
Achieving Scalability in OLAP Materialized View Selection
(Extended Version)

Thomas P. Nadeau
Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, Michigan

nadeau@engin.umich.edu

Toby J. Teorey
Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, Michigan

teorey@eecs.umich.edu

ABSTRACT
The goal of on-line analytical processing (OLAP) is to quickly
answer queries from large amounts of data residing in a data
warehouse. Materialized view selection is an optimization
problem encountered in OLAP systems. Published work on the
problem of materialized view selection presents solutions scalable
in the number of possible views. However, the number of possible
views is exponential relative to the number of database
dimensions. A truly scalable solution must be polynomial time
relative to the number of dimensions. We present such a solution,
our Polynomial Greedy Algorithm. Complexity analysis proves
scalability, and a performance study verifies the result. Empirical
evidence demonstrates benefits close to existing algorithms. We
conclude the Polynomial Greedy Algorithm functions effectively
where existing algorithms fail dramatically.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design – data models,
schema and subschema.

General Terms
Algorithms, Performance, Design, Theory.

Keywords
OLAP, materialized views, view selection, data warehouse,
OLAP performance.

1. INTRODUCTION
Accumulation of data in industry and organizations has led to
large archives of data in recent years. Quick access to the
information in these archives has become critical for decision-
making. The need to excel has given rise to new data models and
decision support systems. Typically the queries posed involve
operations of aggregation such as sum or count. The queries also
typically include “group by” expressions. For example, the CEO
of a book manufacturing company may want to examine trends in
profitability of different types of books over time. The answer
could be found by doing a sum of the cost and sell values of jobs,
grouped by bind style and quarter. Data warehouses have been

engineered to answer queries of aggregation with “group by”
expressions efficiently. The goal of on-line analytical processing
(OLAP) is to quickly answer queries from large amounts of data
residing in a data warehouse.

1.1 OLAP: The beast of burden
Data warehouses are commonly organized with one large central
fact table, and many smaller dimension tables. This configuration
is termed a star schema. Figure 1 illustrates with an example. The
fact table is composed of two types of attributes: dimension
attributes and measures. The dimension attributes in Figure 1 are
CustID, DateID and BindID. The dimension attributes have
foreign-key/primary-key relationships with the dimension tables.
Together, the dimension attributes compose the primary key of
the fact table. The dimension attributes are typically used in query
“group by” expressions, or to join the fact table with the
dimension tables. Notice that a dimension can also have a
hierarchy. For example, the Figure 1 schema allows time to be
grouped by DateID, Month, Quarter or Year. The fact table also
contains measure attributes, the values to be aggregated. The
measure attributes in Figure 1 are Cost and Sell.

 Customer
 CustID

Figure 1. Example star schema for a data warehouse

A fact table in a data warehouse may contain many millions of
rows, and processing a single query can require significant
resources. To improve the quickness of response to queries, pre-
aggregation is a useful OLAP strategy. Pre-aggregation requires
the result to be saved to disk as materialized views, also known as
automatic summary tables (ASTs). The number of possible views
is exponential in the number of dimensions in the database. Faced
with combinatorial explosion, limited disk space and limited
update resources, OLAP must select a strategic set of beneficial
views to materialize in order to achieve quick response to queries.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DOLAP ’02, November 8, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-590-4/02/0011…$5.00.

Sell

CustID

DateID

BindID

Cost

Fact Table

DateID

Month

Quarter

Year

Calendar

Name

City

State

Bind Style

1

N
1

N

N 1
BindID

Desc

1.2 The map to quick response
The goal of OLAP is to give quick response to queries posed
against a large repository of data. Figure 2 maps our approach to
the general problem of OLAP optimization. We break the larger
problem of OLAP optimization into four sub-problems: View Size
Estimation, materialized View Selection, materialized View
Maintenance, and Query Optimization with materialized views.
We explain this diagram, setting the context of our work in view
selection.

Figure 2. Our plan for OLAP optimization

Our plan for OLAP optimization feeds Sample Data from the
Fact Table into View Size Estimation. View Selection makes an
Estimate Request for the view size of each new view it encounters
while exploring promising regions of the search space. View Size
Estimation queries the Sample Data, examines and models the
distribution [12]. The distribution observed in the sample is used
to estimate the expected number of rows in the view for the full
dataset. The Estimated View Size is passed to View Selection,
which uses the estimates to evaluate the relative benefits of
materializing the various views under consideration. View
Selection picks Strategically Selected Views for materialization
with the goal of minimizing total query costs. View Maintenance
builds the original views from the Initial Data from the Fact
Table, and maintains the views as Incremental Data arrives from
Updates, offering Current Views for use by Query Optimization.
Query Optimization must consider which of the Current Views
can be utilized to most efficiently answer Queries from Users,
giving Quick Responses to the Users. Queries feed back into View
Selection, allowing the system to be dynamic, adapting and
improving over time, matching the query workload.

