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ABSTRACT 
The goal of on-line analytical processing (OLAP) is to quickly 
answer queries from large amounts of data residing in a data 
warehouse. Materialized view selection is an optimization 
problem encountered in OLAP systems. Published work on the 
problem of materialized view selection presents solutions scalable 
in the number of possible views. However, the number of possible 
views is exponential relative to the number of database 
dimensions. A truly scalable solution must be polynomial time 
relative to the number of dimensions. We present such a solution, 
our Polynomial Greedy Algorithm. Complexity analysis proves 
scalability, and a performance study verifies the result. Empirical 
evidence demonstrates benefits close to existing algorithms. We 
conclude the Polynomial Greedy Algorithm functions effectively 
where existing algorithms fail dramatically. 

Categories and Subject Descriptors 
H.2.1 [Database Management]: Logical Design – data models, 
schema and subschema. 

General Terms 
Algorithms, Performance, Design, Theory. 

Keywords 
OLAP, materialized views, view selection, data warehouse, 
OLAP performance. 

1. INTRODUCTION 
Accumulation of data in industry and organizations has led to 
large archives of data in recent years. Quick access to the 
information in these archives has become critical for decision-
making. The need to excel has given rise to new data models and 
decision support systems. Typically the queries posed involve 
operations of aggregation such as sum or count. The queries also 
typically include “group by” expressions. For example, the CEO 
of a book manufacturing company may want to examine trends in 
profitability of different types of books over time. The answer 
could be found by doing a sum of the cost and sell values of jobs, 
grouped by bind style and quarter. Data warehouses have been 

engineered to answer queries of aggregation with “group by” 
expressions efficiently. The goal of on-line analytical processing 
(OLAP) is to quickly answer queries from large amounts of data 
residing in a data warehouse. 

1.1 OLAP: The beast of burden 
Data warehouses are commonly organized with one large central 
fact table, and many smaller dimension tables. This configuration 
is termed a star schema. Figure 1 illustrates with an example. The 
fact table is composed of two types of attributes: dimension 
attributes and measures. The dimension attributes in Figure 1 are 
CustID, DateID and BindID. The dimension attributes have 
foreign-key/primary-key relationships with the dimension tables. 
Together, the dimension attributes compose the primary key of 
the fact table. The dimension attributes are typically used in query 
“group by” expressions, or to join the fact table with the 
dimension tables. Notice that a dimension can also have a 
hierarchy. For example, the Figure 1 schema allows time to be 
grouped by DateID, Month, Quarter or Year. The fact table also 
contains measure attributes, the values to be aggregated. The 
measure attributes in Figure 1 are Cost and Sell. 

 Customer
 CustID
 

 

 

 

 

 

 

Figure 1. Example star schema for a data warehouse 

A fact table in a data warehouse may contain many millions of 
rows, and processing a single query can require significant 
resources. To improve the quickness of response to queries, pre-
aggregation is a useful OLAP strategy. Pre-aggregation requires 
the result to be saved to disk as materialized views, also known as 
automatic summary tables (ASTs). The number of possible views 
is exponential in the number of dimensions in the database. Faced 
with combinatorial explosion, limited disk space and limited 
update resources, OLAP must select a strategic set of beneficial 
views to materialize in order to achieve quick response to queries. 
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1.2 The map to quick response 
The goal of OLAP is to give quick response to queries posed 
against a large repository of data. Figure 2 maps our approach to 
the general problem of OLAP optimization. We break the larger 
problem of OLAP optimization into four sub-problems: View Size 
Estimation, materialized View Selection, materialized View 
Maintenance, and Query Optimization with materialized views. 
We explain this diagram, setting the context of our work in view 
selection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Our plan for OLAP optimization 

Our plan for OLAP optimization feeds Sample Data from the 
Fact Table into View Size Estimation. View Selection makes an 
Estimate Request for the view size of each new view it encounters 
while exploring promising regions of the search space. View Size 
Estimation queries the Sample Data, examines and models the 
distribution [12]. The distribution observed in the sample is used 
to estimate the expected number of rows in the view for the full 
dataset. The Estimated View Size is passed to View Selection, 
which uses the estimates to evaluate the relative benefits of 
materializing the various views under consideration. View 
Selection picks Strategically Selected Views for materialization 
with the goal of minimizing total query costs. View Maintenance 
builds the original views from the Initial Data from the Fact 
Table, and maintains the views as Incremental Data arrives from 
Updates, offering Current Views for use by Query Optimization. 
Query Optimization must consider which of the Current Views 
can be utilized to most efficiently answer Queries from Users, 
giving Quick Responses to the Users. Queries feed back into View 
Selection, allowing the system to be dynamic, adapting and 
improving over time, matching the query workload. 

