
908 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998

Active Diagnosis of Discrete-Event Systems
Meera Sampath,Member, IEEE, St́ephane Lafortune,Senior Member, IEEE,

and Demosthenis Teneketzis,Senior Member, IEEE

Abstract—The need for accurate and timely diagnosis of system
failures and the advantages of automated diagnostic systems
are well appreciated. However, diagnosability considerations are
often not explicitly taken into account in the system design. In
particular, design of the controller and that of the diagnostic
subsystem are decoupled, and this may significantly affect the
diagnosability properties of a system. In this paper the authors
present an integrated approach to control and diagnosis. More
specifically, they present an approach for the design ofdiagnos-
able systemsby appropriate design of the system controller. This
problem, which they refer to as the active diagnosisproblem, is
studied in the framework of discrete-event systems (DES’s); it
is based on prior and new results on the theory of diagnosis
for DES’s and on existing results in supervisory control under
partial observations. They formulate the active diagnosis problem
as a supervisory control problem where the legal language is
an “appropriate” regular sublanguage of the regular language
generated by the system. They present an iterative procedure
for determining the supremal controllable, observable, and di-
agnosable sublanguage of the legal language and for obtaining
the supervisor that synthesizes this language. This procedure
provides both a controller that ensures diagnosability of the
closed-loop system and a diagnoser for online failure diagnosis.
The procedure can be implemented using finite-state machines
and is guaranteed to converge in a finite number of iterations.
The authors illustrate their approach using a simple pump–valve
system.

Index Terms—Discrete-event systems, failure diagnosis, finite-
state machines.

I. INTRODUCTION

T HE NEED for accurate and timely diagnosis of system
failures, in the interests of safety, reliability, and econ-

omy, has prompted widespread interest in the area of failure
diagnosis both in industry and in academia. A great deal of
research effort has been and is being spent on the design and
development of automated diagnostic systems. A variety of
schemes, differing both in their theoretical framework and in
their design and implementation philosophy, have been pro-
posed. From the conceptual viewpoint most existing methods
of failure diagnosis can be classified as: 1) fault-tree based
methods; 2) quantitative, analytical model-based methods; 3)
expert systems; 4) model-based reasoning methods; and 5)

Manuscript received March 7, 1997; revised November 6, 1997.
Recommended by Associate Editor, E. K. P. Chong. This work was supported
in part by the NSF under Grants ECS-9057967, ECS-9312134, NCR-9204419,
and ECS-9509975 and by ARO under Grant DAAH04-96-1-0377.

M. Sampath is with the Joseph C. Wilson Centre for Research and
Technology, Xerox Corporation, Webster, NY 14580 USA.

S. Lafortune and D. Teneketzis are with the Department of EECS,
University of Michigan, Ann Arbor, MI 48109-2122 USA (e-mail:
stephane@eecs.umich.edu.

Publisher Item Identifier S 0018-9286(98)04896-X.

discrete-event system (DES)-based methods (see [9], [11], and
the references therein). From the implementation standpoint
these diagnostic systems can be classified as offline or online.
Offline methods assume that the system is in a testbed and
is to be tested for possible prior failures, while in online
diagnosis, the system is assumed to be operational and the
diagnostic subsystem is designed so as to continuously monitor
the system behavior as well as identify and isolate failures.

In most industrial systems, design of the online monitoring
and diagnostic subsystem is doneafter the initial system
design, and the diagnostic subsystem is added on as a separate
module to the existing system. In other words, diagnosability
considerations are often not explicitly taken into account in
the system design. In particular, design of the controller and
that of the diagnostic system are decoupled. Depending on
the nature of the controller and the system, this decoupling
can significantly affect the diagnosability properties of the
system. As we shall see later in this paper (cf., Section V),
when diagnosability is not a design specification, it is possible
to design two different control protocols for a given system
such that they both achieve all the desired design objectives,
and yet one of these may result in a diagnosable system (a
system in which it is possible to detect and isolate occurrences
of failures) while the other may result in a nondiagnosable
system.

In this paper we present an integrated approach to control
and diagnosis, which we refer to as theactive diagnosis
problem. The term active is used to distinguish this method
from passive diagnosis wherein the role of the diagnostic
module is simply to observe the system behavior and draw
inferences about potential failures; the active diagnosis prob-
lem, on the other hand, is one of combined observation and
control. Almost universally, “control” in the context of failure
diagnosis has referred to the notion of “testing” or “probing,”
and is more of an offline diagnosis problem; potential prior
failures of the system are diagnosed by issuing test commands
and observing the system responses. The challenge in these
problems is the design of the “probe sequence” or the “test
vector.” While the active diagnosis problem studied in this
paper can be used to generate test vectors for diagnosis, the
work in this paper differs significantly from prior work in this
area in its basic philosophy.The emphasis here is on the design
of diagnosable systems by appropriate design of the system
controller.

We study the active diagnosis problem in the framework
of DES’s. This paper is built on the theory of diagnosis for
DES’s developed in [10] and [11] and on the rich body of
literature on supervisory control of DES’s (cf., [8], [13], and

0018–9286/98$10.00 1998 IEEE

SAMPATH et al.: ACTIVE DIAGNOSIS OF DISCRETE-EVENT SYSTEMS 909

[2]). In [10] and [11] the authors propose an approach to failure
diagnosis where the system is modeled as a DES in which the
failures are treated as unobservable events; diagnosis is the
process of detecting occurrences of these events from observed
event sequences. The level of detail in a discrete-event model
appears to be quite adequate for a large class of systems and
for a wide variety of failures to be diagnosed. The approach
is applicable whenever failures cause a distinct change in the
system status but do not necessarily bring the system to a halt.
In [10] the authors provide a definition of diagnosability in
the framework of formal languages and establish necessary
and sufficient conditions for diagnosability of systems. Also
presented in [10] is a systematic approach for online diagnosis
of failures usingdiagnosers.

The work in [10] and [11] deals with passive diagnosis.
In this paper, we are interested in using control actions to
alter the diagnosability properties of a given system, i.e.,
in restricting the behavior of a nondiagnosable system by
appropriate control, to obtain a diagnosable system. The con-
trol issues are posed and addressed in the framework of
supervisory control theory. Supervisory control theory deals
with the design of controllers for a given DES that ensures that
the controlled system meets certain qualitative specifications.
These specifications define thelegal languagefor the system.
A supervisorfor a DES is then an external agent or controller
that, based on its partial view of the system, dynamically
enables or disables the controllable events of the system in
order to ensure that the resulting closed-loop language lies
within the legal language. For an introduction to the basic
ideas of supervisory control theory, we refer the reader to [8],
[13], and [2] and the references therein.

Proceeding along the lines of the standard supervisory
control problem, we adopt the following procedure to solve
the active diagnosis problem. Given the nondiagnosable lan-
guage generated by the system of interest, we first select
an “appropriate” sublanguage of this language as the legal
language. Choice of the legal language is a design issue and
will typically depend on considerations such as acceptable
system behavior (which ensures that we do not restrict the
system behavior more than necessary in order to eventually
make it diagnosable) and detection delay for the failures.
As we shall see later in this paper (cf., Section IV-E), the
diagnoser can provide guidelines on the choice of this legal
language. Once the appropriate legal language is chosen, we
then design a controller, which we refer to as adiagnostic
controller, that achieves a closed-loop language that is within
the legal language and is diagnosable. This controller can
be designed based on the formal framework and the syn-
thesis techniques that supervisory control theory provides,
with the additional constraint of diagnosability. Recalling that
the standard problem of supervisory control under partial
observations can be stated as the problem of determining
the supremal controllable and observable sublanguageof
the legal language, the active diagnosis problem can also be
stated as determining the supremal controllable, observable,
and diagnosable sublanguage1 of the legal language and the

1Whenever such a supremal element exists.

supervisor that synthesizes this language. We emphasize that
the active diagnosis problem is nontrivial for the following
reasons: 1) the union of diagnosable languages need not be a
diagnosable language; 2) a subset of a diagnosable language
need not be diagnosable; and 3) the active diagnosis problem
does not rule out terminating traces. The last reason motivates
the study of nonlive languages in Section III.

We note that the starting point of the active diagnosis
problem can either be an uncontrolled physical system or
process, or it can be a controlled system itself. An example of
the latter case is where the system has to satisfy prespecified
legal language constraints, in addition to being diagnosable.
In this case, a controller that ensures legality can first be
designed following the usual supervisor design procedures,
and the closed-loop language generated by the physical system
with the above supervisory controller can serve as the starting
point for the active diagnosis problem.

In Section II of this paper we present the necessary back-
ground for this paper; in particular we present the system
model, discuss the notation that we shall use in the rest of the
paper, and review the main results of [10] on diagnosability of
DES’s. In Section III we discuss diagnosability issues pertain-
ing to nonlive languages. Section IV presents the main results
of this paper: the formulation of the active diagnosis problem,
a solution procedure along with details of its implementation,
and an illustrative example. In Section V we demonstrate how
the theory developed in this paper can be used to design a
diagnostic controller for a simple pump–valve system. Finally,
we give some concluding remarks in Section VI.