1.3 Organizing the expedition
The focus of this paper is the view selection algorithm. We
describe a new view selection algorithm scalable relative to the
number of dimensions present in the data warehouse. This
dimensional scalability is a quantum leap over existing view

selection algorithms that search the hypercube lattice structure
first described by Harinarayan et al. [6]. We demonstrate that our
Polynomial Greedy Algorithm (PGA) selects sets of views with
close to the same benefits as the greedy algorithm [6] (we refer to
their algorithm henceforth as HRU). Furthermore, we demonstrate
PGA functions beyond where HRU is overwhelmed by the
exponential explosion of the possible views to analyze.

We focus on comparing PGA with HRU since most research in
materialized view selection builds upon Harinarayan et al. [6].
The algorithms presented in the related research [2, 4, 5, 14, 16]
also suffer from the problem of exponential explosion with scaled
up dimensionality, since they all potentially process every node in
the hypercube lattice structure. A survey of related works is
included (see Appendix A). A comparison with the straight
forward HRU approach demonstrates our purpose. Extensions
accounting for query frequencies, index structure and update costs
are described in future work.

View Size
Estimation

Sample
Data

Fact Table

Estimated
View SizeEstimate

Request

View SelectionInitial Data
The problem of exponential explosion that exists in previous work
is discussed in Section 2. A PGA example is given in Section 3.
Section 4 presents our solution to overcoming the exponential
explosion. Section 5 verifies the usefulness of our algorithm with
empirical test results. Conclusions are expressed in Section 6.
Section 7 outlines future work.

Strategically Selected
Views

View
Maintenance Incremental

Data
Updates

2. EXPONENTIAL EXPLOSION
Current Views Most of the previous work in view selection [2, 3, 4, 5, 14, 16] is

based on the hypercube lattice structure [6]. We briefly review the
concepts associated with the hypercube lattice structure, and
HRU. Then we point out the scalability issue that has not been
previously addressed.

Query
Optimization

Queries Users
Quick
Responses

Figure 3 illustrates the hypercube lattice structure with an
example [6]. Each node of the lattice structure represents a
possible view. Each node is labeled with the set of dimensions in
the “group by” list for that view. The numbers associated with the
nodes represent the number of rows in the view. These numbers
are normally derived from a view size estimation algorithm.
However, the numbers in Figure 3 follow the example as given by
Harinarayan et al. [6]. The root node in the lattice structure
represents the fact table. A given view can be calculated from any
materialized ancestor view. The initial state for HRU has only the
fact table materialized. HRU calculates the benefits of each
possible view during each iteration, and selects the most
beneficial view for materialization. Processing continues until a
predetermined number of materialized views is been reached.

Figure 3. Example hypercube lattice structure [6]

Table 1 shows the calculations for the first two iterations of HRU.
Materializing {p, s} saves 6M – 0.8M = 5.2M rows for each of 4
views ({p, s} and its three descendants: {p}, {s} and {}). The

{c, p, s} 6M c = Customer
p = Part
s = Supplier {p, s} 0.8M {c, s} 6M {c, p} 6M

{s} 0.01M {p} 0.2M {c} 0.1M

{} 1

view {c, s} yields no benefit if materialized, since any query that
can be answered by reading 6M rows from {c, s} can also be
answered by reading 6M rows from the fact table {c, p, s}. The
view {p, s} is selected for materialization in the first iteration. {c}
is selected in the second iteration.

Table 1. Two iterations of HRU, based on figure 3

This simple example is sufficient to illustrate a crucial point. The
algorithm evaluates every unselected node during each iteration,
and each evaluation considers the effect on every descendant.
The algorithm consumes O(kn2) time where k = |views to select|
and n = |nodes|. This order of complexity looks very good, it is
polynomial time. However, the result is misleading. The number
of nodes in the lattice structure is exponential relative to the
number of dimensions. Consider a database with no hierarchies.
When we pose a query to OLAP, for each dimension we can
choose whether or not to group by that dimension. The number of
possible views is therefore 2d where d = |dimensions|. Thus n = 2d,
and the time complexity of HRU is O(k22d). HRU runs in time
exponential relative to the number of dimensions in the database.

Any algorithm that considers every node in the hypercube lattice
structure is exponential relative to the number of dimensions. All
the published static view selection algorithms we are aware of
potentially touch every node in the lattice. The exponential time
complexity swamps any processor as the number of dimensions is
scaled up. Let us drive this home with an example. We
implemented HRU and tested the algorithm at ten dimensions,
with no hierarchies. The associated lattice has 210 = 1024 nodes.
The algorithm selected 120 views in 1 hour. Now let’s say the
CEO wants the option to choose from 20 job attributes instead of
10. The number of possible views just jumped 1024 fold. The
view selection algorithm now takes over one million hours to
select 120 views. Clearly the CEO would find this unacceptable!
We must find a better solution.

3. PGA EXAMPLE
We walk through the example in Figure 3 using PGA, and discuss
the theory behind our design in Section 4. PGA, like HRU, also
selects one view for materialization with each iteration. However,
PGA divides each iteration into a nomination phase and a
selection phase. The first phase nominates promising views into a
candidate set. The second phase estimates the benefits of
materializing each candidate, and selects the view with the
highest evaluation for materialization. Figure 4 outlines PGA
activities. A more detailed activity diagram is included (see
Appendix B).

