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Abstract—The need for accurate and timely diagnosis of system discrete-event system (DES)-based methods (see [9], [11], and
failures and the advantages of automated diagnostic systemsthe references therein). From the implementation standpoint
are well appreciated. However, diagnosability considerations are these diagnostic systems can be classified as offline or online
often not explicitly taken into account in the system design. In . L :
particular, design of the controller and that of the diagnostic Offiné methods assume that the system is in a testbed and
subsystem are decoupled, and this may significantly affect the IS tO be tested for possible prior failures, while in online
diagnosability properties of a system. In this paper the authors diagnosis, the system is assumed to be operational and the
present an integrated approach to control and diagnasisore  giggnostic subsystem is designed so as to continuously monitor

specifically, they present an approach for the design ofliagnos- . . . . 4
able systemby appropriate design of the system controller. This the system behavior as well as identify and isolate failures.

problem, which they refer to as the active diagnosisproblem, is In most industrial systems, design of the online monitoring
studied in the framework of discrete-event systems (DES’s); it and diagnostic subsystem is domdter the initial system

is based on prior and new results on the theory of diagnosis design, and the diagnostic subsystem is added on as a separate
for DES’s and on existing results in supervisory control under module to the existing system. In other words, diagnosability

partial observations. They formulate the active diagnosis problem iderati ft t licitly taken int ti
as a supervisory control problem where the legal language is consideralions are often not explicitly taken into account in

an “appropriate” regular sublanguage of the regular language the system design. In particular, design of the controller and
generated by the system. They present an iterative procedure that of the diagnostic system are decoupled. Depending on
for determining the supremal controllable, observable, and di- the nature of the controller and the system, this decoupling

agnosable sublanguage of the legal language and for obtaining PR - - .
the supervisor that synthesizes this language. This procedure can significantly affect the diagnosability properties of the

provides both a controller that ensures diagnosability of the SyStem. As we shall see later in this paper (cf., Section V),
closed-loop system and a diagnoser for online failure diagnosis. when diagnosability is not a design specification, it is possible
The procedure can be implemented using finite-state machines to design two different control protocols for a given system
and is guaranteed to converge in a finite number of iterations. gc that they both achieve all the desired design objectives,
The authors illustrate their approach using a simple pump—valve - .
system. and yet. one .of 'Fhfase may result in a dlagnosable system (a
system in which it is possible to detect and isolate occurrences

of failures) while the other may result in a nondiagnosable
system.

In this paper we present an integrated approach to control
|. INTRODUCTION and diagnosis, which we refer to as tlaetive diagnosis

HE NEED for accurate and timely diagnosis of Syste,ﬁroblem. The term active is used to distinguish this method
failures, in the interests of safety, reliability, and ecorffom passive diagnosis wherein the role of the diagnostic
omy, has prompted widespread interest in the area of failuR@dule is simply to observe the system behavior and draw
diagnosis both in industry and in academia. A great deal Eferences about potential failures; the active diagnosis prob-
research effort has been and is being spent on the design i@ on the other hand, is one of combined observation and
development of automated diagnostic systems. A variety egntrol. Almost universally, “control” in the context of failure
schemes, differing both in their theoretical framework and i#iagnosis has referred to the notion of “testing” or “probing,”
their design and implementation philosophy, have been p@nd is more of an offline diagnosis problem; potential prior
posed. From the conceptual viewpoint most existing methot#lures of the system are diagnosed by issuing test commands
of failure diagnosis can be classified as: 1) fault-tree basafid observing the system responses. The challenge in these
methods; 2) quantitative, analytical model-based methods;@pblems is the design of the “probe sequence” or the “test
expert systems; 4) model-based reasoning methods; andvégtor.” While the active diagnosis problem studied in this
paper can be used to generate test vectors for diagnosis, the
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[2]). In[10] and [11] the authors propose an approach to failuseipervisor that synthesizes this language. We emphasize that
diagnosis where the system is modeled as a DES in which the active diagnosis problem is nontrivial for the following
failures are treated as unobservable events; diagnosis is @sons: 1) the union of diagnosable languages need not be a
process of detecting occurrences of these events from obserdisdinosable language; 2) a subset of a diagnosable language
event sequences. The level of detail in a discrete-event mode&d not be diagnosable; and 3) the active diagnosis problem
appears to be quite adequate for a large class of systems dneés not rule out terminating traces. The last reason motivates
for a wide variety of failures to be diagnosed. The approathe study of nonlive languages in Section IIl.
is applicable whenever failures cause a distinct change in théMe note that the starting point of the active diagnosis
system status but do not necessarily bring the system to a hatbblem can either be an uncontrolled physical system or
In [10] the authors provide a definition of diagnosability irprocess, or it can be a controlled system itself. An example of
the framework of formal languages and establish necessémng latter case is where the system has to satisfy prespecified
and sufficient conditions for diagnosability of systems. Alskegal language constraints, in addition to being diagnosable.
presented in [10] is a systematic approach for online diagnosisthis case, a controller that ensures legality can first be
of failures usingdiagnosers designed following the usual supervisor design procedures,