1.3 Organizing the expedition 
The focus of this paper is the view selection algorithm. We 
describe a new view selection algorithm scalable relative to the 
number of dimensions present in the data warehouse. This 
dimensional scalability is a quantum leap over existing view 

selection algorithms that search the hypercube lattice structure 
first described by Harinarayan et al. [6]. We demonstrate that our 
Polynomial Greedy Algorithm (PGA) selects sets of views with 
close to the same benefits as the greedy algorithm [6] (we refer to 
their algorithm henceforth as HRU). Furthermore, we demonstrate 
PGA functions beyond where HRU is overwhelmed by the 
exponential explosion of the possible views to analyze. 

We focus on comparing PGA with HRU since most research in 
materialized view selection builds upon Harinarayan et al. [6]. 
The algorithms presented in the related research [2, 4, 5, 14, 16] 
also suffer from the problem of exponential explosion with scaled 
up dimensionality, since they all potentially process every node in 
the hypercube lattice structure. A survey of related works is 
included (see Appendix A). A comparison with the straight 
forward HRU approach demonstrates our purpose. Extensions 
accounting for query frequencies, index structure and update costs 
are described in future work. 
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The problem of exponential explosion that exists in previous work 
is discussed in Section 2. A PGA example is given in Section 3. 
Section 4 presents our solution to overcoming the exponential 
explosion. Section 5 verifies the usefulness of our algorithm with 
empirical test results. Conclusions are expressed in Section 6. 
Section 7 outlines future work. 
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2. EXPONENTIAL EXPLOSION 
Current Views Most of the previous work in view selection [2, 3, 4, 5, 14, 16] is 

based on the hypercube lattice structure [6]. We briefly review the 
concepts associated with the hypercube lattice structure, and 
HRU. Then we point out the scalability issue that has not been 
previously addressed. 
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Figure 3 illustrates the hypercube lattice structure with an 
example [6]. Each node of the lattice structure represents a 
possible view. Each node is labeled with the set of dimensions in 
the “group by” list for that view. The numbers associated with the 
nodes represent the number of rows in the view. These numbers 
are normally derived from a view size estimation algorithm. 
However, the numbers in Figure 3 follow the example as given by 
Harinarayan et al. [6]. The root node in the lattice structure 
represents the fact table. A given view can be calculated from any 
materialized ancestor view. The initial state for HRU has only the 
fact table materialized. HRU calculates the benefits of each 
possible view during each iteration, and selects the most 
beneficial view for materialization. Processing continues until a 
predetermined number of materialized views is been reached. 

 

 

 

 

 

 

Figure 3. Example hypercube lattice structure [6] 

Table 1 shows the calculations for the first two iterations of HRU. 
Materializing {p, s} saves 6M – 0.8M = 5.2M rows for each of 4 
views ({p, s} and its three descendants: {p}, {s} and {}). The 

{c, p, s} 6M c = Customer 
p = Part  
s = Supplier  {p, s} 0.8M {c, s} 6M {c, p} 6M 

{s} 0.01M {p} 0.2M {c} 0.1M 

{} 1



view {c, s} yields no benefit if materialized, since any query that 
can be answered by reading 6M rows from {c, s} can also be 
answered by reading 6M rows from the fact table {c, p, s}.  The 
view {p, s} is selected for materialization in the first iteration. {c} 
is selected in the second iteration. 

Table 1. Two iterations of HRU, based on figure 3 

 

 

 

 

 

 

This simple example is sufficient to illustrate a crucial point. The 
algorithm evaluates every unselected node during each iteration, 
and each evaluation considers the effect on every descendant.  
The algorithm consumes O(kn2) time where k = |views to select| 
and n = |nodes|. This order of complexity looks very good, it is 
polynomial time. However, the result is misleading. The number 
of nodes in the lattice structure is exponential relative to the 
number of dimensions. Consider a database with no hierarchies. 
When we pose a query to OLAP, for each dimension we can 
choose whether or not to group by that dimension. The number of 
possible views is therefore 2d where d = |dimensions|. Thus n = 2d, 
and the time complexity of HRU is O(k22d). HRU runs in time 
exponential relative to the number of dimensions in the database. 