The nomination phase begins at the top of the lattice; in Figure 3,
this is the node {c, p, s}. We nominate the smallest node from
amongst the children. The candidate set is now {{p, s}}. We then

examine the children of {p, s} and nominate the smallest child,
{s}. The process repeats until the bottom of the lattice is reached.
The candidate set is then {{p, s}, {s}, {}}. Once a path of
candidate views has been nominated, the algorithm enters the
selection phase.

[continuing path]

[path ended]

Start new path

Select view greedily

Evaluate benefit

[termination
condition met]

Nominate smallest
child view

Nomination

[else]

[else]

[more candidates]

Select fact table

For each candidate

Selection
Iteration 2 Benefit Iteration 1 Benefit

{p, s}
{c, s}
{c, p}

{s}
{p}
{c}
{}

0 x 2 = 0
0 x 2 = 0

0.79M x 2 = 1.58M
0.6M x 2 = 1.2M

5.9M x 2 = 11.8M
0.8M - 1

5.2M x 4 = 20.8M
0 x 4 = 0
0 x 4 = 0

5.99M x 2 = 11.98M
5.8M x 2 = 11.6M
5.9M x 2 = 11.8M

6M - 1

Figure 4. Activity diagram of PGA

The selection phase evaluates each view in the candidate set, and
selects the view that appears to yield the most benefit if
materialized. The evaluation for each candidate is done by taking
the difference with the smallest ancestor selected for
materialization, and multiplying the savings by the estimated
number of nodes affected. The number of nodes affected is
estimated in two steps. The number of descendants is calculated,
including the candidate itself. Then we look for materialized
views smaller than the candidate. If any such view is found, we
account for the affect of the view with the largest number of
descendants in common with the candidate. The overlapping
descendants are subtracted from the count of views affected by
materializing the candidate, since the benefits are undercut by the
other view. The example in Figure 3 is processed as shown in
Table 2 and Table 3.

Table 2. First iteration of PGA, based on figure 3

Candidates

5.2M x 4 = 20.8M
5.99M x 2 = 11.98M

6M - 1

Iteration 1 Benefit

{p,s}
{s}
{}

Table 3. Second iteration of PGA, based on figure 3

 Candidates

0 x 2 = 0
0.79M x 2 = 1.58M
5.9M x 2 = 11.8M

6M - 1

Iteration 2 Benefit

{c,s}
{s}
{c}
{}

The view {p, s} is selected for materialization during the first
iteration, and is removed from the candidates. Then the second
iteration begins with another nomination phase. The algorithm
examines the children of {c, p, s} and nominates the smallest

 {A2, A3, A4 ... Ad} 6M {A1, A3, A4 ... Ad} 0.8M { A1, A2, A3, ... Ad-1} 6M

{A1, A2, A3, A4 ... Ad} 10M

…

L1

Layer Ld

Ld-2

L0

{A1, A2, A4 ... Ad} 1M

{A4} 50

{} 1

{ A1, A 4 ... Ad-1} 0.01M 3...
{A3} 10

, A
 { A1, A4 ... Ad } 0.2M {A3, A4 ... Ad} 0.3M

Ld-1

Figure 5. Example path of candidate views

child that has not already been nominated. There is a tie in this
instance between {c, s} and {c, p}. Ties are broken arbitrarily; we
nominate the view {c, s}. Then the children of {c, s} are
examined and the smallest child that has not been previously
nominated, {c}, is nominated. Then the candidates are evaluated
as shown in Table 3. The view {c} is selected for materialization.

Compare Tables 2 and 3 with Table 1. Notice our algorithm does
fewer calculations than HRU, and yet reaches the same decisions
in this example as HRU. Our algorithm is polynomial time in the
number of dimensions, whereas HRU is exponential in the
number of dimensions. We discuss the advantages of a
polynomial time algorithm in Section 4. We demonstrate the
advantages and quality empirically in Section 5.

4. TAMING DIMENSIONALITY
There are two sources of exponential time complexity in the
algorithms of Harinarayan et al. [6], and the enhanced algorithms
[2, 4, 5, 14, 16]. First, each iteration evaluates every node (view)
in the hypercube lattice structure. The second source of
exponential time complexity is that each node evaluation
considers the effect of materialization on every descendant. We
present our approach to overcoming each of these complexity
barriers in turn.

4.1 Nominating views in polynomial time
The key to overcoming the barrier of evaluating an exponential
number of nodes is to consider only promising portions of the
lattice. Figure 5 illustrates with an example how we identify
promising portions of the lattice in polynomial time. Candidate
views are nominated by following the steepest path through the
lattice. The nodes in bold face are the candidate views. Only a
small portion of the lattice is shown. There is no need to generate
the entire lattice. We represent each view with a fixed amount of
metadata. This greedy approach for selecting a path is polynomial
in both time and space relative to d, the number of dimensions.

When evaluating views on the same level of the lattice, smaller
views are typically better to materialize than larger views, since
smaller views tend to yield greater benefits at smaller costs. This
is illustrated by the example in Section 2. Our approach is to find
paths of nodes through the lattice that appear promising for high
benefits.