The work in [10] and [11] deals with passive diagnosisand the closed-loop language generated by the physical system
In this paper, we are interested in using control actions wath the above supervisory controller can serve as the starting
alter the diagnosability properties of a given system, i.gpint for the active diagnosis problem.
in restricting the behavior of a nondiagnosable system byln Section Il of this paper we present the necessary back-
appropriate control, to obtain a diagnosable system. The cagmeund for this paper; in particular we present the system
trol issues are posed and addressed in the framework neddel, discuss the notation that we shall use in the rest of the
supervisory control theory. Supervisory control theory deapsmper, and review the main results of [10] on diagnosability of
with the design of controllers for a given DES that ensures thaES'’s. In Section Il we discuss diagnosability issues pertain-
the controlled system meets certain qualitative specificatiolsg to nonlive languages. Section IV presents the main results
These specifications define thegal languagefor the system. of this paper: the formulation of the active diagnosis problem,
A supervisorfor a DES is then an external agent or controllea solution procedure along with details of its implementation,
that, based on its partial view of the system, dynamicalgnd an illustrative example. In Section V we demonstrate how
enables or disables the controllable events of the systemtlie theory developed in this paper can be used to design a
order to ensure that the resulting closed-loop language ldimgnostic controller for a simple pump—valve system. Finally,
within the legal language. For an introduction to the basige give some concluding remarks in Section VI.
ideas of supervisory control theory, we refer the reader to [8],
[13], and [2] and the references therein. II. BACKGROUND AND NOTATION

Proceeding along the lines of the standard supervisory
control problem, we adopt the following procedure to solvR The System Model
the active diagnosis problem. Given the nondiagnosable lan- . . T

; : The system of interest is modeled as a deterministic finite-

guage generated by the system of interest, we first selg{:tte machine (FSM) or generator
an “appropriate” sublanguage of this language as the Iega"f1 9
language. Choice of the legal language is a design issue and G=(X,%,6 z0) ()

will typically depend on considerations such as acceptable

system behavior (which ensures that we do not restrict th&1€re, as usual (cf., [8])X is the finite state spacé; is the

system behavior more than necessary in order to eventudlfji€ Set of eventsj is the partial transition function, anc

make it diagnosable) and detection delay for the failureS. the initial state of the system. The modelaccounts for

As we shall see later in this paper (cf., Section IV-E), th e normaland failed behavior of the system. The behavior

diagnoser can provide guidelines on the choice of this led the system is described by tipeefix-closed languag¢s]
language. Once the appropriate legal language is chosen, x&) generated b>G*. Hencefo[th, we shall denot®(G) by
then design a controller, which we refer to asliagnostic - L IS @ subset o&*, wherex:" denotes the Kleene closure
controller, that achieves a closed-loop language that is with[] ©f the set and includes the empty trace denoted dy

the legal language and is diagnosable. This controller cNit€ that the language is regular [4] sinceX is finite.

be designed based on the formal framework and the syn-1N€ €vent set is partitioned as. = %, Uy, where

thesis techniques that supervisory control theory provid%? represents the set of observgble events_ﬁ.ﬂdrepresents
with the additional constraint of diagnosability. Recalling thdf/€ S€t of unobservable evenis.is also partitioned a& =

the standard problem of supervisory control under partiat Y Zue: WhereZ. represents the set of controllable events
observations can be stated as the problem of determinfigf Zuc represents the set of uncontrollable events.

the supremal controllable and observable sublandguage ¢t s & X denote the set of failure events which are
the legal language, the active diagnosis problem can also'Be’€ diagnosed. We assume, without loss of generality, that
stated as determining the supremal controllable, observabig, S >uo: Since an observable failure event can be trivially

and diagnosable sublanguags the legal language and thedia{gnosed. Further, we partition the set of failure events into
disjoint sets corresponding to different failure types

