a lan-
guage, runtime, model checker, simulator, and various
other tools [20]. But Mace, like many other toolkits, is fo-
cused on the class of general, wide-area distributed sys-
tems such as peer-to-peer overlays.

Other similar toolkits include P2 [24], Libasync and
Flux [4,27,37], and Splay [21]. P2 utilizes the Over-
log declarative language as an efficient way to specify
overlay networks. Its data-flow design lends to effec-
tive parallelization, but its performance is not optimized

13

for data centers. Libasync, its parallelization companion,
libasync-mp, and event language Flux, provide another
highly optimized toolkit for running event-driven and
parallel programs. But again, the focus is on distributed
event processing with asynchrony, not its combination
or ability to handle automated rollback-recovery. Splay’s
focus, beyond the basic language and runtime, focuses
on deployment and fair resource sharing across applica-
tions, and does not target data center environments.

To target data centers, MaceKen focuses on adding
reliability to common data center failure-restart condi-
tions which are not the expected failure case in wide-
area distributed systems. Additionally, MaceKen targets
resource usage based on expected resource availability in
emerging data centers—network bandwidth is assumed
to be abundant, and non-volatile RAM is available for ef-
ficient local checkpointing, while still needing to be fru-
gal with system memory.

Rollback Recovery Rollback-recovery protocols
have a long history [9]. These protocols include both
checkpoint-based and log-based protocols, which dif-
fer in whether they record the state of a system or log
its inputs. Combinations of checkpoint- and log-based
systems continue to be popular, such as Friday [13],
which uses system logs on a distributed application to
run a kind of gdb-like debugger. A major challenge in
rollback-recovery systems is to be able to rollback or re-
play state efficiently across an asynchronously connected
set of nodes; in addition to checkpointing overhead, co-
ordination overhead can be significant both in failure-
free operation and during recovery. Moreover, systems
that prevent failures from altering distributed computa-
tions in any way at all are overkill for a broad class of dis-
tributed systems that require only the weaker guarantee
of output validity. Accepting this weaker guarantee ac-
tually provides Ken two distinct advantages: first, output
validity can be preserved with a simple coordination-free
local protocol, and second, it can actually allow a sys-
tem to survive in some cases when the original sequence
of events would lead to a persistent failure. See Lowell
et al. for a detailed discussion of how and to what extent
nondeterminism helps systems like Ken to recover from
failures [25]. Ken differs from the well-known folklore
approach of checkpointing atomically with every mes-
sage/output because Ken bundles messages and outputs
into turns, which simplifies the implementation and pro-
vides transactional turns that facilitate reasoning about
distributed event-driven computations. Correia et al. ex-
ecute event handlers on multiple copies of local state
to detect and contain arbitrary state corruption [7]. This
could complement Ken’s crash resilience by automating
corruption checks.

7 Conclusions

The Ken rollback-recovery protocol protects local pro-
cess state from crash/restart failures, ensures pairwise-
FIFO message delivery and exactly-once message pro-
cessing, and provides strong global correctness guar-
antees for distributed computations—distributed con-
sistency and output validity. Ken’s reliability guaran-
tees furthermore compose when independently devel-
oped distributed systems interact or merge. Ken com-
plements high-level distributed systems toolkits such as
Mace, which raise the level of abstraction on asyn-
chronous event-driven programming. Our integration of
Ken into Mace simplifies Mace programs and enables
them to adapt to new managed environments prone to
correlated failures. Our tests show that our integrated
MaceKen toolkit is versatile enough to tackle distributed
programming problems ranging from graph analyses to
DHTs, providing crash resilience across the board.

Acknowledgments

We thank our shepherd, John Regehr, and our anony-
mous reviewers for their helpful comments. Research
support is provided in part through the HP Labs Innova-
tion Research Program. This research was partially sup-
ported by the Department of Energy under Award Num-
ber DE-SC0005026. See http://www.hpl.hp.com/
DoE-Disclaimer.html for additional information.

References
[1] L. Alvisi, E. Elnozahy, S. Rao, S. A. Husain, and A. D. Mel.

An analysis of communication induced checkpointing. In Fault-

Tolerant Computing, 1999. doi:10.1109/FTCS.1999.781058.