Our approach first nominates promising views as candidates for
materialization. These candidate views are later evaluated for
view selection. The nomination process begins with the root as

the parent node, which is the fact table. We determine the
identities of the children for that node. The view size is estimated
for each child. The smallest child view is nominated as a
candidate for view materialization. The nomination process then
moves down one level. The nominated child is considered as a
parent, and the smallest child of that node is nominated as a
candidate view. The process of nominating candidate views
continues until the bottom of the lattice is reached. This
nominating process constitutes a greedy search following the
steepest path through the lattice. The result is a path of candidate
views that promise high benefits.

There are a few properties of the hypercube lattice that are
noteworthy for analyzing the complexity of the nomination
process. Let the fact table have d dimensions. Let the bottom
layer of the lattice be labeled L0, the next layer up be labeled L1
and so on through Ld. The root node of the lattice has d
dimensions. Each node of layer Ld-1 has d – 1 dimensions, since
each of these views represents aggregation along one dimension
of the parent view. There are d nodes in Ld-1, since there are d
possible dimensions available for aggregation in the parent node.
If we now consider a node from Ld-1 as a parent, this node is the
root of a hypercube with d – 1 dimensions, formed by its
descendants. The pattern repeats with one less dimension. In
general, a node in level Li has i dimensions, and i children. There
are d levels in the larger structure, not counting the fact table. The
swatch of nodes considered when nominating a path of candidate
views is widest at Ld-1 with d nodes. The swatch cuts through d
levels. Thus the time complexity for nominating a path of
candidate views is O(d2).

Our nomination process permits the implementation of a
polynomial time algorithm relative to the number of dimensions
in the database. Our process does not explore the search space as
broadly as HRU, but never-the-less in practice finds a set of views
to materialize that is nearly as beneficial as the set selected by
HRU. There are several reasons for the success with relatively
little processing. The candidate set is composed of the smallest
views among siblings. There is a very strong correlation between
the size of the view and the benefit of materializing the view. The
smaller views tend to yield a greater difference in size compared
to its smallest materialized ancestor, which leads to greater I/O
savings whenever the view is utilized at query time.

Our nomination strategy begins at the top of the lattice and moves
downward. There is a tendency for views high up the lattice
structure to be selected for materialization, because the savings

PGA complexity is O(dk2ℓ) time and O(dkℓ) space. generated by the difference with the smallest materialized
ancestor is multiplied by a larger set of descendant views.
Beginning the nomination process at the top helps assure the best
views high up the lattice are found and considered for
materialization. The nomination process cuts vertical paths
through the lattice structure. Although there is a tendency for
selected views to reside high in the lattice, it is possible for
unusually small views lower down in the lattice to yield great
benefit. There is a tendency for small parent views to have small
children views. The strategy of following generations of small
views through the lattice structure helps assure that unusually
small views low in the lattice are found and considered for
materialization.

A more accurate benefit estimate could be obtained by accounting
for the effects of common descendants between a candidate and
each materialized view. Considering all pair-wise interactions
with materialized views would increase accuracy and processing
time. This approach would still not consider interactions of three
or more materialized views.

There is a progression of possible polynomial time node
evaluation algorithms. We could account for three-node
interactions. Then we could account for four-node interactions
and so on. Each level of detail adds to the complexity of
evaluation, with potential benefits in the resulting query response
times. We find PGA yields effective results. PGA alternates between nomination and selection phases.

Promising views in a path are nominated as candidates. Then a
view is selected from the candidates for materialization. The
process iterates between nomination and selection phases until a
predetermined termination condition is met (e.g. a fixed amount
of disk space).

5. EMPIRICAL EVIDENCE
Karloff and Mihail [9] point out that no performance guarantee
relative to the optimal solution has been proven for any existing
algorithm that is polynomial time relative to the number of views.
Following the advice of Karloff and Mihail [9], we demonstrate
the worthiness of PGA with empirical evidence. 4.2 Selecting views in polynomial time

The second barrier of exponential processing can be overcome by
approximating the benefits derived by materialization. PGA
estimates benefits by taking the difference between the size of
view V, and its smallest selected ancestor. PGA also takes into
account the selected view that most prominently affects the
number of nodes benefiting from the materialization of V. If a
selected view is smaller or equal in size to V, then any common
descendants do not benefit from materializing V. These
calculations only take into account very prominent interactions
with selected views, yet the result is surprisingly useful. This
strategy constitutes the materialization benefit estimator we
implemented in PGA.

The test environment is a Pentium IV 1.9 GHz processor, with
1GB RAM, running Windows 2000. The programs are written in
Microsoft Visual Basic. Data is stored using Microsoft SQL
Server 7.0. The databases contain real data obtained from a local
book manufacturing company, McNaughton & Gunn, Inc.

Figures 6 through 12 are the results of tests carried out over
hierarchical databases. The query costs shown are the number of
rows retrieved from disk if every possible view is queried exactly
once, as done by Harinarayan et al. [6]. The exact number of rows
for each view is pre-calculated for these experiments. Normally
these numbers would derive from a view size estimator. Using the
exact number of rows isolates deviations caused by view selection
from deviations caused by view size estimation. The differences
in query costs are strictly the result of the differences in the view
selection algorithms.