Any algorithm that considers every node in the hypercube lattice 
structure is exponential relative to the number of dimensions. All 
the published static view selection algorithms we are aware of 
potentially touch every node in the lattice. The exponential time 
complexity swamps any processor as the number of dimensions is 
scaled up.  Let us drive this home with an example. We 
implemented HRU and tested the algorithm at ten dimensions, 
with no hierarchies. The associated lattice has 210 = 1024 nodes. 
The algorithm selected 120 views in 1 hour. Now let’s say the 
CEO wants the option to choose from 20 job attributes instead of 
10. The number of possible views just jumped 1024 fold. The 
view selection algorithm now takes over one million hours to 
select 120 views. Clearly the CEO would find this unacceptable! 
We must find a better solution. 

3. PGA EXAMPLE 
We walk through the example in Figure 3 using PGA, and discuss 
the theory behind our design in Section 4. PGA, like HRU, also 
selects one view for materialization with each iteration. However, 
PGA divides each iteration into a nomination phase and a 
selection phase. The first phase nominates promising views into a 
candidate set. The second phase estimates the benefits of 
materializing each candidate, and selects the view with the 
highest evaluation for materialization. Figure 4 outlines PGA 
activities. A more detailed activity diagram is included (see 
Appendix B). 

The nomination phase begins at the top of the lattice; in Figure 3, 
this is the node {c, p, s}. We nominate the smallest node from 
amongst the children. The candidate set is now {{p, s}}. We then 

examine the children of {p, s} and nominate the smallest child, 
{s}. The process repeats until the bottom of the lattice is reached. 
The candidate set is then {{p, s}, {s}, {}}. Once a path of 
candidate views has been nominated, the algorithm enters the 
selection phase. 
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0 x 2 = 0 
0 x 2 = 0 
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5.9M x 2 = 11.8M 
0.8M - 1 

5.2M x 4 = 20.8M 
0 x 4 = 0 
0 x 4 = 0 

5.99M x 2 = 11.98M 
5.8M x 2 = 11.6M 
5.9M x 2 = 11.8M 

6M - 1 

Figure 4. Activity diagram of PGA 

The selection phase evaluates each view in the candidate set, and 
selects the view that appears to yield the most benefit if 
materialized. The evaluation for each candidate is done by taking 
the difference with the smallest ancestor selected for 
materialization, and multiplying the savings by the estimated 
number of nodes affected. The number of nodes affected is 
estimated in two steps. The number of descendants is calculated, 
including the candidate itself. Then we look for materialized 
views smaller than the candidate. If any such view is found, we 
account for the affect of the view with the largest number of 
descendants in common with the candidate. The overlapping 
descendants are subtracted from the count of views affected by 
materializing the candidate, since the benefits are undercut by the 
other view. The example in Figure 3 is processed as shown in 
Table 2 and Table 3. 

Table 2. First iteration of PGA, based on figure 3 
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Table 3. Second iteration of PGA, based on figure 3 

 Candidates 

0 x 2 = 0 
0.79M x 2 = 1.58M  
5.9M x 2 = 11.8M 

6M - 1 

Iteration 2 Benefit

{c,s} 
{s} 
{c} 
{} 

 

 

 

 
The view {p, s} is selected for materialization during the first 
iteration, and is removed from the candidates. Then the second 
iteration begins with another nomination phase. The algorithm 
examines the children of {c, p, s} and nominates the smallest 
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Figure 5. Example path of candidate views 

child that has not already been nominated. There is a tie in this 
instance between {c, s} and {c, p}. Ties are broken arbitrarily; we 
nominate the view {c, s}. Then the children of {c, s} are 
examined and the smallest child that has not been previously 
nominated, {c}, is nominated. Then the candidates are evaluated 
as shown in Table 3. The view {c} is selected for materialization. 

Compare Tables 2 and 3 with Table 1. Notice our algorithm does 
fewer calculations than HRU, and yet reaches the same decisions 
in this example as HRU. Our algorithm is polynomial time in the 
number of dimensions, whereas HRU is exponential in the 
number of dimensions. We discuss the advantages of a 
polynomial time algorithm in Section 4. We demonstrate the 
advantages and quality empirically in Section 5. 

4. TAMING DIMENSIONALITY 
There are two sources of exponential time complexity in the 
algorithms of Harinarayan et al. [6], and the enhanced algorithms 
[2, 4, 5, 14, 16]. First, each iteration evaluates every node (view) 
in the hypercube lattice structure. The second source of 
exponential time complexity is that each node evaluation 
considers the effect of materialization on every descendant. We 
present our approach to overcoming each of these complexity 
barriers in turn. 