1Whenever such a supremal element exists. Lr=%SpU- - UZf,. (2)
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Let 1I; denote this partition. The partition is motivated pri- Given a system(7, a partial observation supervissi- for
marily by diagnostic requirements. Often, we may not requi@ is a map

that every failure event be identified uniquely; we may simply

be interested in knowing if one of a set of failure events has Sp: PIL(G)] — {re2”:%,. C7}.

happened, as for example, when the effect of the set of failures

on the system is the same. In other words, we require unidueother words,Sp gives the set of enabled events following
identification not of the failure event itself, but of the type ofiny observed event sequence. The resulting closed-loop system
failure, when such an event occurs in the system. Hereaftisrdenoted bySp/G. A realization of the supervisafp for

when we write that “a failure of typé&; has occurred” we will G which achieved.(Sp/G) = K is given by the paif R, ¢)

mean that some event from the &&t; has occurred. whereR = (Xg,>,,6r,zr0) iS a recognizer fol’(K') and
We make the following assumptions about the system undet Xz — {r € 2% : ¥,. C 7}. Under the assumption that
investigation. Y. € 3,, the mapp(z) can simply be given by the active

Al) The languagel generated by is live. This means €vent set ofR at statex. In this case the supervisstp may
that there is a transition defined at each staia X, simply be realized by the FSMW, the feedback map being
i.e., the system cannot reach a point at which no evdftplicit in the transition structure ofz.
is possible. Given a languagél/ over the alphabelt and a language
A2) There are no cycles of unobservable event&jri.e., K C M we denote byK'® the supremal controllable
Jn, € N such thatVust € L) s € % = ||s|| < n, sublanguage of{ with respect tal andX,,. C X (where the

where||s|| denotes the length of trace appropriateM and,,. are understood by context). Likewise
A3) ¥.C ¥, i.e., no unobservable event can be prevent#ée denote byK '““ the supremal controllable and observable
from occurring by control. sublanguage oK with respect toM, P, andX,,. (whenever

The liveness assumption ofi is made for the sake of this language exists_). We denote By~ the supremal noC[r]paI
simplicity. In Section Il of this paper, we discuss diagnossublanguage o with respect to} and P and by KT
ability issues pertaining to nonlive languages. Assumption A8}e supremal controllable and normal sublanguagéafith
ensures that observations occur with some regularity. SiH&SPeCt oM, P, and %, _
detection of failures is based on observable transitions of the/Ve Use the notatiot; C G, to denote that the FSMF, is
system, we require thaf does not generate arbitrarily long? Submachine (i.e., subgraph) 6% (cf., [5]). Finally, given
sequences of unobservable events. Assumption A3) is essefff@ FSM'sG1 and G, we takeG; = G to mean thati, is
for the existence of a solution to the active diagnosis probldfntical toG2 up to a renaming of the states.

as posed in this paper. Under Assumption A3), controllability

and normality together imply observability. C. Diagnosability and Diagnosers

1) The Notion of Diagnosabilityin this section, we sum-

_ ) marize some of the main results of [10] on diagnosability
In this paper, we assume that all the languages of interest gfepeEs's that will be frequently referred to in this paper.

prefix-closed. Let denote the prefix-closure of the st} C | particular, we discuss briefly the notion of diagnosability,
¥*. Let L(G, z) denote the set of all traces that originate fronghe structure of diagnosers, and the necessary and sufficient
statex of . We denote byL/s the postlanguage of after congitions for diagnosability. For a detailed treatment of these
s, 1€, ideas we refer the reader to [10].

Roughly speaking, a languagk is diagnosable if it is
possible to detect with a finite delay occurrences of failures
of any type using the record of observed events. Here finite
delay is taken to mean a finite number of event occurrences

U(Sp)={s€L:s; €Ny} @) foIIowin.g the failure. Formally, we define diagnosability as
follows:
ie., U(3;;) denotes the set of all traces éfthat end in a _ Definition 1: A prefix-closed and live languagp is said
failure event belonging to the s&t,;. Considers € % and [© Pediagnosablewith respect to the projectio’ and with
s € Y*. We use the notation € s to denote the fact that is "eSPect to the partitiodl  on X if the following holds:
an event in the trace. With slight abuse of notation, we write
Y € s to denote the fact that; € s for someo; € Ty, (Vielly)(3ni €N )(Vs € W(E4:))(VE € L/s)[|[t]| 2 ni= D]
or, formally, s N ¥(Z4) # 0.