R. J. Anderson. Why cryptosystems fail. Commun. ACM, 37,

Nov. 1994. doi:10.1145/188280.188291.

S. Ard and T. Clark. eBay blacks out yet again, June

1999. http://news.cnet.com/eBay-blacks-out-yet-again/

2100-1017__3-226987.html.

B. Burns, K. Grimaldi, A. Kostadinov, E. D. Berger, and M. D.

Corner. Flux: A language for programming high-performance

servers. In USENIX ATC, 2006.

K. M. Chandy and L. Lamport. Distributed snapshots: Determin-

ing global states of a distributed system. ACM TOCS, 3(1):63-75,

Feb. 1985. doi:10.1145/214451.214456.

T. Close. Waterken, 2009. http://waterken.org/.

M. Correia, D. Ferro, F. P. Junqueira, and M. Serafini. Practical

hardening of crash-tolerant systems. In USENIX ATC, 2012.

J. Dean and S. Ghemawat. MapReduce: simplified data process-

ing on large clusters. In OSDI, 2004. acmid:1251264.

E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. John-

son. A survey of rollback-recovery protocols in message-passing

systems. ACM Comput. Surv., 34:375-408, Sept. 2002. doi:

10.1145/568522.568525.

M. Finifter, A. Mettler, N. Sastry, and D. Wagner. Verifiable func-

tional purity in Java. In ACM CCS, 2008. acmid:1455793.

J. Frey, T. Tannenbaum, M. Livny, 1. Foster, and S. Tuecke.

Condor-g: A computation management agent for multi-

institutional grids. Cluster Computing, 5(3):237-246, 2002.

[2]

[4]

[5]

[6]
[7]
[8]

[9]

[10]

(11]

14

[12]
[13]

[14]
[15]

[16]
[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]
[30]
[31]
[32]

[33]

[34]

[35]

[36]

[37]

V. K. Garg. Elements of Distributed Computing. Wiley, 2002.
D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and 1. Stoica. Fri-
day: Global comprehension for distributed replay. In NSDI, 2007.
http://www.usenix.org/event/nsdi07/tech/geels.html.
The Graph500 Benchmark. http://www.graph500.org/.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: dis-
tributed data-parallel programs from sequential building blocks.
SIGOPS OS Rev., 41:59-72, Mar. 2007. acmid:1273005.

T. Kelly. http://ai.eecs.umich.edu/~tpkelly/Ken/.

T. Kelly, A. H. Karp, M. Stiegler, T. Close, and H. K.
Cho. Output-valid rollback-recovery. Technical report, HP
Labs, 2010. http://www.hpl.hp.com/techreports/2010/
HPL-2010-155.pdf.

C. Killian. http://www.macesystems.org/maceken/.

C. Killian, K. Nagaraj, S. Pervez, R. Braud, J. W. Anderson, and
R. Jhala. Finding latent performance bugs in systems implemen-
tations. In FSE, 2010. doi:10.1145/1882291.1882297.

C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. M. Vah-
dat. Mace: language support for building distributed systems. In
PLDI, 2007. doi:10.1145/1250734.1250755.

L. Leonini, E. Riviere, and P. Felber. Splay: Distributed systems
evaluation made simple. In NSDI, 2009. Available from: http:
//www.usenix.org/event/nsdi09/tech/.

M. Litzkow, M. Livny, and M. Mutka. Condor-a hunter of idle
workstations. In ICDCS, volume 43, 1988.

S. Lohr. Smart dust? Not quite, but we’re getting there. New
York Times, Jan. 2010. http://www.nytimes.com/2010/01/
31/business/31lunboxed.html.

B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe,
and I. Stoica. Implementing declarative overlays. In SOSP, 2005.
doi:10.1145/1095810.1095818.

D. E. Lowell, S. Chandra, and P. M. Chen. Exploring failure
transparency and the limits of generic recovery. In OSDI, 2000.
Ixc Linux containers. http://lxc.sourceforge.net/.

D. Mazieres. A toolkit for user-level file systems. In USENIX
ATC, 2001.

D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Mad-
havapeddy, and S. Hand. Ciel: a universal execution engine for
distributed data-flow computing. In NSDI, 2011. http://www.
usenix.org/event/nsdill/tech/full_papers/Murray.pdf.
T. Negrino and D. Smith. JavaScript and AJAX. Peachpit Press,
seventh edition, 2009.
http://linux-mm.org/OverCommitAccounting.