4.1 Nominating views in polynomial time 
The key to overcoming the barrier of evaluating an exponential 
number of nodes is to consider only promising portions of the 
lattice. Figure 5 illustrates with an example how we identify 
promising portions of the lattice in polynomial time. Candidate 
views are nominated by following the steepest path through the 
lattice. The nodes in bold face are the candidate views. Only a 
small portion of the lattice is shown. There is no need to generate 
the entire lattice. We represent each view with a fixed amount of 
metadata. This greedy approach for selecting a path is polynomial 
in both time and space relative to d, the number of dimensions. 

When evaluating views on the same level of the lattice, smaller 
views are typically better to materialize than larger views, since 
smaller views tend to yield greater benefits at smaller costs. This 
is illustrated by the example in Section 2. Our approach is to find 
paths of nodes through the lattice that appear promising for high 
benefits. 

Our approach first nominates promising views as candidates for 
materialization. These candidate views are later evaluated for 
view selection. The nomination process begins with the root as 

the parent node, which is the fact table. We determine the 
identities of the children for that node. The view size is estimated 
for each child. The smallest child view is nominated as a 
candidate for view materialization.  The nomination process then 
moves down one level. The nominated child is considered as a 
parent, and the smallest child of that node is nominated as a 
candidate view. The process of nominating candidate views 
continues until the bottom of the lattice is reached. This 
nominating process constitutes a greedy search following the 
steepest path through the lattice. The result is a path of candidate 
views that promise high benefits. 

There are a few properties of the hypercube lattice that are 
noteworthy for analyzing the complexity of the nomination 
process. Let the fact table have d dimensions. Let the bottom 
layer of the lattice be labeled L0, the next layer up be labeled L1 
and so on through Ld. The root node of the lattice has d 
dimensions. Each node of layer Ld-1 has d – 1 dimensions, since 
each of these views represents aggregation along one dimension 
of the parent view. There are d nodes in Ld-1, since there are d 
possible dimensions available for aggregation in the parent node. 
If we now consider a node from Ld-1 as a parent, this node is the 
root of a hypercube with d – 1 dimensions, formed by its 
descendants. The pattern repeats with one less dimension. In 
general, a node in level Li has i dimensions, and i children. There 
are d levels in the larger structure, not counting the fact table. The 
swatch of nodes considered when nominating a path of candidate 
views is widest at Ld-1 with d nodes. The swatch cuts through d 
levels. Thus the time complexity for nominating a path of 
candidate views is O(d2). 

Our nomination process permits the implementation of a 
polynomial time algorithm relative to the number of dimensions 
in the database. Our process does not explore the search space as 
broadly as HRU, but never-the-less in practice finds a set of views 
to materialize that is nearly as beneficial as the set selected by 
HRU. There are several reasons for the success with relatively 
little processing. The candidate set is composed of the smallest 
views among siblings. There is a very strong correlation between 
the size of the view and the benefit of materializing the view. The 
smaller views tend to yield a greater difference in size compared 
to its smallest materialized ancestor, which leads to greater I/O 
savings whenever the view is utilized at query time. 

Our nomination strategy begins at the top of the lattice and moves 
downward. There is a tendency for views high up the lattice 
structure to be selected for materialization, because the savings 



PGA complexity is O(dk2ℓ) time and O(dkℓ) space. generated by the difference with the smallest materialized 
ancestor is multiplied by a larger set of descendant views. 
Beginning the nomination process at the top helps assure the best 
views high up the lattice are found and considered for 
materialization. The nomination process cuts vertical paths 
through the lattice structure. Although there is a tendency for 
selected views to reside high in the lattice, it is possible for 
unusually small views lower down in the lattice to yield great 
benefit. There is a tendency for small parent views to have small 
children views. The strategy of following generations of small 
views through the lattice structure helps assure that unusually 
small views low in the lattice are found and considered for 
materialization. 

A more accurate benefit estimate could be obtained by accounting 
for the effects of common descendants between a candidate and 
each materialized view. Considering all pair-wise interactions 
with materialized views would increase accuracy and processing 
time. This approach would still not consider interactions of three 
or more materialized views. 

There is a progression of possible polynomial time node 
evaluation algorithms. We could account for three-node 
interactions. Then we could account for four-node interactions 
and so on. Each level of detail adds to the complexity of 
evaluation, with potential benefits in the resulting query response 
times. We find PGA yields effective results. PGA alternates between nomination and selection phases. 

Promising views in a path are nominated as candidates. Then a 
view is selected from the candidates for materialization. The 
process iterates between nomination and selection phases until a 
predetermined termination condition is met (e.g. a fixed amount 
of disk space).  