We track metadata on the candidate views to reduce the time
complexity of the algorithm. For each candidate, we store the
smallest selected ancestor rows, and the maximum number of
descendants in common with any selected view. Tracking this
metadata allows the Evaluate benefit activity in Figure 4 to
execute once in O(1) time. The algorithm is dominated by the
process of setting the metadata. The metadata is updated when a
view is nominated or selected. Given two views, the number of
common descendants can be determined in O(d) time. When a
view is nominated, the number of common descendants are
computed for each of O(k) selected views. The Nominate smallest
child view activity of Figure 4 executes O(d) times during each
Nomination phase. Thus one Nomination phase executes in
O(d2k) time. The Select view greedily activity computes the
common descendants for each of O(dk) candidate views. Thus
the Selection phase also executes in O(d2k) time. Since k views
are selected, the overall time complexity of PGA is O(d2k2).

The dimensions in the datasets all have four levels in their
hierarchies. More detailed descriptions of the database schemas
are available (see Appendix C)]. Figure 6 illustrates the relative
accuracy of PGA compared with HRU and the optimal solution at
small dimensionality. The scale-up into higher dimensionality is
demonstrated in Figures 7 through 12.

Figures 6 through 9 plot the query costs achieved at various levels
of view materialization. The trend is similar to that of a cache; the
more cache, the quicker the general response, with diminishing
returns. Likewise, the more materialized views, the quicker the
response, with diminishing returns. Figure 6 compares query costs
over a two dimensional hierarchical data set, four levels per
dimension. There are 42 or 16 possible views. Three nearly
identical curves are shown. The key point is that PGA achieves
very close to the same query response as HRU and the optimal
solution.

A fixed amount of metadata is stored for each of O(d2) views for
each of O(k) paths through the lattice. Thus the space complexity
of PGA is O(d2k).

The optimal solution can only be calculated at very small
dimensionalities. Processing the optimal solution quickly
becomes untenable at four dimensions. Under these conditions,
we are still able to demonstrate our algorithm derives benefits
close to HRU as shown in Figures 7 and 8.

When hierarchies are present, the lattice has more layers. Let hi be
the number of hierarchical levels in dimension i.

 d
 Lattice layers ℓ = 1 fact table + Σ (hi -1) aggregation layers
 i=1

0
200
400
600
800

1000
1200
1400

0 50 100 150 200 250 300 350

Optimal
HRU
PGA

PGA and HRU tend to agree for the most critical early decisions.
The first four views selected are identical in the six dimensional
experiment. Out of the first 128 views selected, 45% are common
between PGA and HRU. The divergence is not surprising, since
HRU is also a greedy approach. Different heuristics can result in
different decisions. PGA averages only 4.9% higher than HRU in
query costs at six dimensions.

Figur

0

0

0

0

0

0 20

20

40

60

80

Q
ue

ry
 C

os
ts

 (t
ho

us
an

ds
 o

f r
ow

s)

Figure

0

5

10

15

20

0

Figur

0

50

0

100

150

200

250

300

350

Q
ue

ry
 C

os
ts

 (m
ill

io
ns

 o
f r

ow
s)

Figure

The processing times for view selection are shown in Figures 10,
11 and 12. The number of possible views is 44, 46, 48 respectively
at four, six and eight dimensions. The exponential complexity of
HRU swamps the processor as we scale up. HRU becomes
completely untenable at eight dimensions, as shown in Figure 12.
PGA continues to find good sets of materialized views when HRU

Q
ue

ry
 C

os
ts

 (r
ow

s)

Q
ue

ry
 C

os
ts

 (m
ill

io
ns

 o
f r

ow
s)

Materialization Costs (rows)
e 6. Query costs at two dimensions

40 60 80 100 120 14 0

has failed.

0

50

100

150

200

250

0 20 40 60 80 100 120 140

Pr
oc

es
si

ng
 T

im
e

(s
ec

on
ds

)

Optimal
HRU
PGA

Optimal
HRU
PGA

d

Materialization Costs (thousands of rows)
Materialization Costs (thousands of rows)

 7. Query costs at four dimensions

50 100 150 200 250

e 8. Query costs at six dimensions

100 200 300 400 500

Figure 10. View selection processing at four dimensions

0.00

50.00

100.00

150.00

200.00

0 250

Pr
oc

es
si

ng
 T

im
e

(m
in

ut
es

)

HRU
PGA

HRU
PGA

Figure 11. View selection processing at six dimensions

0.00

50.00

100.00

150.00

200.00

0 100 200 300 400 500

Pr
oc

es
si

ng
 T

im
e

(m
in

ut
es

)

HRU
PGA

HRU
PGA

Materialization Costs (thousands of rows)
 9. Query costs at eight dimensions Figure 12. V
50 100 150 200
Materialization Costs (thousands of rows)
Materialization Costs (thousands of rows)
d=4

=4
iew
d=8
d=8
d=6

d=6
d=2
Materialization Costs (thousands of rows)
 selection processing at eight dimensions