II. BACKGROUND AND NOTATION

A. The System Model

The system of interest is modeled as a deterministic finite-
state machine (FSM) or generator

(1)

where, as usual (cf., [8]), is the finite state space, is the
finite set of events, is the partial transition function, and
is the initial state of the system. The model accounts for
the normaland failed behavior of the system. The behavior
of the system is described by theprefix-closed language[8]

generated by . Henceforth, we shall denote by
. is a subset of , where denotes the Kleene closure

[4] of the set and includes the empty trace denoted by.
Note that the language is regular [4] since is finite.

The event set is partitioned as , where
represents the set of observable events andrepresents

the set of unobservable events.is also partitioned as
, where represents the set of controllable events

and represents the set of uncontrollable events.
Let denote the set of failure events which are

to be diagnosed. We assume, without loss of generality, that
, since an observable failure event can be trivially

diagnosed. Further, we partition the set of failure events into
disjoint sets corresponding to different failure types

(2)

910 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998

Let denote this partition. The partition is motivated pri-
marily by diagnostic requirements. Often, we may not require
that every failure event be identified uniquely; we may simply
be interested in knowing if one of a set of failure events has
happened, as for example, when the effect of the set of failures
on the system is the same. In other words, we require unique
identification not of the failure event itself, but of the type of
failure, when such an event occurs in the system. Hereafter,
when we write that “a failure of type has occurred” we will
mean that some event from the set has occurred.

We make the following assumptions about the system under
investigation.

A1) The language generated by is live. This means
that there is a transition defined at each statein ,
i.e., the system cannot reach a point at which no event
is possible.

A2) There are no cycles of unobservable events in, i.e.,
such that

where denotes the length of trace.
A3) , i.e., no unobservable event can be prevented

from occurring by control.

The liveness assumption on is made for the sake of
simplicity. In Section III of this paper, we discuss diagnos-
ability issues pertaining to nonlive languages. Assumption A2)
ensures that observations occur with some regularity. Since
detection of failures is based on observable transitions of the
system, we require that does not generate arbitrarily long
sequences of unobservable events. Assumption A3) is essential
for the existence of a solution to the active diagnosis problem
as posed in this paper. Under Assumption A3), controllability
and normality together imply observability.2

B. Notation

In this paper, we assume that all the languages of interest are
prefix-closed. Let denote the prefix-closure of the set

. Let denote the set of all traces that originate from
state of . We denote by the postlanguage of after
, i.e.,

(3)

Let denote the final event of trace. We define

(4)

i.e., denotes the set of all traces of that end in a
failure event belonging to the set . Consider and

. We use the notation to denote the fact that is
an event in the trace. With slight abuse of notation, we write

to denote the fact that for some ,
or, formally, .

Let denote the usual projection operator that
“erases” the unobservable events in a trace [8]. The inverse
projection operator is defined as

(5)

2This result has been proved in the unpublished literature [6].

Given a system , a partial observation supervisor for
is a map

In other words, gives the set of enabled events following
any observed event sequence. The resulting closed-loop system
is denoted by . A realization of the supervisor for

which achieves is given by the pair
where is a recognizer for and

. Under the assumption that
, the map can simply be given by the active

event set of at state . In this case the supervisor may
simply be realized by the FSM , the feedback map being
implicit in the transition structure of .

Given a language over the alphabet and a language
we denote by the supremal controllable

sublanguage of with respect to and (where the
appropriate and are understood by context). Likewise
we denote by the supremal controllable and observable
sublanguage of with respect to and (whenever
this language exists). We denote by the supremal normal
sublanguage of with respect to and and by
the supremal controllable and normal sublanguage ofwith
respect to and .

We use the notation to denote that the FSM is
a submachine (i.e., subgraph) of (cf., [5]). Finally, given
two FSM’s and , we take to mean that is
identical to up to a renaming of the states.

C. Diagnosability and Diagnosers

1) The Notion of Diagnosability:In this section, we sum-
marize some of the main results of [10] on diagnosability
of DES’s that will be frequently referred to in this paper.
In particular, we discuss briefly the notion of diagnosability,
the structure of diagnosers, and the necessary and sufficient
conditions for diagnosability. For a detailed treatment of these
ideas we refer the reader to [10].

Roughly speaking, a language is diagnosable if it is
possible to detect with a finite delay occurrences of failures
of any type using the record of observed events. Here finite
delay is taken to mean a finite number of event occurrences
following the failure. Formally, we define diagnosability as
follows:

Definition 1: A prefix-closed and live language is said
to be diagnosablewith respect to the projection and with
respect to the partition on if the following holds:

where the diagnosability condition is

Let be any trace generated by the system that ends in
a failure event of a particular type, say,, and let be any
sufficiently long continuation of. Diagnosability then requires

SAMPATH et al.: ACTIVE DIAGNOSIS OF DISCRETE-EVENT SYSTEMS 911

Fig. 1. Example of a system with anF1-indeterminate cycle in its diagnoserGd.

that every trace belonging to the language that produces the
same record of observable events as the traceshould contain
in it a failure event of the type . This implies that along every
continuation of one can detect the occurrence of a failure of
the type with a finite delay. In other words, diagnosability
requires that every failure event leads to observations distinct
enough to enable unique identification of the failure type with
a finite delay. Note that continuationswhich are of length
less than need not be considered in Definition 1 since we
allow for a finite delay (of up to events) in detecting the
failure. Also note that this definition applies to any language

, regular or not.
2) The Diagnoser:Given a DES represented by an FSM
, the diagnoser for the system is the deterministic FSM

with . The diagnoser
can be thought of as anextended observerfor which

gives: 1) an estimate of the current state of the system after
the occurrence of every observable event and 2) information
on potential past failure occurrences in the form of failure
labels attached to the state estimates. The diagnoser performs
diagnostics when it observes online the behavior of. Failures
are diagnosed by simply checking the labels associated with
the state estimates; if the diagnoser transitions into a state
such that every state estimate incontains the label , then
we conclude for certain that a failure of type has occurred
regardless of what the current state ofis. We refer to such a
state as an -certain state. Likewise, an -uncertain state
of the diagnoser is one that contains at least one state estimate
which carries the label and at least one estimate which
does not carry the label .

3) The Conditions for Diagnosability:The diagnoser is
used not only to perform online diagnostics, but also to verify
offline the diagnosability of the system. In other words, the
necessary and sufficient conditions for diagnosability of a
given language can be stated as conditions on its diagnoser.
The notion of an -indeterminate cycle in the diagnoser is
the most crucial element in the development of necessary and
sufficient conditions for diagnosability and is central to the
problem of active diagnosis studied in this paper. Informally
speaking, an -indeterminate cycle in is a cycle composed
exclusively of -uncertain states for which there exist:

1) a corresponding cycle (of observable events) inin-
volving only states that carry in their labels in
the cycle in and states that are reached only via
unobservable events;

2) a corresponding cycle (of observable events) inin-
volving only states that donot carry in their labels
in the cycle in and states that are reached only via
unobservable events.

Example 2.1: Consider the system and the corresponding
diagnoser represented in Fig. 1. Let
and let . The diagnoser in Fig. 1 has a cycle
of -uncertain states with the corresponding event sequence

. Corresponding to this cycle in the diagnoser, there are
two cycles in the state machine: the first involves states 3–5
which appear with an label in the cycle in the diagnoser,
and the second involves states 11–13 which carry anlabel
in the cycle in the diagnoser, and third, state 14 is reached
via the unobservable event . Thus, the cycle in is an

-indeterminate cycle.
In the preceding example, the cycle in corresponds

directly to the cycles in , in the sense that the cycles in
are completed with just one completion of the cycle in the

diagnoser . However, in general, more than one traversal of
the -indeterminate cycle in may be required to complete
one or both of the corresponding cycles in. In this case we
say that the cycles in are of multiplicity greater than one.
For further details we refer the reader to [10].

We now quote the following result from [10].
Theorem 1: A regular, prefix-closed, and live language

is diagnosable if and only if its diagnoser satisfies the
following condition: there are no -indeterminate cycles in

, for all failure types .
The condition of the above theorem, together with the

liveness assumption on , implies that every -uncertain
state in leads to an -certain state in a bounded number
of transitions of the diagnoser. We then have the following
corollary from [10].

Corollary 1: Consider a regular, prefix-closed, and live
language . Let refer to the length of the longest sequence
of unobservable events in. Let denote
disjoint sets of failure events in . If is diagnosable with

912 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998

delay corresponding to failure type , then its diagnoser
detects occurrences of failure events of the typein at

most events of following the occurrence of a failure
event of type .

We conclude our review of the diagnosability property of
DES’s with the following remark. For the reader familiar with
[10], the diagnoser that we refer to in this paper is the
diagnoser of [10]. The diagnoser was introduced
in [10] to handle the case of multiple failures of the same
type (possibly) occurring along any trace of. In this paper,
we do not distinguish between the cases of multiple failures
and single failures of the same type, and hence, in order to
simplify the presentation, we use the diagnoser of [10]
for both of these cases.