5. EMPIRICAL EVIDENCE 
Karloff and Mihail [9] point out that no performance guarantee 
relative to the optimal solution has been proven for any existing 
algorithm that is polynomial time relative to the number of views. 
Following the advice of Karloff and Mihail [9], we demonstrate 
the worthiness of PGA with empirical evidence. 4.2 Selecting views in polynomial time 

The second barrier of exponential processing can be overcome by 
approximating the benefits derived by materialization. PGA 
estimates benefits by taking the difference between the size of 
view V, and its smallest selected ancestor. PGA also takes into 
account the selected view that most prominently affects the 
number of nodes benefiting from the materialization of V. If a 
selected view is smaller or equal in size to V, then any common 
descendants do not benefit from materializing V. These 
calculations only take into account very prominent interactions 
with selected views, yet the result is surprisingly useful. This 
strategy constitutes the materialization benefit estimator we 
implemented in PGA. 

The test environment is a Pentium IV 1.9 GHz processor, with 
1GB RAM, running Windows 2000. The programs are written in 
Microsoft Visual Basic. Data is stored using Microsoft SQL 
Server 7.0. The databases contain real data obtained from a local 
book manufacturing company, McNaughton & Gunn, Inc. 

Figures 6 through 12 are the results of tests carried out over 
hierarchical databases. The query costs shown are the number of 
rows retrieved from disk if every possible view is queried exactly 
once, as done by Harinarayan et al. [6]. The exact number of rows 
for each view is pre-calculated for these experiments. Normally 
these numbers would derive from a view size estimator. Using the 
exact number of rows isolates deviations caused by view selection 
from deviations caused by view size estimation. The differences 
in query costs are strictly the result of the differences in the view 
selection algorithms. 

We track metadata on the candidate views to reduce the time 
complexity of the algorithm. For each candidate, we store the 
smallest selected ancestor rows, and the maximum number of 
descendants in common with any selected view. Tracking this 
metadata allows the Evaluate benefit activity in Figure 4 to 
execute once in O(1) time. The algorithm is dominated by the 
process of setting the metadata. The metadata is updated when a 
view is nominated or selected. Given two views, the number of 
common descendants can be determined in O(d) time. When a 
view is nominated, the number of common descendants are 
computed for each of O(k) selected views. The Nominate smallest 
child view activity of Figure 4 executes O(d) times during each 
Nomination phase. Thus one Nomination phase executes in 
O(d2k) time. The Select view greedily activity computes the 
common descendants for each of  O(dk) candidate views. Thus 
the Selection phase also executes in O(d2k) time. Since k views 
are selected, the overall time complexity of PGA is O(d2k2). 

The dimensions in the datasets all have four levels in their 
hierarchies. More detailed descriptions of the database schemas 
are available (see Appendix C)]. Figure 6 illustrates the relative 
accuracy of PGA compared with HRU and the optimal solution at 
small dimensionality. The scale-up into higher dimensionality is 
demonstrated in Figures 7 through 12. 

Figures 6 through 9 plot the query costs achieved at various levels 
of view materialization. The trend is similar to that of a cache; the 
more cache, the quicker the general response, with diminishing 
returns. Likewise, the more materialized views, the quicker the 
response, with diminishing returns. Figure 6 compares query costs 
over a two dimensional hierarchical data set, four levels per 
dimension. There are 42 or 16 possible views. Three nearly 
identical curves are shown. The key point is that PGA achieves 
very close to the same query response as HRU and the optimal 
solution. 

A fixed amount of metadata is stored for each of O(d2) views for 
each of O(k) paths through the lattice. Thus the space complexity 
of PGA is O(d2k). 

The optimal solution can only be calculated at very small 
dimensionalities. Processing the optimal solution quickly 
becomes untenable at four dimensions. Under these conditions, 
we are still able to demonstrate our algorithm derives benefits 
close to HRU as shown in Figures 7 and 8.  

When hierarchies are present, the lattice has more layers. Let hi be 
the number of hierarchical levels in dimension i. 