6. SUMMARY: ENJOYING THE VIEWS
The complexity of PGA is O(dk2ℓ) time and O(dkℓ) space where
d is the number of dimensions, k is the number of views selected
for materialization, and ℓ is the number of layers in the lattice.
This compares with O(kg2d) time complexity for HRU, where g is
the geometric mean of the number of levels in the hierarchies.
Figures 6 through 12 illustrate the value of having a view
selection algorithm that is polynomial time relative to the number
of dimensions. The optimal solution can realistically be found
only for small dimensionality. Figure 6 shows both HRU and
PGA come close to the optimal solution. The scale-up testing
begins with Figure 7. With a four dimensional hierarchical
database, it is no longer possible to find the optimal solution.
Figure 10 shows the processing time required for the optimal
solution is nearly a vertical line. The HRU algorithm is more
scaleable than finding the optimal solution, but begins to fail for a
six dimensional hierarchical database (see Figure 11), and fails
miserably with an eight dimensional database (see Figure 12).
HRU consumes 91 minutes for each view selection for in this
environment, whereas PGA processes 256 view selections in 108
minutes for an average of 1 every 25 seconds. PGA succeeds in
finding a good set of materialized views where HRU can no
longer function.

There is a general principle that could be implemented in a
commercial system. There is a tradeoff between processing view
selection, and the resulting query costs. An OLAP system could
calculate the processing time required for various approaches,
based on the complexity of the view selection algorithms, and use
the best feasible approach given the situation. For small
dimensional databases, it may actually be possible to determine
the optimal materialized view selection. When it is not possible to
find the optimal solution, it may be possible to use HRU. When
HRU fails, then PGA extends the usefulness of the OLAP system.

7. THE FUTURE
PGA can be easily adapted to account for query frequencies if
known in advance. The views that would naturally answer these
queries should be added to the candidate set at the start. This
permits the possibility of materializing commonly utilized views.
View evaluation needs to query metadata to find frequently
accessed views that are descendants of the evaluated view, and
multiply benefits at the descendant view by the query frequency.
Accounting for update costs would be a matter of modifying the
metric associated with the views. Replacing rows with disk
accesses as done in Uchiyama et al. [16] would express query and
update costs in common units, allowing for minimization of disk
I/O. The search mechanism would remain unchanged.
Index structures should also be figured into the selection of
materialized views. Implementation is dependent in part on the
index mechanisms. We are examining multi-dimensional index
structures along the lines of cubetrees [10].
We are exploring alternative data structures for storing and
accessing materialized views in OLAP, and the implications in
terms of query response and update costs. We hope to contribute
to research on fast materialized view updates. Our ultimate goal is
to contribute a new integrated OLAP optimization approach.

8. REFERENCES
[1] Agarwal, S., Agrawal, R., Deshpande, P., Gupta, A.,

Naughton, J. F., Ramakrishnan, R., Sarawagi, S. On the
Computation of Multidimensional Aggregates. In
Proceedings of VLDB '96 (Mumbai, India, 1996), Morgan
Kaufman, 506-521.

[2] Baralis, E., Paraboschi, S., Teniente, E. Materialized Views
Selection in a Multidimensional Database. In Proceedings of
VLDB '97 (Athens, Greece, 1997), Morgan Kaufman, 156-
165.

[3] Gupta, H. Selection of Views to Materialize in a Data
Warehouse. In Proceedings of ICDT '97 (Delphi, Greece,
1997), Springer, 98-112.

[4] Gupta, H., Harinarayan, V., Rajaraman, A., Ullman, J. D.
Index Selection for OLAP. In Proceedings of ICDE '97
(Manchester, UK, 1997), IEEE Computer Society Press,
208-219.

[5] Gupta, H., Mumick, I. S. Selection of Views to Materialize
Under a Maintenance Cost Constraint. In Proceedings of
ICDT '99 (Jerusalem, Israel, 1999), Springer, 453-470.

[6] Harinarayan, V., Rajaraman, A., Ullman, J. D. Implementing
Data Cubes Efficiently. In Proceedings of SIGMOD '96.
(Montreal, Canada, 1996), ACM Press, 205-216.

[7] Janakiraman, J., Warack, C., Bhal, G., Teorey, T. J.
Progressive Fragment Allocation. In Proceedings of ER '91
(San Mateo CA, USA, 1991), ER Institute, 543-560.

[8] Kimball, R. The Data Warehouse Toolkit. John Wiley &
Sons, 1996.

[9] Karloff, H. J., Mihail, M. On the Complexity of the View-
Selection Problem. In Proceedings of PODS '99
(Philadelphia PA, USA, 1999), ACM Press, 167-173.

[10] Kotidis, Y., Roussopoulos, N. An Alternative Storage
Organization for ROLAP Aggregate Views Based on
Cubetrees. In Proceedings of SIGMOD '98 (Seattle WA,
USA, 1998), ACM Press, 249-258.

[11] Kotidis, Y., Roussopoulos, N. DynaMat: A Dynamic View
Management System for Data Warehouses. In Proceedings
of SIGMOD '99 (Philadelphia PA, USA, 1999), ACM Press,
371-382.

[12] Nadeau, T. P., Teorey, T. J. A Pareto Model for OLAP View
Size Estimation. In Proceedings of CASCON '01 (Toronto,
Canada, 2001), IBM Canada, 1-13.

[13] Nadeau, T. P., Teorey, T. J. Achieving Scalability in OLAP
Materialized View Selection. In Proceedings of DOLAP '02
(McLean VA, USA, 2002).