III. ON DIAGNOSABILITY OF NONLIVE LANGUAGES

The theory of diagnosability developed in [10] is based
on the assumption that the languageis live. Even when
the system of interest is such that it satisfies the liveness
assumption, it is possible that when the behavior of the system
is restricted under control, as in the case of the active diagnosis
problem that is discussed in this paper, the language generated
by the controlled system may not be live, since the use of
control could result in blocking or deadlock. Hence, we now
generalize the results of [10] to account for nonlive languages
as well. In this section, we present the generalized definition
of diagnosability and a procedure to check for diagnosability
of nonlive languages using the results developed in [10] for
live languages. In addition to allowing us to deal with nonlive
languages arising as a result of control, the results of this
section also allow us to deal with systems that are not live to
begin with, i.e., systems that do not satisfy assumption A1) as
we shall see from what follows. Note that the languageand
the FSM used in this section are generic and do not refer to
the system model introduced in Section II-A and used in the
active diagnosis problem studied in Section IV.

A. The Notion of Diagnosability for Nonlive Languages

Definition 2: A prefix-closed language is said to be
diagnosablewith respect to the projection and with respect
to the partition on if the following holds:

where the diagnosability conditions and are

and

The above definition of diagnosability is the same as
Definition 1 in Section II-C (for live languages) except that
we now require the diagnosability condition to hold for
terminating traces as well. Note that even if the language

has a terminating trace that ends in a failure event of
type may still be diagnosable as long as there does

not exist in a trace such that is also terminating and
generates the same projection as the tracebut does not
contain a failure event of type . Note that as in the case of
Definition 1, the above definition applies to regular as well
as nonregular languages.

In order to diagnose failures in a nonlive system and to
check for diagnosability of the language it generates, we use
the results developed in [10] for live languages as follows.
Given a nonlive language we extend it to a live language

by adding a new event “Stop” to where
and by defining

(6)

It is obvious from the above definition that is live. By
comparing Definition 2 above with [10, Definition 1], it can
be seen that

diagnosable diagnosable (7)

In other words, checking for the diagnosability ofis equiv-
alent to checking for the diagnosability of .

We conclude our discussion on nonlive languages and
diagnosability with the following observation.3

Proposition 1: A sublanguage of a diagnosable lan-
guage is itself diagnosable if all terminating traces of
are also terminating traces of .

Proof: The proof is by contradiction. Suppose that is
not diagnosable. Then there exist at least two traces

such that either or (in the above Definition 2) is
violated. If is violated, i.e., and are terminating traces,
then by assumption, and are also terminating traces in

; thus is not diagnosable. If is violated by and ,
then is also nondiagnosable since and are in .

B. The Diagnoser

For the remainder of this section on diagnosability of
nonlive languages, we assume thatis regular. Let

be the FSM generating . The
transition function of is defined as follows. First, let

is undefined (8)

Then define

(9)

if
undefined, otherwise.

(10)

Thus, is obtained from by adding at every dead state
of , a self-loop due to the event . It is straightforward
to see that . We then construct from the
diagnoser corresponding
to . This diagnoser is used to perform online failure
diagnosis of the system ; also the diagnosability of can
be tested by checking for indeterminate cycles in (as per
Theorem 1). Henceforth, we will refer to as the “live”
diagnoser of (or, of).

3We are indebted to an anonymous reviewer for making this observation.

SAMPATH et al.: ACTIVE DIAGNOSIS OF DISCRETE-EVENT SYSTEMS 913

1) Procedure to Construct from : While the diag-
noser may be built from following the usual
construction procedure of the diagnoser, it may also be ob-
tained as a simple extension of , the
diagnoser corresponding to, if is already available. First,
note that the only difference between and is due to
the Stop events defined at the dead states of . Next,
for define

(11)

Let denote the set of all states in such
that is nonempty. Note that does not
necessarily imply that is a dead state of ; it simply means
that there exists an pair in where is such that no
further observable event is possible in once gets into
state . Consider any and any .
Let ; since then, in , the
corresponding live machine, we have and

. This implies that in the diagnoser
corresponding to

(12)

and

(13)

where

for some (14)

and4

if
otherwise.

Finally, note that if is such that ,
then the state is the same as, i.e., .
Thus, we see that is identical to except that at each
state as above, we either have a self-loop due
to the Stop event, or, we have a transition defined due to the
Stop event to a state as above and a self-loop at
due to the Stop event. Therefore, once the set is
identified, can be built simply as an extension of . We
will refer to as the “live diagnoser extension” of .

2) Properties of : We now state some properties of the
live diagnoser that we shall find useful in the solution
of the active diagnosis problem studied in this paper.

P1) Let be any terminating trace of and such
that and . Then there exists

such that
and

.

4
~LP is equivalent to the label propagation function of the diagnoser defined

in [10]; it propagates the failure information labels associated with a state to
its successors.

Proof: The proof is straightforward from the defini-
tion of the language and from the construction of
the diagnoser .

P2) Let be any terminating trace in such that
and such that violates the diagnosability condition
of Definition 2. Then the state
forms an -indeterminate cycle in due to the
single event Stop.

Proof: Since a terminating trace in ,
and violate diagnosability, then
such that and . Let

. Then we have
, and . Thus, is -uncertain. From

the definitions of the language and the FSM
and from the construction of the diagnoser ,

we have , and
. Therefore, the state forms an -

indeterminate cycle due to the event Stop.
P3) Let be a terminating trace of such that

and such that does not violate the definition of
diagnosability. Then the state
is -certain.

Proof: If a terminating trace in ,
and do not violate the definition of diagnosability,
then such that , we have

. In other words, such
that , we have . Hence, in the live
diagnoser , the state is

certain.
Remark:Property P3) implies that if no observable

event occurs in the system after the diagnoser
enters the state , then we can conclude that
a failure of type has occurred. This inferencing is
captured in the live diagnoser by the fact that

is an -certain
state. Thus, occurrence of the “artificial” Stop event at
state of the diagnoser , which is the same as
the occurrence ofno eventat the state of the “real”
diagnoser , leads us to diagnose the occurrence of
a failure of type .

We present the following definition of a Stop-indeterminate
state that we shall use in the solution of the active diagnosis
problem presented in the following section.

Definition 3: Let such that
and . The state is defined to be a

Stop-indeterminate state of the pair if the state
forms an indeterminate cycle in the live diagnoser due
to the event Stop.

All the ideas of Section III-B are illustrated by the following
example.

Example 3.1: Consider the nonlive system of Fig. 2
with and . The live
extension of , the diagnoser corresponding to

, and the live diagnoser of are depicted in
Fig. 2. Here

. For , we have
and . For

, we have and .

914 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998

Fig. 2. The diagnoserGlive

d
for a nonlive systemG.

Consider the trace . This trace violates con-
dition of diagnosability since there exists such
that is a terminating trace, and

. Note that the trace leads to the -uncertain
state of with a self-loop due to
the Stop event. It is easy to verify by inspection of that
this state forms an -indeterminate cycle.

Consider next the trace that is a terminating
trace of . It is easy to see by inspection of that this trace

does not violate condition of diagnosability. Further,
we see that if the event sequence is observed, with no
further event thereafter, then we can conclude for sure that
the system executed the trace; hence we can conclude that
the failure occurred. This diagnostic information can be
obtained from the diagnoser by noting that the trace

followed by the Stop event leads to the -certain state
.

This concludes our discussion on the diagnosability of
nonlive languages. Based on the above discussion, we see that
even when the language generated by the system is not
live, it can be extended to a live language in a straightforward

manner. Therefore, we note that Assumption A1) that we have
made about the system leads to no loss of generality.

IV. THE ACTIVE DIAGNOSIS PROBLEM

In this section, we formulate the active diagnosis problem,
propose a solution procedure, demonstrate its correctness,
and finally illustrate the proposed solution procedure with an
example.

A. Problem Formulation

We formulate the active diagnosis problem (ADP) as fol-
lows.

Active Diagnosis Problem:Given the regular, live lan-
guage generated by the system (of Section II-A), and
given a regular, normal (with respect to and) language

such that every live sublanguage of is diagnosable,
find a (partial observation) supervisor for such that

where

C1) ;
C2) is diagnosable;
C3) is as large as possible.

SAMPATH et al.: ACTIVE DIAGNOSIS OF DISCRETE-EVENT SYSTEMS 915

From standard results on supervisory control under partial
observations [7], we know that a supervisor for , such
that , exists if and only if and
is controllable with respect to and and observable with
respect to and . Therefore, the ADP is to find the supremal
controllable, observable, and diagnosable sublanguage of (the
legal language) . We note that: 1) diagnosability is not a
property that is preserved under union of languages5 and 2)
a subset of a diagnosable language need not be diagnosable.6

Therefore, the supremal diagnosable sublanguage of a given
nondiagnosable language need not always exist. However,
we will show later,by a constructive proof, that the desired
supremal element does indeed exist under the assumptions
made in this paper, i.e., the ADP is well formulated. We shall
refer to the supervisor that solves the above ADP as a
diagnostic controllerfor .