                                                                               d 
 Lattice layers ℓ = 1 fact table +  Σ   (hi  -1) aggregation layers 
                                                                              i=1 
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PGA and HRU tend to agree for the most critical early decisions. 
The first four views selected are identical in the six dimensional 
experiment. Out of the first 128 views selected, 45% are common 
between PGA and HRU. The divergence is not surprising, since 
HRU is also a greedy approach. Different heuristics can result in 
different decisions. PGA averages only 4.9% higher than HRU in 
query costs at six dimensions. 
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The processing times for view selection are shown in Figures 10, 
11 and 12. The number of possible views is 44, 46, 48 respectively 
at four, six and eight dimensions. The exponential complexity of 
HRU swamps the processor as we scale up. HRU becomes 
completely untenable at eight dimensions, as shown in Figure 12. 
PGA continues to find good sets of materialized views when HRU 
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Figure 11. View selection processing at six dimensions 

       
0.00

50.00

100.00

150.00

200.00

0 100 200 300 400 500  

  

Pr
oc

es
si

ng
 T

im
e 

(m
in

ut
es

) 

HRU 
PGA

HRU 
PGA
 

  
Materialization Costs (thousands of rows)
 9. Query costs at eight dimensions Figure 12. V
50 100 150 200
Materialization Costs (thousands of rows)
Materialization Costs (thousands of rows)
d=4

=4
iew
d=8
d=8
d=6

d=6
d=2
Materialization Costs (thousands of rows)
 selection processing at eight dimensions 



6. SUMMARY: ENJOYING THE VIEWS 
The complexity of PGA is O(dk2ℓ) time and O(dkℓ) space where 
d is the number of dimensions, k is the number of views selected 
for materialization, and ℓ is the number of layers in the lattice. 
This compares with O(kg2d) time complexity for HRU, where g is 
the geometric mean of the number of levels in the hierarchies. 
Figures 6 through 12 illustrate the value of having a view 
selection algorithm that is polynomial time relative to the number 
of dimensions. The optimal solution can realistically be found 
only for small dimensionality. Figure 6 shows both HRU and 
PGA come close to the optimal solution. The scale-up testing 
begins with Figure 7. With a four dimensional hierarchical 
database, it is no longer possible to find the optimal solution. 
Figure 10 shows the processing time required for the optimal 
solution is nearly a vertical line. The HRU algorithm is more 
scaleable than finding the optimal solution, but begins to fail for a 
six dimensional hierarchical database (see Figure 11), and fails 
miserably with an eight dimensional database (see Figure 12). 
HRU consumes 91 minutes for each view selection for in this 
environment, whereas PGA processes 256 view selections in 108 
minutes for an average of 1 every 25 seconds. PGA succeeds in 
finding a good set of materialized views where HRU can no 
longer function. 

There is a general principle that could be implemented in a 
commercial system. There is a tradeoff between processing view 
selection, and the resulting query costs. An OLAP system could 
calculate the processing time required for various approaches, 
based on the complexity of the view selection algorithms, and use 
the best feasible approach given the situation. For small 
dimensional databases, it may actually be possible to determine 
the optimal materialized view selection. When it is not possible to 
find the optimal solution, it may be possible to use HRU. When 
HRU fails, then PGA extends the usefulness of the OLAP system. 

7. THE FUTURE 
PGA can be easily adapted to account for query frequencies if 
known in advance. The views that would naturally answer these 
queries should be added to the candidate set at the start. This 
permits the possibility of materializing commonly utilized views. 
View evaluation needs to query metadata to find frequently 
accessed views that are descendants of the evaluated view, and 
multiply benefits at the descendant view by the query frequency. 
Accounting for update costs would be a matter of modifying the 
metric associated with the views. Replacing rows with disk 
accesses as done in Uchiyama et al. [16] would express query and 
update costs in common units, allowing for minimization of disk 
I/O. The search mechanism would remain unchanged. 
Index structures should also be figured into the selection of 
materialized views. Implementation is dependent in part on the 
index mechanisms. We are examining multi-dimensional index 
structures along the lines of cubetrees [10]. 
We are exploring alternative data structures for storing and 
accessing materialized views in OLAP, and the implications in 
terms of query response and update costs. We hope to contribute 
to research on fast materialized view updates. Our ultimate goal is 
to contribute a new integrated OLAP optimization approach. 
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APPENDIX A 

Previous view selection explorations 

 
This appendix offers a brief overview of selected published work 
relevant to the problem of materialized view selection. 

The classic paper in materialized view selection introduces a 
lattice structure that captures the hierarchy of which queries can 
be answered from what views [6]. They present a greedy 
algorithm for determining a good set of views to materialize, 
based on the lattice and number of rows in each view. The query 
costs in the case where only the fact table is materialized is taken 
as the baseline for query performance. Gain achievable by 
materializing the views selected by the algorithm is analyzed 
relative to the difference from the baseline and the optimal 
solution. The algorithm is guaranteed to achieve at least 63% of 
the optimal benefit gain. The authors demonstrate that strategic 
selection of materialized views can yield dramatic benefits and 
provide a foundation for related research that follows. 