[14] Shukla, A., Deshpande, P., Naughton, J. F. Materialized
View Selection for Multidimensional Datasets. In
Proceedings of VLDB '98 (New York NY, USA, 1998),
Morgan Kaufman, 488-499.

[15] Thomsen, E. OLAP Solutions. John Wiley & Sons, 1997.

[16] Uchiyama, H, Runapongsa, K., Teorey, T. J. Progressive
View Materialization Algorithm. In Proceedings of DOLAP
'99 (Kansas City MO, USA, 1999), 36-41.

APPENDIX A

Previous view selection explorations

This appendix offers a brief overview of selected published work
relevant to the problem of materialized view selection.

The classic paper in materialized view selection introduces a
lattice structure that captures the hierarchy of which queries can
be answered from what views [6]. They present a greedy
algorithm for determining a good set of views to materialize,
based on the lattice and number of rows in each view. The query
costs in the case where only the fact table is materialized is taken
as the baseline for query performance. Gain achievable by
materializing the views selected by the algorithm is analyzed
relative to the difference from the baseline and the optimal
solution. The algorithm is guaranteed to achieve at least 63% of
the optimal benefit gain. The authors demonstrate that strategic
selection of materialized views can yield dramatic benefits and
provide a foundation for related research that follows.

Gupta et al. [4] extend the work of Harinarayan et al. [6] to
consider indexes as well as aggregate views when selecting views
to materialize.

Gupta [3] contributes a theoretical framework for the view
selection problem in a data warehouse environment. A graph
notation is formalized. The paper covers in this context, the
Greedy Algorithm [6], the Greedy-Interchange Algorithm [4], and
the Inner-Level Greedy Algorithm [4]. Update costs are modeled
in some sections of paper, as are query frequencies.

Baralis et al. [2] are the first attempting to address scalability in
the number of dimensions. Focusing on the nodes relevant to the
queries at hand can reduce the search space, though this is not
guaranteed. For example, their MDred-lattice Construction
Algorithm returns all nodes of the MD-lattice if queries are posed
against each of the one dimensional nodes in the second layer
from the bottom of the MD-lattice of a non-hierarchical database.
The result is that the algorithms in Baralis et al. [2] are still
exponential in the number of dimensions. Another contribution of
Baralis et al. [2] is a heuristic reduction algorithm that further
eliminates nodes that offer only small potential improvements.
This reduction algorithm may succeed in reducing processing,
though again there is no guarantee. Baralis et al. [2] assume that
query frequencies are known in advance, whereas we are
addressing the problem where ad hoc queries exist.

Pick By Size (PBS) is a heuristic presented in Shukla et al. [14]
for deciding what views to materialize. The time complexity is
O(n log(n)) where n is the number of nodes. Performance
guarantees of gain relative to materializing only the fact table are
proven for the case of size restricted hypercube lattices. They also
find if a database is stored as chunks, a view can be partially
materialized, further improving response time. This new
algorithm is called PBS-C.

The trend towards cheaper disk space has lead to a shift in focus
from disk space constraints to update processing constraints.
Gupta and Mumick [5] focus on considering update cost
constraints during view selection, rather than constraining space
as had been done in the past.

The progressive view materialization algorithm (PMVA) is
presented by Uchiyama et al. [16]. The use of disk accesses as a
common measure for both benefits and costs allows PMVA to
calculate profit, which determines which views are worth
materializing. Other works have focused on selecting views under
a restraint of either space or update cost. The goal of PMVA is to
minimize the total I/O of queries and updates together. The
algorithm is reminiscent of the progressive fragment allocation
algorithm of Janakiraman et al. [7].

Kotidis and Roussopoulos [11] treat the view selection problem in
a way similar to memory management. The materialized views
constitute a view pool. Metadata is tracked on usage of the views.
The system monitors both space and update window constraints.
The contents of the view pool are adjusted dynamically. As
queries are posed, views are added appropriately. Whenever a
constraint is violated, the system selects a view for eviction. Thus
the view pool can improve as more usage statistics are gathered.
This is a self-tuning system that adjusts to changing query
patterns.

The static [2, 3, 4, 5, 14, 16] and dynamic [11] approaches
complement each other, and should be integrated. Static
approaches run fast from the beginning, but do not adapt.
Dynamic view selection begins with an empty view pool, and
therefore yields slow response times when a data warehouse is
first loaded, but it is adaptable, and improves over time. The
complementary nature of the two approaches has influenced our
design in Figure 2, as indicated by Queries feeding back into
View Selection.

Karloff and Mihail [9] present an analysis of the complexity of
view selection. They point out that benefit guarantees such as
presented in Harinarayan et al. [6] do not guarantee anything
about response time compared to the optimal. They prove if P !=
NP then no view selection algorithm that is polynomial time
(relative to the number of views) can approximate optimal
response time in the general case of graphs with partial orders.
These negative results have not been proven for the special cases
of hypercubes, and product graphs. They suggest researchers
concentrate on these special cases of interest. Empirical testing is
also suggested, along with thoughts on alternative search
methods.