D. Peleg. Distributed Computing: A Locality-Sensitive Approach.
SIAM Press, 2000.

S.Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn
in a DHT. In USENIX ATC, 2004. http://www.usenix.org/
event/usenix04/tech/general/rhea.html.

I. Steiner. eBay blames search outage on listings surge, Nov.
2009. http://www.auctionbytes.com/cab/abn/y09/m11/
i21/s02.

A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostié,
J. Chase, and D. Becker. Scalability and accuracy in a large-scale
network emulator. In OSDI, 2002. http://www.usenix.org/
event/osdi02/tech/vahdat.html.

H. Wang, X. Fan, J. Howell, and C. Jackson. Protection and
communication abstractions for web browsers in MashupOS. In
SOSP, 2007.

S. Yoo, H. Lee, C. Killian, and M. Kulkarni. Incontext: simple
parallelism for distributed applications. In HPDC, 2011. doi:
10.1145/1996130.1996144.

N. Zeldovich, A. Yip, F. Dabek, R. Morris, D. Mazieres, and
F. Kaashoek. Multiprocessor support for event-driven programs.
In USENIX ATC, June 2003.

http://www.hpl.hp.com/DoE-Disclaimer.html
http://www.hpl.hp.com/DoE-Disclaimer.html
http://dx.doi.org/10.1109/FTCS.1999.781058
http://dx.doi.org/10.1145/188280.188291
http://news.cnet.com/eBay-blacks-out-yet-again/2100-1017_3-226987.html
http://news.cnet.com/eBay-blacks-out-yet-again/2100-1017_3-226987.html
http://dx.doi.org/10.1145/214451.214456
http://waterken.org/
http://dl.acm.org/citation.cfm?id=1251264
http://dx.doi.org/10.1145/568522.568525
http://dx.doi.org/10.1145/568522.568525
http://dl.acm.org/citation.cfm?id=1455793
http://www.usenix.org/event/nsdi07/tech/geels.html
http://www.graph500.org/
http://dl.acm.org/citation.cfm?id=1273005
http://ai.eecs.umich.edu/~tpkelly/Ken/
http://www.hpl.hp.com/techreports/2010/HPL-2010-155.pdf
http://www.hpl.hp.com/techreports/2010/HPL-2010-155.pdf
http://www.macesystems.org/maceken/
http://dx.doi.org/10.1145/1882291.1882297
http://dx.doi.org/10.1145/1250734.1250755
http://www.usenix.org/event/nsdi09/tech/
http://www.usenix.org/event/nsdi09/tech/
http://www.nytimes.com/2010/01/31/business/31unboxed.html
http://www.nytimes.com/2010/01/31/business/31unboxed.html
http://dx.doi.org/10.1145/1095810.1095818
http://lxc.sourceforge.net/
http://www.usenix.org/event/nsdi11/tech/full_papers/Murray.pdf
http://www.usenix.org/event/nsdi11/tech/full_papers/Murray.pdf
http://linux-mm.org/OverCommitAccounting
http://www.usenix.org/event/usenix04/tech/general/rhea.html
http://www.usenix.org/event/usenix04/tech/general/rhea.html
http://www.auctionbytes.com/cab/abn/y09/m11/i21/s02
http://www.auctionbytes.com/cab/abn/y09/m11/i21/s02
http://www.usenix.org/event/osdi02/tech/vahdat.html
http://www.usenix.org/event/osdi02/tech/vahdat.html
http://dx.doi.org/10.1145/1996130.1996144
http://dx.doi.org/10.1145/1996130.1996144

	Introduction
	Background
	Distributed Consistency
	Output Validity
	Composable Reliability

	Reliability Mechanism
	Protocol
	Implementation
	Programming Guidelines
	Properties

	Event-Driven State Machine Integration
	Design
	Implementation

	Evaluation
	Microbenchmarks
	Transparent Checkpoints: Distributed Graph Analysis
	Survivability: Distributed Storage
	Composable Reliability: E-Commerce

	Related Work
	Conclusions