In view of Proposition 1, the assumption that every live sub-
language of is diagnosable is equivalent to the assumption
that the supremal live sublanguage ofis diagnosable. This
condition can be checked by building the diagnoser for the
supremal live sublanguage of; this sublanguage is obtained
by removing all terminating traces of . In Section IV-E we
will present a class of languages that satisfy the
above-mentioned properties of, i.e., every live sublanguage
of , for any given , is diagnosable, and is normal with
respect to and . This class of languages can be obtained
using the diagnoser corresponding to.

B. Solution Procedure

We first present a description of the solution procedure.
The procedure computes the supremal controllable, normal,
diagnosable sublanguage of and consists of three stages.
We start with the initial condition (language) and at
the first stage we compute the supremal controllable and
normal7 sublanguage of . This calculation is presented in
Module A of the procedure below and is based on a result of
Brandt et al. [1, Th. 4]. At the second stage we compute the
supremal diagnosable and normal sublanguage of the language
resulting from the first stage. This computation is performed in
Module B of the procedure below and uses the assumption that
every live sublanguage of is diagnosable and uses Properties
P1) and P2) of Section III. The third stage (Module C) is a
test for convergence; this is necessary since the construction
described in the second stage may result in a language that is
not controllable, and further iterations of the above procedure
may be required to obtain a language that is controllable,
normal, and diagnosable. It is shown in Theorem 2 that this
solution procedure converges in a finite number of iterations
to the supremal controllable, normal, and diagnosable sub-

5ConsiderL1 = �f�
� andL2 = �� where�f = f�fg and� 2 �o.

ThenL1 andL2 are trivially diagnosable butL1 [L2 = �f�
� +�� is not

diagnosable as can be seen by choosings = �f ; t = �k; and! = �k; for
an arbitrarily largek, in Definition 2.

6ConsiderL1 = fa�fd; a�ucg with �f = f�fg and�o = fa; d; cg,
and L2 = fa�f ; a�ug; we have thatL2 is not diagnosable whileL1 is.
Refer to Proposition 1.

7Henceforth, in this paper, normality and observability are taken to be with
respect toL andP; and controllability is taken to be with respect toL and
�uc unless otherwise mentioned.

language of . The resulting language is also the supremal
controllable, observable, and diagnosable sublanguage of
because whenever [Assumption A3)], normality, and
controllability together imply observability as was mentioned
in Section II-A.8

We now present the solution procedure. Implementation of
this procedure is discussed in Section IV-C.
Initialization:

Step 0-1: Obtain an FSM generator of, henceforth re-
ferred to as .

Step 0-2: Build the diagnoser corresponding to
.

Step 0-3: Let and
.

Iteration:
Module A:

Step A-1: Compute the supremal controllable sublanguage
of with respect to

and .
Let denote the FSM generating

.
Step A-2: Compute . Let the FSM

be such that .

Module B:
Step B-1: Let

and
Step B-2: Extend to the live language as

per (6) in Section III-A. Let denote the
FSM that generates and let
denote the diagnoser corresponding to .

Step B-3: Eliminate from all states such that
is a Stop-indeterminate state of the pair

; let denote the
accessible part of the resulting machine.

Step B-4: If , then let
; let ; let

and go to Step C-1.
Else let ; let

be the FSM generator of ;
let ; and go to Step B-1.

Module C:
Step C-1: If , stop. The solution to

the ADP is and the corresponding
supervisor is realized by the FSM . Else
go to Step A-1.

C. Implementation of the Solution Procedure

We explain how to implement, using FSM’s, all the steps of
the preceding procedure. The relationships between the various
FSM’s in the procedure are depicted in Fig. 3; in that figure,
solid lines indicate actual computations while dotted dashed
lines indicate relationships.

8For computationally efficiency, the solution procedure does not actually
compute the supremal diagnosable and normal sublanguage; rather, it stops
with computing its projection. The inverse language is retrieved in the
subsequent iteration of Module A.

916 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998

Fig. 3. Finite-state machines involved in the solution procedure.

Step 0-1: (To obtain) Given the regular language,
an FSM that generates this language can
always be obtained (see, e.g., [4]). We also build
a refinedsystem model with the following
properties:

•
• .

Given , the refined system model can
be obtained from the system modelfollowing
the refinement procedure in [5].

Step 0-2: (To obtain) and , the diagnosers
corresponding to and , respectively,
can be built from and , respectively,
following the usual construction procedure of
the diagnoser. From Step 0-1 above, it follows
that . Also note that

and .

Step A-1: [To obtain] Given two FSM’s and
such that , several finite

step procedures to obtain (where is
the generator of with respect to
and the set of uncontrollable events in) exist.
We follow the procedure in [5]. This procedure
requires that . Lemma 1 in Appendix A
establishes that for all .
Hence the procedure of [5] can be used to com-
pute from and , for all .

Step A-2: [To obtain] Let denote the transition
function of . At each state of
add a new transition as follows:

. In other words, add self-loops at
every state of due to all unobservable

events in . With slight abuse of notation we
refer to this operation as . Then

.

Step B-1: [To obtain and] , the
live extension of the FSM , can be obtained
from following the procedure described in
Section III-B [cf., (9)]. While , the diag-
noser corresponding to , can be obtained
following the usual construction procedure of
the diagnoser, it can be obtained as a simple
extension of as follows, thereby reducing
computation. Since is the live exten-
sion of , then can be constructed
from following the diagnoser extension
procedure described in Section III-B1 if it can
be established that is the diagnoser cor-
responding to . This result is proved in
Lemma 4 in Appendix A. Hence the extension
procedure of Section III-B1 can be used to obtain

from once the “dead” states
are identified. Identification of
in general involves examining

every state of and checking, from ,
if (cf., (11) in Section III-B1) is nonempty.
However, since we have at hand , the diag-
noser of the live language (constructed
in Step 0-2) the identification of
can be simplified by: 1) comparing the transitions
defined at each state of with those defined
in and 2) for only those states
such that there exists a transition out ofin
which is not present in , checking if
is nonempty.

SAMPATH et al.: ACTIVE DIAGNOSIS OF DISCRETE-EVENT SYSTEMS 917

Step B-2: [To obtain] From the assumption on
(that every live sublanguage of is diagnos-

able) and from Property P2) (cf., Section III-B2)
every indeterminate cycle in , if any,
is caused by a self-loop at some-uncertain
state of due to the Stop event; there-
fore the indeterminate cycles in and
hence the stop-indeterminate states of the pair

can be determined simply by
identifying in -uncertain states with
a self-loop due to the Stop event for any failure
type . Once the stop-indeterminate states are
determined, is obtained by eliminat-
ing these states from and obtaining the
accessible part of the resulting machine.

Step B-3: [To obtain] can be obtained
from following the same procedure
as in Step A-2 for obtaining from ,
i.e., .

Note: The procedure to obtain the refined system model
(Step 0-1) is of polynomial complexity (cf., [5]). The

procedure to obtain the diagnosers and (Step 0-
2) is of exponential complexity (cf., [10]). Each step of the
iterative part of the solution procedure (i.e., Steps A-1 through
C-1) is of polynomial complexity. Thus, once the initialization
part of the procedure is completed the rest of the procedure
can be implemented with polynomial complexity.

D. Correctness of the Solution Procedure

We now prove that the iterative procedure presented in
Section IV-B converges in a finite number of steps to the
solution of the ADP.

Theorem 2: The iterative solution procedure of Section IV-
B for solving the ADP converges in a finite number of
iterations. at convergence is the supremal controllable,
observable, and diagnosable sublanguage ofand is a
regular language. The supervisor that achieves the closed-
loop language can be realized by , the diagnoser
corresponding to the generator of .

Proof of Theorem 2:From Steps 0-1 through Step A-2
of the solution procedure we have

where the last equality follows from [1, Th. 4] and from the
assumption that is normal. Let

Terminating traces in that violate

condition of diagnosability

Note that since is such that every live sublanguage of
is diagnosable, any trace in that violates diagnosability is
a terminating trace. For any tracedenote by the

longest prefix of the last event of which is observable. Define
. By Properties

P1) and P2) of Section III-B2 every trace in leads
to a stop-indeterminate state in . The first
iteration of Module B (i.e., Steps B-1 through B-4) of the
solution procedure removes the stop-indeterminate states of
the pair . Further iterations (if necessary)
of Module B remove the Stop-indeterminate states of the
resulting pairs that cause a violation of di-
agnosability and, on convergence, result in the machine .
By construction, is the supremal normal and
diagnosable sublanguage of since the only traces re-
moved are traces that violate diagnosability, and Lemma 5
of Appendix A proves that such removal preserves normality.
The language may not be controllable since

, and hence, the last observable events that are
eliminated in the last iteration inside Module B may not be
controllable. If is not controllable the solution
procedure proceeds with the iteration, with in
the place of , and with in the place of .