Let P: X* — X7 denote the usual projection operator th
“erases” the unobservable events in a trace [8]. The inverse .
projection operator”; ! is defined as w € Pr[P(st)] = Yy € w.

B. Notation

L/is={teX*|ste L} (3)

Let s; denote the final event of trace We define

ahere the diagnosability conditiofy is

Pii(y)={seL:P(s) =y} (5) Let s be any trace generated by the system that ends in
’ a failure event of a particular type, sa¥;, and lett be any
2This result has been proved in the unpublished literature [6]. sufficiently long continuation of. Diagnosability then requires
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Fig. 1. Example of a system with aRj-indeterminate cycle in its diagnoséf,.

that every trace belonging to the language that produces thd) a corresponding cycle (of observable eventsyzinn-
same record of observable events as the tsasbould contain volving only states that carng; in their labels in
in it a failure event of the typé;. This implies that along every the cycle inG, and states that are reached only via
continuationt of s one can detect the occurrence of a failure of unobservable events;
the typeF; with a finite delay. In other words, diagnosability 2) a corresponding cycle (of observable eventsyiinn-
requires that every failure event leads to observations distinct  volving only states that doot carry F; in their labels
enough to enable unique identification of the failure type with  in the cycle inG4 and states that are reached only via
a finite delay. Note that continuatiortswhich are of length unobservable events.
less thann; need not be considered in Definition 1 since we Example 2.1: Consider the systei® and the corresponding
allow for a finite delay (of up ta; events) in detecting the diagnoserG,; represented in Fig. 1. Let; =34 = {op1}
failure. Also note that this definition applies to any languaggnd let:,,, = ¥ ;U{o,,}. The diagnoser in Fig. 1 has a cycle
L C ¥, regular or not. of Fi-uncertain states with the corresponding event sequence
2) The Diagnoser:Given a DES represented by an FSM3~6. Corresponding to this cycle in the diagnoser, there are
G, the diagnoser for the system is the deterministic FSWo cycles in the state machirg@ the first involves states 3-5
Ga = (Qa, >0, 04, q0) With L(Gy4) = P(L). The diagnoser which appear with arf; label in the cycle in the diagnoser,
G4 can be thought of as aextended observeior G which and the second involves states 11-13 which carryaiabel
gives: 1) an estimate of the current state of the system afigrthe cycle in the diagnoser, and third, state 14 is reached
the occurrence of every observable event and 2) informatigia the unobservable event,,. Thus, the cycle i@, is an
on potential past failure occurrences in the form of failurgy-indeterminate cycle.
labels attached to the state estimates. The diagnoser performa the preceding example, the cycle @, corresponds
diagnostics when it observes online the behavia#oFailures directly to the cycles inG, in the sense that the cycles in
are diagnosed by simply checking the labels associated withare completed with just one completion of the cycle in the
the state estimates; if the diagnoser transitions into a gtateliagnoselG,. However, in general, more than one traversal of
such that every state estimategrcontains the label;, then the F;-indeterminate cycle it7; may be required to complete
we conclude for certain that a failure of ty@é has occurred one or both of the corresponding cyclesGn In this case we
regardless of what the current state(dis. We refer to such a say that the cycles iG¥ are of multiplicity greater than one.
stateq as anf;-certain state. Likewise, arf;-uncertain state For further details we refer the reader to [10].
of the diagnoser is one that contains at least one state estimat®/e now quote the following result from [10].
which carries the labeF; and at least one estimate which Theorem 1: A regular, prefix-closed, and live languade
does not carry the labe¥;. is diagnosable if and only if its diagnosé#, satisfies the
3) The Conditions for DiagnosabilityThe diagnose€; is following condition: there are nd;-indeterminate cycles in
used not only to perform online diagnostics, but also to veriig,;, for all failure typesrF;.
offline the diagnosability of the system. In other words, the The condition of the above theorem, together with the
necessary and sufficient conditions for diagnosability of laveness assumption of7, implies that everyF;-uncertain
given language can be stated as conditions on its diagnostate inG4 leads to anF;-certain state in a bounded number
The notion of anf;-indeterminate cycle in the diagnoser iof transitions of the diagnoser. We then have the following
the most crucial element in the development of necessary ammtollary from [10].
sufficient conditions for diagnosability and is central to the Corollary 1: Consider a regular, prefix-closed, and live
problem of active diagnosis studied in this paper. Informallanguagel. Let n, refer to the length of the longest sequence
speaking, arf;-indeterminate cycle id7, is a cycle composed of unobservable events ih. Let ¥¢;,¢ = 1,2,---,m denote
exclusively of F;-uncertain states for which there exist: disjoint sets of failure events ik. If L is diagnosable with
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delay n; corresponding to failure typ#;, then its diagnoser not exist in L a traces’ such thats’ is also terminating and
(G, detects occurrences of failure events of the tyfpan at generates the same projection as the tradeut does not
mostn; +n, events ofL following the occurrence of a failure contain a failure event of typ&;. Note that as in the case of
event of typeF;. Definition 1, the above definition applies to regular as well
We conclude our review of the diagnosability property ois nonregular languages.
DES'’s with the following remark. For the reader familiar with In order to diagnose failures in a nonlive system and to
[10], the diagnoseKd, that we refer to in this paper is thecheck for diagnosability of the language it generates, we use
diagnoserGZ’f of [10]. The diagnoseGZ’f was introduced the results developed in [10] for live languages as follows.
in [10] to handle the case of multiple failures of the sam@iven a nonlive languagé we extend it to a live language
type (possibly) occurring along any trace bf In this paper, L'“¢ by adding a new event “Stop” t& where Stop €
we do not distinguish between the cases of multiple failurés, N 3,. and by defining
and single failures of the same type, and hence, in order to
simplify the presentation, we use the diagno@%’ff of [10]
for both of these cases.