APPENDIX B

Detailed activity diagram of PGA

Select a view B with maximum benefits
from set C, move B to set S of selected views

Find smallest ancestor P of view V
from set S of selected views

[termination condition met]

[more candidates]

Identify set A of views available for
nomination from the highest lattice level
with views available for nomination

Approximately N nodes affected
by materializing V,
where N = | descendants of V including V |
 - | descendants of V in common with G |

Nominate a view M with minimum rows
from set A, move M to candidate set C

Identify set A of views available
for nomination from the children of view M

[set A is empty]

[else]

Nomination

[else]

[else]

Benefit(V) = D N / Rows(V)

Place fact table in set S of selected views

Find view G with greatest number
of descendants in common with view V,
such that G is not an ancestor of V
and Rows(G) <= Rows(V)

Difference D = Rows(P) – Rows(V)

For each view V of candidate set C

Selection

APPENDIX C

Database Schemas

Figure 13. Schema for eight dimensional database

The schema in Figure 13 shows all eight dimension of the
database. Each dimension table contains attributes representing
different levels of hierarchy. Level0 in each dimension represents
the finest granularity available for that dimension. Level1 and
Level2 represent coarser levels of granularity in the hierarchy.
The data is supplied by a book manufacturer, McNaughton &
Gunn, Inc. The hierarchies are specified within the domain of the
book manufacturing environment. For example, Table 4 shows
the contents of the Press table.

Table 4. Contents of Press table

The company has five presses, numbered 01 through 05 in Level0
of the hierarchy. Press 01 is a Miehle press (M), 02 and 03 are
Planetas (P), 04 and 05 are Timson (T) presses. This information
is indicated in Level1. The Miehle and the Planeta presses are
sheet fed presses (S), and the Timsons are web fed (W), as
indicated in Level2. A dimension can also be completely

aggregated, thus each dimension in our database has four levels of
hierarchy. The cardinalities (distinct values) at each level of each
dimension are summarized in Table 5. If a dimension is
completely aggregated, the cardinality is 1.

Table 5. Cardinalities of dimension levels

 Level0 Level1 Level2
TrimWidth 13 7 2
TrimLength 14 7 2
Pages 31 16 9
Qty 28 7 4
StockWidth 12 6 2
StockLength 12 7 3
BindStyle 14 6 2
Press 5 3 2

Our tests encompass two, four, six and eight dimensional
databases. The two dimensional database uses the first two
dimensions of Table 5; TrimWidth and TrimLength. The four
dimensional database uses the first four dimensions of Table 4,
and the six dimensional database uses the first six dimensions.

Appendix D

PGA benefit approximations approach HRU calculations with higher dimensionality

There is an unexpected trend in the performance of the query
costs as dimensionality increases. Notice that the proportional
difference between query costs of PGA and HRU is smaller at six
dimensions than at four dimensions (see Figures 7 and 8). This
phenomenon is caused by the decreasing significance of common
descendents when calculating benefits at higher dimensionality.
We demonstrate the trend with a series of simple examples,
followed by general theory.
Imagine a two dimensional database with hierarchies of four
levels along each dimension. Let us identify views by the level of
aggregation along each dimension, 0 represents no aggregation
and 3 represents complete aggregation of a given dimension. Let
us calculate how many common descendants there are for the
views (1, 2) and (2, 1). Descendants in the lattice are arrived at
through aggregation. Since the common descendants of the views
(1, 2) and (2, 1) must be aggregations of both views, the
aggregation level along each dimension of the common
descendants must be 2 or greater. There are 2 levels x 2 levels = 4
common descendants. The total number of descendants of the
view (1, 2) is 3 levels x 2 levels = 6 views. Thus the ratio of
common descendants to total descendants is 2 / 3.

Now extend the example to four dimensions. The number of
common descendants of the views (1, 2, 1, 2) and (2, 1, 2, 1) is
16. The total number of descendants of (1, 2, 1, 2) is 36. Thus the
ratio is 4 / 9. Continuing the series, at 6 dimensions the ratio is 8 /
27. At 8 dimensions the ratio is 16 / 81. The ratio continues to
decrease.
Given a d dimensional database, a view Vi with Xik hierarchy
levels from that view to total aggregation along a dimension k,
and view Vj with Xjk hierarchy levels from that view to total
aggregation along dimension k, the ratio of common descendants
of Vi and Vj to the total descendants of Vi is:
 d
 Π min(Xik, Xjk) / Xik
 k=1

Since min(Xik, Xjk) can never be greater than Xik, and is often
smaller than Xik, there is a trend for decreasing significance of the
common descendants in the benefit calculations as dimensionality
increases. This result explains why the query costs of PGA
approach those of HRU as dimensionality increases. PGA does
not account for the effects of all view interactions on common
descendants when approximating benefits. These approximation
errors tend to decrease as dimensionality increases.

	INTRODUCTION
	OLAP: The beast of burden
	The map to quick response
	Organizing the expedition

	EXPONENTIAL EXPLOSION
	PGA EXAMPLE
	TAMING DIMENSIONALITY
	Nominating views in polynomial time
	Selecting views in polynomial time

	EMPIRICAL EVIDENCE
	SUMMARY: ENJOYING THE VIEWS
	THE FUTURE
	REFERENCES