From Lemma 2 in Appendix A, we have
. Since is an FSM, the solution procedure

is guaranteed to converge in a finite number of steps. The lan-
guage , obtained when the solution procedure converges,
is regular because it is realized by the FSM . Furthermore,

is, by construction, the supremal controllable, normal,
and diagnosable sublanguage of. Under Assumption A3),
controllability and normality together imply observability.
Consequently, is the supremal controllable, observable,
and diagnosable sublanguage of. The supervisor that
synthesizes the closed-loop language is realized by

(= , the diagnoser corresponding to the generator
of , at convergence). Furthermore, online failure

diagnosis of the closed-loop system can be performed
using the FSM which is the live diagnoser of
(cf., Lemma 6).

Remark: Since can be used to perform online
failure diagnosis of the closed-loop system formed by system

and the supervisor , we see that the solution proce-
dure of Section IV-B provides both a controller that ensures
diagnosability of the closed-loop system and a diagnoser for
online failure diagnosis.

E. On the Choice of and the Class of Languages

In this section, we introduce a class of languages
that can be used as initial conditions (i.e., as the language

) for the active diagnosis problem discussed in the preceding
sections. First, we present the following notation.

Suppose that the states form an indetermi-
nate cycle in the diagnoser . We shall refer to this cycle
as an elementaryindeterminate cycle if

. We then define aninterleavedindeterminate cy-
cle to be an indeterminate cycle composed of at least two
elementary indeterminate cycles such that they share at least
one common state (in a manner such that it is possible for
the diagnoser to keep alternating between these two cycles).
Fig. 4 provides examples of some interleaved cycles.

918 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998

Fig. 4. Some examples of interleaved cycles.

Definition 4:

1) A trace is said to go through an ele-
mentary indeterminate cycle in times if

where
and

forms an elementary indeterminate cycle in.
2) A trace is said to go through an interleaved

indeterminate cycle in times if it goes through each
elementary cycle in the given interleaved cycletimes.

Henceforth, whenever we refer to a cycle in the diagnoser
simply as an indeterminate cycle, we will mean either an
elementary or an interleaved cycle.9

Definition 5: A trace is said to go through an
indeterminate cycle in its diagnoser times if

goes through an indeterminate cycle in times.
We are now ready to define the languages.
Definition 6: Given a nondiagnosable and live language,

define

goes through an indeterminate

cycle in times

Therefore, consists of all traces in except those that com-
plete any elementary indeterminate cycle in, consists of
those traces in that complete any elementary indeterminate
cycle in at most once, and consists of traces in that
complete any elementary indeterminate cycle in at most
times. Note that is defined with respect to the diagnoser

. Therefore, it depends on the systemand not only on the
language generated by . In other words, given a language

and two different FSM’s and such that they both
generate the language, any obtained from may be
different than that obtained from . However, it is not difficult

9In the case of interleaved cycles,Kl could alternately be defined by
modifying Definition 4 as follows: a trace! is said to go through an
interleaved indeterminate cycle inGd k times if the total number of times that
it goes throughany combinationof elementary cycles in the given interleaved
cycle is equal tok. It is not difficult to see that the resulting definition of
Kl is complementary to the one that results from Definition 4. All of the
discussions in this section that follow hold true for the modified definition as
well.

to see that these two languages will differ only in the number
of times the cycles corresponding to an indeterminate cycle in
the diagnoser are included.

Example 4.1: For the system represented in Fig. 1 we have
(with a slight abuse of notation in the usage of *)

and

where . Note that this is an example of in the
case of elementary indeterminate cycles.

1) Properties of the Languages : We now present some
properties of the languages defined above.

Property 1: The languages , are regular.
Proof: The languages can be realized by FSM’s. In

Appendix B we present a procedure to obtain a finite-state
generator of any , given the system and the set of
indeterminate cycles in the diagnoser for the case where

does not contain any interleaved indeterminate cycles. In
the case where does contain interleaved cycles we present
appropriate arguments to show that the languagescan
be realized by FSM’s. Hence it follows that are
regular.

Property 2: The languages are normal.
Proof: From Steps 1 and 2 of the procedure in Appendix

B to calculate a finite state generator of we have that
where .

From Lemma 7 in Appendix A it follows that is normal.
Property 3: Given a nondiagnosable and live language,

and

live diagnosable

Proof: Since is obtained by removing from all
traces that go through an indeterminate cycle in more
than times, it is obvious that and hence
do not contain any nonterminating trace of that violate
the definition of diagnosability. (Recall Theorem 1 and the

SAMPATH et al.: ACTIVE DIAGNOSIS OF DISCRETE-EVENT SYSTEMS 919

explanation preceding it.) This implies that if is live, then
it is diagnosable.

In other words, Property 3 states that if is
nondiagnosable, then cannot be live; furthermore, any trace
in that violates the definition of diagnosability has to be a
terminating trace. Note that does not have to be regular.

Property 4: Given a nondiagnosable language and

diagnosable diagnosable

Proof: The proof is obvious by noting that .

This result simply states that even if every sublanguage of
obtained by including only those traces inthat visit the

states of an indeterminate cycle in the diagnosera finite
and bounded number of times (if at all), is diagnosable,
itself is nondiagnosable since it contains traces that can visit
an indeterminate cycle in an arbitrarily large number of
times.

We now present some additional properties of the languages
that are used primarily to motivate the choice of a particular
as initial condition for the ADP. The proofs of Properties 5

and 7 are not presented here for the sake of brevity. The
interested reader can find these proofs in Appendix B.

Property 5: Given a nondiagnosable language and

diagnosable diagnosable

This property means that if the language obtained by cutting
an indeterminate cycle in before it gets completed once is
not diagnosable, then so is the language obtained by including
the loop times and then cutting it before it gets completed
for the th time, and vice versa. Therefore, as far as
diagnosability is concerned, there is nothing to be gained
by simply extending a nondiagnosable language by extra
traversals of an indeterminate cycle.

Definition 7: Given a diagnosable languageand ,
define the equation shown at the bottom of the page. In other
words, the delay denotes the maximum number of event
occurrences possible in after the trace before which the
occurrence of the failure event cannot be diagnosed.

Property 6: Given a nondiagnosable language, and
diagnosable, then delay

delay .
Proof: The proof is straightforward from Definition 7

of delay and from the fact that . Note that the
above inequality becomes an equality if the maximum delay
in detecting a failure event in occurs along a trace
such that is also contained in .

Property 7: Given a nondiagnosable language, and
diagnosable, there exist and such that

for all

delay delay delay

Property 7 says that when the languages are
diagnosable, then for large, the maximum delays in detecting
failures occurs along traces that go through indeterminate
cycles in the diagnoser; further, each additional traversal of
the cycle results in additional delay in detecting the failure.

We now show how the languages form good initial
conditions to the ADP posed in Section IV-A. Recall that
given a nondiagnosable system, the goal of the ADP is to
restrict the language generated by the system to a diagnosable
sublanguage. Ideally, we would like this language to be as
large as possible since we do not want the control policy to
restrict the behavior of the system more than necessary in
order to make it diagnosable. Further, from the discussion in
Section II-C (see Theorem 1 and the discussion preceding it),
in order to obtain a diagnosable and normal sublanguage of
any given nondiagnosable language, we need to eliminate the

-indeterminate cycles in the corresponding diagnoser, for all
failure types . The languages , by definition, are obtained
by eliminating the traces that go through indeterminate cycles
in the diagnoser, and these languages differ fromonly in
those traces associated with indeterminate cycles. Therefore,
they are good candidates for the legal languageif it
can be shown that they satisfy the assumptions made on

in the formulation of the ADP, namely, that every live
sublanguage of is diagnosable and that is normal. While
the languages may themselves not be diagnosable (since
eliminating from those traces that go through indeterminate
cycles in the diagnoser may result in nonlive languages, i.e.,

may contain terminating traces that violate diagnosability),
we have from Property 3 that any live sublanguge of
is diagnosable. Further, from Property 2 we have that
is normal. Therefore, the languages satisfy the required
assumptions.

Thus, we see that each of the languagesof Definition 6
is a candidate for the initial condition . The question then
is: which of these does one choose? The following factors
motivate the choice of for a particular problem.

• From Property 5, we have that if is diagnosable,
then is diagnosable, and vice-versa for all . Hence
diagnosability considerations do not have to be taken into
account in the choice of .

• Consider the two languages and and let
denote the closed-loop behavior resulting when

is chosen as the desired in the ADP.
Then it is obvious that since ,
i.e., we get a larger closed-loop behavior if we choose

.

delay
st satisfies

does not satisfy if for some
undefined, otherwise

920 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998

Fig. 5. The refined system modelGref and the diagnoserGref

d
.

• From Properties 6 and 7, the detection delay of all failures
in is greater than or equal to the corresponding
delay in , and for a large enough , the detection
delay in is strictly greater than that in .

Thus, the choice of is dictated primarily by two con-
siderations: closed-loop behavior and failure detection delay.
This choice reflects the designer’s tradeoff between minimal
detection delay and maximal closed-loop behavior. Once the
appropriate is chosen based on the above design consider-
ations, we look for the largest sublanguage of that is
diagnosable and that can be achieved by control. The solution
to the ADP is then given by that supervisor that synthesizes
this closed-loop language .