Llive =L UzZO {S StOpZ : L/S = (Z)} (6)

It is obvious from the above definition thdt™e is live. By
comparing Definition 2 above with [10, Definition 1], it can
[1l. ON DIAGNOSABILITY OF NONLIVE LANGUAGES be seen that

The theory of diagnosability developed in [10] is based
on the assumption that the languageis live. Even when
the system of interesty is such that it satisfies the liveness, Juar words checking for the diagnosability bfis equiv-
assumption, it is possible that when the behavior of the syst%tigm to checki’ng for the diagnosability dfive
is restricted under control, as in the case of the active diagn05|§Ne conclude our discussion on nonlivé languages and
problem that is discussed in this paper, t_he Iaqguage genergj %nosability with the following observatich.
by the controlled system may not be live, since the use o Proposition 1: A sublanguagelM of a diagnosable lan-
control could result in blocking or deadlock. Hence, we no

. X uagekK is itself diagnosable if all terminating traces &f
generalize the results of [10] to account for nonlive languag P also terminating traces &

as well. In this section, we present the generalized definition Proof: The proof is by contradiction. Suppose thtis
of diagl_ﬁosability and a procedure to check for diagnosabili%t diagnosable. Then there exist at least two trages, €
of nonlive languages using the results developed in [10] fa;[ such that eithetD; or D; (in the above Definition 2) is

live Ianguage;._ln addition to allowing us to deal with nor]“V@/,iolated. If Dy is violated, i.e.s; ands; are terminating traces,
languages arising as a result of control, the results of t I$en by assumptions; and s, are also terminating traces in

section also allow us to deal with systems that are not live 18- thus K is not diagnosable. 1D, is violated bys; ands»
begin with, i.e., systems that do not satisfy assumption A1) fhsénK is also nondiagnosable sinee andss, are in K. IZI
we shall see from what follows. Note that the languégend

the FSMG used in this section are generic and do not refer . live

the system model introduced in Section II-A and used in ﬂ?e‘ The Diagnosei;

active diagnosis problem studied in Section IV. For the remainder of this section on diagnosability of
nonlive languages, we assume tlats regular. LetGYve =

A. The Notion of Diagnosability for Nonlive Languages (X, X U {Stop}, 8", z9) be the FSM generating". The

H H live live ; : H
Definition 2: A prefix-closed languagel, is said to be transition functions™¥* of G"* is defined as follows. First, let

diagnosablewith respect to the projectioff and with respect Xdead _ {x € X : §(x,0) is undefinedvo € X}.  (8)
to the partitionll; on X if the following holds:

L diagnosable< L'"¢ diagnosable 7)

) Then define
(Vi € IL;) (In; € N (Vs € (S ;) (Vt € L/s) |
(Il < n:) A (L/st = B) = Dy] A [|[t]] = n: = D) 80 (z,0) = (x,0) Vo e X —X%  VoeX (9)
. - .. live X, if z € Xdead
where the diagnosability condition8; and D, are 6(z, Stop) = undefined.  otherwise. (10)
. -1 _ ‘ .
Dy:(we PP A (L/w=0) = Epi€w Thus, G"e is obtained from& by adding at every dead state
and of G, a self-loop due to the eveSitop. It is straightforward
. to see thatl.(G'¥*) = L''"*, We then construct frong the
Dy :we Pr[P(st)] = Xp; € w. diagnoserGive = (QUve, %3, U Stop, 857°, ¢o) corresponding

The above definition of diagnosability is the same ato L**. This diagnoser is used to perform online failure
Definition 1 in Section II-C (for live languages) except thagagnOSIS of the systert¥; also the diagnosability of. can

. . . S e tested by checking for indeterminate cycles##t® (as per
we now require the -diagnosability °°”°"“°_” to hold fOLI'heorem 1). Henceforth, we will refer &' as the “live”
terminating traces as well. Note that even if the langua

L . . Yagnoser ofG or, of L).
L has a terminating trace that ends in a failure event of 9 ( )
type F;, L may still be diagnosable as long as there does3we are indebted to an anonymous reviewer for making this observation.
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1) Procedure to Construeglive from G,: While the diag-
noser G¢ may be built from G following the usual

construction procedure of the diagnoser, it may also be ob-

tained as a simple extension 6f; = (Q4,%.,84,9), the
diagnoser corresponding &, if G, is already available. First,
note that the only difference betweé?i}ve and G, is due to
the Stop events defined at the dead st&€¢*! of G. Next,
for ¢ € Q4 define

D(g)={(z,£) € q: (Yu € L(G,x))

[u€ Sk Ab(x,u) € X (11)
Let Q4*d(G,) denote the set of all stategin G, such
that D(q) is nonempty. Note thay € Q4*4(G,) does not
necessarily imply thag is a dead state af; it simply means
that there exists afz, ¢) pair in ¢ wherex is such that no
further observable event is possible @& once G gets into
statex. Consider any; € Q4*4(G,) and any(z, £) € D(q).
Let §(z,u) = y; sincey € Xd9ed then, in G''¢, the
corresponding live machine, we ha#®(x, u Stop) = y and
§ve(y, Stop) = y. This implies that in the diagnosexlive
corresponding taG've

84"°(q, Stop) = L(g) (12)
and
84"*(L(q), Stop) = L(q) (13)
where

L(q) = {(y,£) : (8"(w,uStop) = y)(¢' = LP({,u))

for some(z,¢) € D(q),u € X5} (14)
and'
LP(4,u) = {gu {F; : %y €u}, otherwise.

Finally, note that ifg is such thatv(x,£) € ¢, » € Xdead,
then the statd.(q) is the same asg, i.e., §iv°(q, Stop) = ¢.
Thus, we see thaflive
stateg € Q4*(Gy)

913

Proof: The proof is straightforward from the defini-
tion of the languagéd.’e and from the construction of
the diagnoset7i+e. O

P2) Lett be any terminating trace ih such that=;; € ¢
and such that violates the diagnosability conditiab,
of Definition 2. Then the state = 64¥°(qo, P(t Stop))
forms an F;-indeterminate cycle irG}}Ve due to the
single event Stop.

Proof: Sincet a terminating trace irL, X4 € ¢,
and ¢ violate diagnosability, thed w € P;*[P(#)]
such thatL/w = 0 and Xs; ¢ w. Let 6(xz,,t) =
x,8(x,,w) = y. Then we havdz,?) € q,(y,?) € q,
F, € ¢, and F; ¢ ¢'. Thus, ¢ is F;-uncertain. From
the definitions of the languagé' ™ and the FSM
G and from the construction of the diagnos&*e,
we have 64¥¢(q, Stop) = ¢, &(x,Stop) = =, and
6(y,Stop) = y. Therefore, the state forms an F;-
indeterminate cycle due to the event Stop. O

P3) Lett be a terminating trace of such thatX; < ¢
and such thatt does not violate the definition of
diagnosability. Then the state= 64¥°(qo, P(¢ Stop))
is F;-certain.