Gupta et al. [4] extend the work of Harinarayan et al. [6] to 
consider indexes as well as aggregate views when selecting views 
to materialize. 

Gupta [3] contributes a theoretical framework for the view 
selection problem in a data warehouse environment. A graph 
notation is formalized. The paper covers in this context, the 
Greedy Algorithm [6], the Greedy-Interchange Algorithm [4], and 
the Inner-Level Greedy Algorithm [4]. Update costs are modeled 
in some sections of paper, as are query frequencies. 

Baralis et al. [2] are the first attempting to address scalability in 
the number of dimensions.  Focusing on the nodes relevant to the 
queries at hand can reduce the search space, though this is not 
guaranteed. For example, their MDred-lattice Construction 
Algorithm returns all nodes of the MD-lattice if queries are posed 
against each of the one dimensional nodes in the second layer 
from the bottom of the MD-lattice of a non-hierarchical database. 
The result is that the algorithms in Baralis et al. [2] are still 
exponential in the number of dimensions. Another contribution of 
Baralis et al. [2] is a heuristic reduction algorithm that further 
eliminates nodes that offer only small potential improvements. 
This reduction algorithm may succeed in reducing processing, 
though again there is no guarantee. Baralis et al. [2] assume that 
query frequencies are known in advance, whereas we are 
addressing the problem where ad hoc queries exist. 

Pick By Size (PBS) is a heuristic presented in Shukla et al. [14] 
for deciding what views to materialize. The time complexity is 
O(n log(n)) where n is the number of nodes. Performance 
guarantees of gain relative to materializing only the fact table are 
proven for the case of size restricted hypercube lattices. They also 
find if a database is stored as chunks, a view can be partially 
materialized, further improving response time. This new 
algorithm is called PBS-C. 

The trend towards cheaper disk space has lead to a shift in focus 
from disk space constraints to update processing constraints. 
Gupta and Mumick [5] focus on considering update cost 
constraints during view selection, rather than constraining space 
as had been done in the past. 

The progressive view materialization algorithm (PMVA) is 
presented by Uchiyama et al. [16]. The use of disk accesses as a 
common measure for both benefits and costs allows PMVA to 
calculate profit, which determines which views are worth 
materializing. Other works have focused on selecting views under 
a restraint of either space or update cost. The goal of PMVA is to 
minimize the total I/O of queries and updates together. The 
algorithm is reminiscent of the progressive fragment allocation 
algorithm of Janakiraman et al. [7]. 

Kotidis and Roussopoulos [11] treat the view selection problem in 
a way similar to memory management. The materialized views 
constitute a view pool. Metadata is tracked on usage of the views. 
The system monitors both space and update window constraints. 
The contents of the view pool are adjusted dynamically. As 
queries are posed, views are added appropriately. Whenever a 
constraint is violated, the system selects a view for eviction. Thus 
the view pool can improve as more usage statistics are gathered. 
This is a self-tuning system that adjusts to changing query 
patterns. 

The static [2, 3, 4, 5, 14, 16] and dynamic [11] approaches 
complement each other, and should be integrated. Static 
approaches run fast from the beginning, but do not adapt. 
Dynamic view selection begins with an empty view pool, and 
therefore yields slow response times when a data warehouse is 
first loaded, but it is adaptable, and improves over time. The 
complementary nature of the two approaches has influenced our 
design in Figure 2, as indicated by Queries feeding back into 
View Selection. 

Karloff and Mihail [9] present an analysis of the complexity of 
view selection. They point out that benefit guarantees such as 
presented in Harinarayan et al. [6] do not guarantee anything 
about response time compared to the optimal. They prove if P != 
NP then no view selection algorithm that is polynomial time 
(relative to the number of views) can approximate optimal 
response time in the general case of graphs with partial orders. 
These negative results have not been proven for the special cases 
of hypercubes, and product graphs. They suggest researchers 
concentrate on these special cases of interest. Empirical testing is 
also suggested, along with thoughts on alternative search 
methods. 