F. Illustrative Example

We now present a simple example to illustrate the steps of
the solution procedure for the ADP. In Section V we present
a physical system and illustrate the application of the theory
developed in this paper to the design of a diagnostic controller
for this system.

Example 4.2:Consider the system represented in Fig. 1. As
before let and let .
Also let . As seen in Example 2.1 this
system has one indeterminate cycle formed by the three states

,
and with the corresponding
event sequence , and it is not diagnosable.

We solve the ADP for this system with . Figs. 5–7
illustrate the various steps of the solution procedure for this
problem.

Initialization: Fig. 5 depicts the refined system and
the corresponding diagnoser . Note that the indeterminate
cycle has been expanded out once in . is the
same as in Fig. 5 except that the event, which is

the final event that completes the indeterminate cycle, is
not defined at states 21 and 23 of . Likewise, is
the same as except that is not defined at the state

of . By definition
.

Iteration 1: Since the event is uncontrollable,
excludes from the state

and the transitions associated with this state (see
Fig. 6). The corresponding “inverse” machine is . We
now set and . , its
live extension , and the corresponding live diagnoser

are as depicted in Fig. 6. Inspection of
reveals an -indeterminate cycle formed by the -uncertain
state and the Stop event.
Hence the state is a
stop-indeterminate state of the pair . We
obtain by eliminating this stop-indeterminate state
from (see Fig. 7). Since we compute

, the inverse machine of and continue the
iteration of Module B. Fig. 7 depicts , its live extension

, and the corresponding live diagnoser .
Inspection of and (see Fig. 7) shows that
there are no stop-indeterminate states and hence

. This completes the iteration inside Module B, and
we set and . Since

we continue to the second iteration of the
solution procedure.

Iteration 2: Since the event leading into state
[that was eliminated

in iteration 1 to obtain] is controllable,
is the same as (of iteration 1) and

(of Iteration 1). Moving onto Module B of
the solution procedure, as before, we set
and .

SAMPATH et al.: ACTIVE DIAGNOSIS OF DISCRETE-EVENT SYSTEMS 921

Fig. 6. First part of solution procedure.

Since (of Iteration 2)
of Iteration 1, of Iteration 2 is equal to of
Iteration 1. It follows that the pair contains
no stop-indeterminate states; hence and the
procedure exits out of Module B with and

. Since , the
solution procedure terminates at the second iteration.

The solution to the ADP is and the
supervisor that synthesizes is realized by , the
diagnoser of . Further, can be used to perform
online diagnosis of the closed-loop formed by the system
and the controller .

V. APPLICATION: DESIGN OF A DIAGNOSTIC

CONTROLLER FOR A PUMP–VALVE SYSTEM

In this section we demonstrate the application of the theory
developed in this paper to the design of a diagnostic controller
for a pump–valve system.

Consider a simple system consisting of a pump and a valve.
Suppose that the valve has two failure modes, a stuck-open
failure mode and a stuck-closed failure mode. We assume that
the valve can get stuck open only from its open state and it can
get stuck closed only from its closed state. Let the system be
equipped with just one sensor, a flow sensor that can read one
of two possible values: F, indicating that there is a flow and
NF, indicating that there is no flow. Suppose that we need to
design a controller for this system that achieves the following
objectives.

1) When there is a load on the system, the controller must
respond by starting the pump and opening the valve.

2) When there is no load on the system, the controller must
respond by stopping the pump and closing the valve.

3) The sequence of start-pump, stop-pump, close-valve, and
open-valve commands has to be chosen in a manner such
that the resulting system is diagnosable.

922 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998

Fig. 7. Second part of solution procedure.

Fig. 8 depicts the FSM models for the pump and the valve.
Also shown in Fig. 8 is a controller model. This controller
captures requirements 1) and 2) above and is straightforward
to build. The problem now is to design a second controller
that ensures diagnosability of the closed-loop system while
still meeting objectives 1) and 2). We now demonstrate how
this problem can be solved in the framework of the ADP.

The first step is to obtain the system model. In this
example is chosen to be the closed-loop system formed
by the pump, the valve, and the controller of Fig. 8. A
systematic methodology to obtain the global system model
starting from the individual component models (including
the controller model) and from the sensor map (listed in
Table I)10 can be found in [11]. However, it is necessary
to modify the modeling methodology of [11] to account for

10The �’s in Table I stand for the state of the controller and are used to
indicate that the sensor map is independent of the controller state.

TABLE I
THE GLOBAL SENSOR MAP FOR THE PUMP–VALVE SYSTEM

the controllability/uncontrollability of events, as explained
below. The modeling formalism presented in [11] translates
all sensor information into the event set. As a result, the
global system model consists of “composite” events of the
form COMMAND, RESULTANT SENSOR READINGS, as
for example, the eventSTART_PUMP, F. Note that while

SAMPATH et al.: ACTIVE DIAGNOSIS OF DISCRETE-EVENT SYSTEMS 923

Fig. 8. Component models for the pump–valve system.

the command event is a controllable event, the event corre-
sponding to the resultant sensor readings is uncontrollable.
Hence, where it is necessary to partition the event set of the
system into controllable and uncontrollable events, as in the
active diagnosis problem studied here, use of the composite
events poses a difficulty. Two approaches could be followed
to overcome this difficulty. The first approach is to break
every composite event in the global system model into two
events: 1) the command and 2) the resultant sensor readings;
the command event is then treated as a controllable event while
the event corresponding to the sensor readings is considered
to be uncontrollable. Note that this leads to the introduction of
new states in the system model. The second approach is based
on the notion of control patterns [3], [12]. Simply speaking,
the use of control patterns implies that the set of controllable
events that are to be enabled or disabled at any point of time
cannot be arbitrarily chosen but are constrained to be within
prespecified subsets, i.e., certain events may only be enabled or
disabled together as a group. In our modeling framework, this

amounts to classifying the composite events as controllable
events and requiring that all events of the formCOMMAND
A, Y1 , COMMAND A, Y2 , , COMMAND A, YN
should be enabled/disabled as a group.

While the procedure of [5] for computing the supremal
controllable sublanguage of a given language does not handle
control patterns, it can be modified to do so in a straightforward
manner. Thus, either of the two approaches above can be
used. However, for ease of representation, the event labels
in the figures and tables that follow are left as composite
events. A complete listing of the transition table for the
pump–valve system can be found in [9, Appendix C]. If the
first approach of breaking the composite events is adopted,
then the controllable events in this system are the command
events, OPEN_VALVE, CLOSE_VALVE, STOP_PUMP, and
START_PUMP, while the uncontrollable events are the failure
events, STUCK_CLOSED and STUCK_OPEN, and the events
corresponding to the presence and the absence of a load on the
system, namely, LOAD, and NO_LOAD. On the other hand, if

924 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998

Fig. 9. The diagnoser for the pump–valve system.

we use control patterns, then the controllable subsets involve
events of the form OPEN_VALVE, X , CLOSE_VALVE,
X , STOP_PUMP, X, and START_PUMP, X, where X can
take either of the two values, F or NF. Finally, the set of failure
events is partitioned into two sets STUCK CLOSED
and STUCK OPEN .

The diagnoser for this system (with the composite
events) consists of 32 states and is shown in Fig. 9. (It is
not difficult to see that the diagnoser for this system with the
composite events broken up into two events will consist of
64 states.) A careful examination of the diagnoserand the
system (cf., [9, Appendix C]) reveals that the cycle formed
by the highlighted states in Fig. 9 is an-indeterminate cycle;
as long as the diagnoser remains in this cycle, one cannot
detect stuck-open failures of the valve.

We solve the ADP for this system with . A partial
realization (up to the point where failures are diagnosed) of
the diagnostic controller is depicted in Fig. 10. (For the sake of
brevity, we have presented only the final solution here, omit-
ting the various steps of the solution procedure; it can be veri-
fied that the procedure converges to the solution of the ADP in
just one iteration with again, just one iteration of Module B.)
Note that this controller satisfies all three design objectives: it
guarantees that the system responds appropriately to the pres-
ence or absence of a loadandit results in a diagnosable system.

Finally, it is interesting to note that this design approach
results in a much less restrictive system behavior than what
could be obtained by a fixed control protocol, which also
achieves the same design objectives. Consider for instance
the control sequence,START_PUMP, OPEN_VALVE ,
CLOSE_VALVE , STOP_PUMP. This control sequence

satisfies both design objectives. Further, it is not difficult
to see from the diagnoser of Fig. 9 that this would result
in a diagnosable system. However, it is evident that the
controller of Fig. 10 obtained as a solution of the ADP
achieves a much larger closed-loop behavior. Consider next
the control sequenceOPEN_VALVE , START_PUMP,
STOP_PUMP CLOSE_VALVE . While this protocol also

achieves the desired control objectives, it does not result
in a diagnosable system, as can be verified by tracing this
control sequence through the diagnoser of Fig. 9. However, the
diagnostic controller for this system allows the above control
sequence to occur, provided that this sequence is followed
by the sequenceSTART_PUMP, OPEN_VALVE which
results in a diagnosable system. (Again, refer to Fig. 9.) Thus,
starting from a controller that allows maximum flexibility of
the closed-loop system while achieving the desired control
objectives, and then restricting its behavior to yield a
diagnosable system, results in a much larger closed-loop
behavior than that obtainable by a fixed control protocol.

SAMPATH et al.: ACTIVE DIAGNOSIS OF DISCRETE-EVENT SYSTEMS 925

Fig. 10. Part of the diagnostic controller for the pump–valve system.

VI. CONCLUSION

Research in the area of failure diagnosis has so far fo-
cussed primarily on answering the following question: “given
a system with several possible failure modes, how does one
detect and diagnose these failures?” Several approaches have
been proposed for the design and implementation of diagnostic
modules for such systems. However, not much research effort
has been directed atbuilding systems that arediagnosable. In
other words, there have been few attempts at answering the
question, “given a system with multiple failure modes, and
given a set of diagnostic requirements, how do we ensure that
a system satisfies these requirements?” One way to ensure
diagnosability is to equip the system with an appropriate set
of sensors; the challenge then is to determine the optimal,
feasible set of sensors that will meet the requirements. An
alternate approach, where applicable, is to restrict the behavior
of the system, by control, in a manner such that it results in
a diagnosable system. In other words, the system controller is
to be designed in such a way that it not only satisfies other
specified control objectives, but it also results in a diagnosable
system. In this paper we have investigated the above problem
of integrated control and diagnosticsin the framework of
DES’s. In particular, we have presented a procedure for the
design of diagnostic controllers for DES’s, based on the theory
of failure diagnosis for DES developed in [10] and on existing
results in supervisory control under partial observations.

The solution methodology presented here for the design of
diagnostic controllers can also be used, with some modifica-
tions, to solve the problem of test/probe vector determination
for offline diagnosis. Loosely speaking, the set of all probe
sequences that achieve diagnosis of system failures may be

determined, in the framework of the active diagnosis problem,
by starting from a completely flexible system that allows for
all feasible probe sequences and eliminating those that do
not achieve diagnosis with a finite delay. This amounts to
eliminating those traces that lead to indeterminate cycles in
the corresponding diagnoser. Finally, one may further restrict
the set of feasible test vectors by taking into consideration
factors such as detection delay, cost of probing, etc.

APPENDIX A
PROOFS OFTECHNICAL RESULTS

USED IN THE SOLUTION OF THE ADP

Lemma 1: for all .
Proof: The above submachine requirement is satisfied

for since (cf., Step 0-2 in
Section IV-C); hence we can follow the procedure of [5] to
obtain from and . Next, as can be seen
from [5], resulting from the procedure is a submachine
of . From Steps B-0 and B-2 of the solution procedure
we have . Since

is an FSM, it follows that the iteration of Steps B-0
through B-3 will converge in a finite number of steps, and
hence from Step B-3 of the solution procedure

, for some finite . It follows that
which then implies that . Following the same
arguments as above we see that , for all .

Lemma 2: .
Proof: The proof follows from the Proof of Lemma 1.

Lemma 3: is the diagnoser corresponding to
for all .

926 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998

Proof: From the proof of Lemma 1 and from Step A-1
of the solution procedure we note that

and (15)

Let denote the diagnoser corresponding to the lan-
guage represented by the FSM . Then

(16)
where the second equality follows from Step A-2 of the
solution procedure. Since

, and since is a submachine of
then , the generator of , is a submachine of

. This implies that the diagnoser corresponding to is
a submachine of the diagnoser corresponding to, i.e.,

(17)

From (15)–(17) we see that both FSM’s and
are submachines of the same machine , and they generate
the same language . Since all of the above FSM’s are
deterministic [4], it follows that .

Lemma 4: For each iteration of Module B of the
solution procedure, is the diagnoser corresponding to

.
Proof: First, we have that is the diagnoser corre-

sponding to ; this is because and
from Step B-0 of the solution procedure, and

is the diagnoser corresponding from Lemma 3 above.
Next, from Step B-3.
Finally, from Step B-3 and hence it has the
“structure” of a diagnoser. It then follows that is the
diagnoser corresponding to .

Lemma 5: Consider and
such that is normal (with respect to and). Then

is normal with respect
to and .

Proof: Let and such that .
Since is normal and , it follows that . Further-
more, we claim that since , then

. To see this, observe that
. If ,

then such that . But
implies that such that which

in turn implies that . This leads to
a contradiction. Hence . There-
fore, . Consequently,

is normal.
Lemma 6: At convergence of the iterative solution proce-

dure of Section IV-B for solving the ADP, the FSM
is the live diagnoser of ; further, is the live
diagnoser extension of .

Proof: Since is the diagnoser of (cf.,
Lemma 4), is the diagnoser of (cf., Step
B-1 of the solution procedure), and since is the
live extension of (cf., Step B-1), then is
the live diagnoser of . At convergence of the solution
procedure, we have (cf., Step B-3).

Also, since at convergence, for
some finite (cf., Step B-3 of the solution procedure),
we have that . It follows
from Steps A-2 and B-3 of the solution procedure that

. It follows that is the live diagnoser
of . Further, from Lemma 4 we have that is
the diagnoser corresponding to . Since at convergence

, and , it follows that is
the diagnoser of . Since is the live diagnoser of

, then is the live diagnoser extension of .
Lemma 7: Consider and . Then
is normal (with respect to and) iff is of the form

where and .
Proof : normal implies that

. Choosing we have that
.

: We prove that if , then
. It then follows that which implies

that is normal.

1) To prove that : Let . Then
such that . Now, implies that

and . Further, implies
that which in turn implies that .

2) To prove that : Pick

since

APPENDIX B
ON THE LANGUAGES

A. Proofs of Properties 5 and 7 of the Languages

In proving Properties 5 and 7 below, we assume that the
multiplicities of the cycles in the system model corre-
sponding to an indeterminate cycle in the diagnoser(cf.,
paragraph following Example 2.1 and [10]) are equal to one.
This assumption is not restrictive because it can be shown
that Properties 5 and 7 that follow hold true for the general
case of multiplicity greater than one as well. However, proofs
of these properties for the general case are not presented here
since these proofs are quite involved and since these properties
are discussed primarily to motivate the choice of a particular

as initial condition for the active diagnosis problem.
Property 5: Given a nondiagnosable languageand

diagnosable diagnosable

Proof : Suppose is not diagnosable. Then we
have from Property 3 that is not live and that there
is a terminating trace in that violates Definition 2. Let

be this trace; then is such that
for some failure type , and such that

, and . Now since

SAMPATH et al.: ACTIVE DIAGNOSIS OF DISCRETE-EVENT SYSTEMS 927

is obtained from (which is live) by removing traces that
go through an -indeterminate cycle in the diagnoser
of are of the form ,
and where

and
form an -indeterminate cycle in . Consider next the
traces , corresponding to the traces
such that
and . Since

by the definition of an indeterminate
cycle, then and .
Therefore, violates Definition 2 for , and hence is
not diagnosable.

: Interchange and in the above proof and follow
the same arguments.

Property 7: Given a nondiagnosable language, and
diagnosable, there exist and such that

for all

delay delay delay

Proof: Consider with for some
failure type , such that there exists where

and
form an -indeterminate cycle in . We know that such a
and exist by the definition of . Let be such that
the maximum delay in detecting the failure occurs along
the trace in and let delay . Pick any in

such that detection of the failure along the trace
occurs after the system executes the trace but not before,
i.e., and

. Note that may be the empty trace in
the case where ; in this case the failure is diagnosed
right after by noting that no further event occurs in the
system (recall the results of Section III on diagnosing failures
in a nonlive language). Consider next the trace
where .
Since , then the delay in detecting
the failure along the trace in is given by

. It is not difficult to see that by choosing a large
enough we can get

i.e., the maximum delay
in detecting the failure event occurs along the trace

. It then follows
that delay delay for all since
delay

.

B. Procedures to Obtain a Generator of and
the Refined Machine in the Case Where
Has No Interleaved Indeterminate Cycles

We now present: 1) a procedure to obtain an FSM that
generates (henceforth referred to as) from the system
model and from the diagnoser and 2) a procedure to ob-
tain the refined system model such that

and such that includes as a submachine the generator
of . These procedures are presented for the case

where has no interleaved indeterminate cycles. Recall from
Section IV-C that the FSM is necessary to implement the
solution procedure for the ADP presented in Section IV-B.

Procedure to Obtain the Generator of : Given
the language generated by the system, and given

, the generator of can be obtained from the
system model , and from the diagnoser corresponding
to , by the following two-step procedure.

Step 1: Refine such that every inde-
terminate cycle in is “expanded out” times but
left “open” (not completed) after the th copy.
This step is explained in detail below (Steps 1-1 to
1-5).

Let denote the refined
machine. Then .

Step 2: Define . In other words,
is obtained from by: 1) adding self-loops

at every state of due to all and 2)
performing the product of the resulting machine
with .

It is straightforward to implement Step 2 above. We now
focus on Step 1 of the procedure.