APPENDIX B 

Detailed activity diagram of PGA 

Select a view B with maximum benefits  
from set C, move B to set S of selected views 

Find smallest ancestor P of view V  
from set S of selected views 

[ termination condition met ] 

[ more candidates ] 

Identify set A of views available for 
nomination from the highest lattice level  
with views available for nomination 

Approximately N nodes affected  
by materializing V,  
where N = | descendants of V including V | 
 - | descendants of V in common with G | 

Nominate a view M with minimum rows  
from set A, move M to candidate set C 

Identify set A of views available  
for nomination from the children of view M 

[ set A is empty ] 

[ else] 

Nomination 

[ else] 

[ else] 

Benefit(V) = D N / Rows(V) 

Place fact table in set S of selected views  

Find view G with greatest number  
of descendants in common with view V,  
such that G is not an ancestor of V  
and Rows(G) <= Rows(V) 

Difference D = Rows(P) – Rows(V) 

For each view V of candidate set C 

Selection 



APPENDIX C 

Database Schemas 

 

 
Figure 13. Schema for eight dimensional database 

The schema in Figure 13 shows all eight dimension of the 
database. Each dimension table contains attributes representing 
different levels of hierarchy. Level0 in each dimension represents 
the finest granularity available for that dimension. Level1 and 
Level2 represent coarser levels of granularity in the hierarchy. 
The data is supplied by a book manufacturer, McNaughton & 
Gunn, Inc. The hierarchies are specified within the domain of the 
book manufacturing environment. For example, Table 4 shows 
the contents of the Press table.  

Table 4. Contents of Press table 

 
The company has five presses, numbered 01 through 05 in Level0 
of the hierarchy. Press 01 is a Miehle press (M), 02 and 03 are 
Planetas (P), 04 and 05 are Timson (T) presses. This information 
is indicated in Level1. The Miehle and the Planeta presses are 
sheet fed presses (S), and the Timsons are web fed (W), as 
indicated in Level2. A dimension can also be completely 

aggregated, thus each dimension in our database has four levels of 
hierarchy. The cardinalities (distinct values) at each level of each 
dimension are summarized in Table 5. If a dimension is 
completely aggregated, the cardinality is 1. 

Table 5. Cardinalities of dimension levels 

 Level0 Level1 Level2 
TrimWidth 13 7 2 
TrimLength 14 7 2 
Pages 31 16 9 
Qty 28 7 4 
StockWidth 12 6 2 
StockLength 12 7 3 
BindStyle 14 6 2 
Press 5 3 2 

 
Our tests encompass two, four, six and eight dimensional 
databases. The two dimensional database uses the first two 
dimensions of Table 5; TrimWidth and TrimLength. The four 
dimensional database uses the first four dimensions of Table 4, 
and the six dimensional database uses the first six dimensions. 

 



Appendix D 

PGA benefit approximations approach HRU calculations with higher dimensionality 

 
There is an unexpected trend in the performance of the query 
costs as dimensionality increases. Notice that the proportional 
difference between query costs of PGA and HRU is smaller at six 
dimensions than at four dimensions (see Figures 7 and 8). This 
phenomenon is caused by the decreasing significance of common 
descendents when calculating benefits at higher dimensionality. 
We demonstrate the trend with a series of simple examples, 
followed by general theory. 
Imagine a two dimensional database with hierarchies of four 
levels along each dimension. Let us identify views by the level of 
aggregation along each dimension, 0 represents no aggregation 
and 3 represents complete aggregation of a given dimension. Let 
us calculate how many common descendants there are for the 
views (1, 2) and (2, 1). Descendants in the lattice are arrived at 
through aggregation. Since the common descendants of the views 
(1, 2) and (2, 1) must be aggregations of both views, the 
aggregation level along each dimension of the common 
descendants must be 2 or greater. There are 2 levels x 2 levels = 4 
common descendants. The total number of descendants of the 
view (1, 2) is 3 levels x 2 levels = 6 views. Thus the ratio of 
common descendants to total descendants is 2 / 3. 

Now extend the example to four dimensions. The number of 
common descendants of the views (1, 2, 1, 2) and (2, 1, 2, 1) is 
16. The total number of descendants of (1, 2, 1, 2) is 36. Thus the 
ratio is 4 / 9. Continuing the series, at 6 dimensions the ratio is 8 / 
27. At 8 dimensions the ratio is 16 / 81. The ratio continues to 
decrease. 
Given a d dimensional database, a view Vi with Xik hierarchy 
levels from that view to total aggregation along a dimension k, 
and view Vj with Xjk hierarchy levels from that view to total 
aggregation along dimension k, the ratio of common descendants 
of Vi and Vj to the total descendants of Vi is: 
                d 
               Π     min(Xik, Xjk) / Xik 
              k=1 

Since min(Xik, Xjk) can never be greater than Xik, and is often 
smaller than Xik, there is a trend for decreasing significance of the 
common descendants in the benefit calculations as dimensionality 
increases. This result explains why the query costs of PGA 
approach those of HRU as dimensionality increases. PGA does 
not account for the effects of all view interactions on common 
descendants when approximating benefits. These approximation 
errors tend to decrease as dimensionality increases. 
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