Procedure to Obtain the Refined FSM from the FSM
: The inputs to this procedure are as follows:

1) the FSM ;
2) the set of -indeterminate cycles in , for all

failure types .

We assume that each is given by
where the set of states

forms an indeterminate cycle with corresponding
event sequence . Suppose that the set of states

forms an indeterminate cycle in with correspond-
ing event sequence . Suppose further that

and such that and
. We refer to such states

and as entry statesto the cycle. Then we will consider
as two distinct cycles,

and
. In other

words any set of elements that constitutes an indeterminate
cycle could give rise to up to distinct cycles
depending on the number of distinct entry states into the cycle,
from states outside of the cycle.

For each indeterminate cycle , we build an FSM
such that refines the cycle . The refined machine
is then given by

where refers to the total number of indeterminate cycles
in .

We now present a five-step procedure to buildgiven
and given an indeterminate cycle

928 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998

Step 1-1: Define where

if
undefined otherwise.

In other words, is the same as , except
that at state , the transition due to is deleted
in . Note that not all states of may be
accessible.

Step 1-2: Define where we have the
first set of equations shown at the bottom of the
page. Note that refers to the number of states
in the cycle and refers to the number of
copies of these states in the refined machine. Also
note that the transition due to the event is not
defined at the final state . Thus, has the
cycle expanded out times but left “open”
(not completed) after the th copy.

Step 1-3: Merge and with the state of
set equal to the state of . Let

denote the merged machine
where

with
if is defined
if is defined

undefined, otherwise.

Note that the states of are distinct from those
of , except for the state which is set equal
to . At the state the transition due to is
not defined in , while at the state of the
only transition defined is due to . Thus, we see
that is a well-defined function.

Step 1-3 simply “pastes” together the machines
obtained in Steps 1-1 and 1-2.

Step 1-4: Complete the transition function of at
the states as
follows:

Recall that is the state space of the diagnoser
is the transition function of , and

.
Step 1-4 completes the transition function of

so as to ensure that the language generated
by the complete machine is equal to the language
generated by excluding those traces that go
through the indeterminate cycle more than
times.

Step 1-5: Let where denotes the
accessible part of .

Step 1-5 simply removes from all states
that are not reachable from the initial state,
and their corresponding transitions.

Procedure to Obtain the Refined System Model : Given
the language generated by the system, and given

, the procedure to obtain a refined system model ,
that includes as a submachine the generator of , is
identical to the above procedure for generating except
for Step 1-2 which is modified as follows.

Step 1-2: Define where we have the
second set of equations, also shown at the bottom
of the page. Note that the transition due to the
event is defined at the final state . Thus,

has the cycle expanded out times and
completed after the th time since
is defined to be , the initial state of . This is
unlike the previous procedure for obtaining the
generator of where the cycle is left open after
the th copy.

In this case we have . It is then straightfor-
ward to see that this procedure results in a refined system
model such that and further that

.
Examples illustrating the above two procedures can be

found in [9].
We conclude with the following remark on the case where

the diagnoser has interleaved indeterminate cycles. Ex-
amination of the above procedures reveals that the only step
that needs to be modified in building a generator for in
this case is Step 1-2 which “expands” out the cycles. In the

if
if

undefined, otherwise.

if
if
if

undefined, otherwise

SAMPATH et al.: ACTIVE DIAGNOSIS OF DISCRETE-EVENT SYSTEMS 929

case of interleaved cycles we need to expand every elementary
cycle in the given interleaved cycletimes and further account
for the fact that these cycles may appear in any order (i.e.,
times the first elementary cycle followed bytimes the second
cycle, or, times the first cycle followed by times the
second cycle, again followed by the first cycle once, and so
on) in the resulting expanded machine. While it is difficult to
precisely write down the transition function of the FSM
of Step 1-2 in this case, it is not difficult to see that it is still
possible to build the FSM which in turn implies that it is
possible to obtain an FSM (and) such that it that
generates the language in the case where the diagnoser
has interleaved indeterminate cycles.

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers whose
comments helped improve the presentation of the paper. They
also thank G. Barrett for his pertinent comments regarding the
proof of Theorem 2.

REFERENCES

[1] R. D. Brandt, V. Garg, R. Kumar, F. Lin, S. I. Marcus, and W. M.
Wonham, “Formulas for calculating supremal controllable and normal
sublanguages,”Syst. Contr. Lett., vol. 15, no. 2, pp. 111–117, Aug. 1990.

[2] C. Cassandras, S. Lafortune, and G. Olsder, “Introduction to the mod-
eling, control and optimization of discrete event systems,” inTrends in
Control. A European Perspective, A. Isidori, Ed. New York: Springer-
Verlag, 1995, pp. 217–291.

[3] C. Golaszewski and P. Ramadge, “Control of discrete event processes
with forced events,” inProc. 26th IEEE Conf. Decision and Control,
Los Angeles, CA, Dec. 1987, pp. 247–251.

[4] J. E. Hopcroft and J. D. Ullman,Introduction to Automata Theory,
Languages, and Computation. Reading, MA: Addison-Wesley, 1979.

[5] S. Lafortune and E. Chen, “The infimal closed controllable superlan-
guage and its application in supervisory control,”IEEE Trans. Automat.
Contr., vol. 35, pp. 398–405, Apr. 1990.

[6] F. Lin, private communication, 1990.
[7] F. Lin and W. M. Wonham, “On observability of discrete-event sys-

tems,” Inform. Sci., vol. 44, pp. 173–198, 1988.
[8] P. J. Ramadge and W. M. Wonham, “The control of discrete event

systems,”Proc. IEEE, vol. 77, pp. 81–98, Jan. 1989.
[9] M. Sampath, “A discrete event systems approach to failure diagnosis,”

Ph.D. dissertation, Dept. Electrical Engineering and Computer Science,
Univ. Michigan, Ann Arbor, 1995.

[10] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.
Teneketzis, “Diagnosability of discrete event systems,”IEEE Trans.
Automat. Contr., vol. 40, pp. 1555–1575, Sept. 1995.

[11] , “Failure diagnosis using discrete event models,”IEEE Trans.
Contr. Syst. Technol., vol. 4, pp. 105–124, Mar. 1996.

[12] J. G. Thistle, “Control of infinite behavior of discrete-event systems,”
Ph.D dissertation, Systems Control Group Rep. 9012, Univ. Toronto,
Jan. 1991.

[13] , “Supervisory control of discrete event systems,”Math. Computer
Modeling, vol. 23, nos. 11/12, pp. 25–53, 1996.

Meera Sampath (S’95–M’96) received the B.E.
degree from the College of Engineering, Guindy,
Madras, India, the M.Tech. degree from the Indian
Institute of Technology, Kharagpur, India, and the
Ph.D. degree from the University of Michigan,
Ann Arbor, all in electrical engineering, in 1988,
1990, and 1995, respectively. She also received
the certificate in Transportation Studies from the
University of Michigan Intelligent Transportation
Systems program in 1995.

During the summer of 1995, she was an intern at
Johnson Controls Inc., Milwaukee, WI. Since August 1996, she has been with
the Control and Diagnostics Laboratory in the Wilson Center for Research
and Technology, Xerox Corporation. Her current research interests include
automated failure diagnosis and discrete-event systems.

Dr. Sampath was a recipient of the University of Michigan Distinguished
Dissertation Award and the University of Michigan College of Engineering
Distinguished Achievement Award in 1996.

Stéphane Lafortune(S’78–M’86–SM’97) received
the B.Eng. degree froḿEcole Polytechnique de
Montréal in 1980, the M.Eng. degree from McGill
University in 1982, and the Ph.D. degree from the
University of California, Berkeley in 1986, all in
electrical engineering.

Since 1986, he has been with the Department of
Electrical Engineering and Computer Science at the
University of Michigan where he is an Associate
Professor. His research interests include discrete-
event systems (modeling, supervisory control, fail-

ure diagnosis, and applications) and intelligent transportation systems.
Dr. Lafortune received the Presidential Young Investigator Award from the

National Science Foundation in 1990 and the George S. Axelby Outstanding
Paper Award from the Control Systems Society of the IEEE in 1994 (for a
paper coauthored with S. L. Chung and F. Lin).

Demosthenis Teneketzis(M’87–SM’97) received
the B.S. degree in electrical engineering from the
University of Patras, Greece, in l974 and the M.S.,
E.E., and Ph.D. degrees in electrical engineering
from the Massachusetts Institute of Technology,
Cambridge, in l976, l977, and l979, respectively.

From 1979 to l980, he worked for Systems Con-
trol Inc., Palo Alto, CA, and from l980 to l984 he
was with Alphatech Inc., Burlington, MA. Since
September l984, he has been with the University
of Michigan, Ann Arbor, where he is a Professor of

Electrical Engineering and Computer Science. In winter and spring, l992, he
was a Visiting Professor at the Institute for Signal and Information Processing
of the Swiss Federal Institute of Technology (ETH) Zurich, Switzerland. His
current research interests include stochastic control, decentralized systems,
queueing and communication networks, stochastic scheduling and resource
allocation problems, and discrete-event systems.