Proof: If ¢ a terminating trace inL, X; € t,
and ¢ do not violate the definition of diagnosability,
thenVw € P;Y(P(t)) such thatZ;; ¢ w, we have
L/w # 0. In other words,¥w’ € P;*(P(t)) such
that L/w = 0, we haveXy; € . Hence, in the live
diagnoserGie, the stateg = 64V¢(qo, P(t Stop)) is
F;—certain. O

Remark:Property P3) implies that if no observable
event occurs in the systed after the diagnose€,
enters the stat&;(qo, P(¢)), then we can conclude that
a failure of typefF; has occurred. This inferencing is
captured in the live diagnose¥iv* by the fact that
§4ve(go, P(tStop)) = 64¥e(q, Stop) is an Fj-certain
state. Thus, occurrence of the “artificial” Stop event at
stateq of the diagnoseiGive, which is the same as
the occurrence ofo eventat the state of the “real”
diagnoserd,, leads us to diagnose the occurrence of
a failure of typeF;.

is identical toGGy except that at each  \ye present the following definition of a Stop-indeterminate
as above, we either have a self-loop dugate that we shall use in the solution of the active diagnosis

to the Stop event, or, we have a transition defined due to tﬁ‘teoblem presented in the following section.

Stop event to a staté(q) as above and a self-loop &t(q)
due to the Stop event. Therefore, once the @&t (G,) is
identified, G1iv* can be built simply as an extension@f,. We
will refer to G4** as the “live diagnoser extension” 6f,.
2) Properties ofGlive:

Definition 3: Let ¢’ € Quead(Ga) such thatslive(¢, Stop)
= ¢ and §¥°(q, Stop) = q. The stateg’ is defined to be a
Stop-indeterminate state of the p&&,, Give) if the stateq
forms an indeterminate cycle in the live diagnog&f* due

We now state some properties of thg, the event Stop.

H H live i i i
live diagnoserG:;™ that we shall find useful in the solution A the ideas of Section I1I-B are illustrated by the following

of the active diagnosis problem studied in this paper.
P1) Lett be any terminating trace of andp € ¢ such
thatp, € ¥, andt/p € ¥ . Then there existy’ €
Q;lead(Gd) such thatéd(qozP(p)) = (5d(qO,P(t))
84"(q0, P(p)) q's 647(d',Stop) g and
sWve(q, Stop) = ¢.

4L P is equivalent to the label propagation function of the diagnoser defin
in [10]; it propagates the failure information labels associated with a state

its successors.

example.

Example 3.1: Consider the nonlive systend? of Fig. 2
with Ef = {O’fl} and 2, = Ef U {O’uo}. The live
extension Gie of G, the diagnoserG, corresponding to
G, and the live diagnoseiGiv® of G are depicted in
Fig. 2. HereQueaa = {{(4, F'1),(10, F1),(3, N)}, {(5,F1),

1,N)}}. For ¢ {(4,F1),(10,F1),(3,N)}, we have

(¢) = {(7,N)} and6}¥(¢, Stop) = L(q) = {(8, F'1)}. For
q= {(57F1)7 (117N)}’ we haveD((J) =4q andL(Q) =4q.
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THE SYSTEM G Glive

IN % {3F1 9N B #14F1 10N 7N 5F1 11N

THE DIAGNOSER Gg

1IN 3F1 9N 1 4F1 10N 7N —{ 5Fl IINOStop

Stop

8 Fl

&)

Stop

THE DIAGNOSER GJ'°

Fig. 2. The diagnoser&‘{_}VC for a nonlive systemG.

Consider the traceé; = of 5y. This trace violates con- manner. Therefore, we note that Assumption Al) that we have
dition D; of diagnosability since there exists € L such made about the systefd leads to no loss of generality.
thatw = af~y, P(t;) = P(w), w is a terminating trace, and
Yy ¢ w. Note that the tracé(t,) leads to theF}-uncertain IV. THE ACTIVE DIAGNOSIS PROBLEM
state{(5, {F'1}), (11, {N})} of G4 with a self-loop due to  In this section, we formulate the active diagnosis problem,
the Stop event. It is easy to verify by inspection@f*c that propose a solution procedure, demonstrate its correctness,
this state forms arf;-indeterminate cycle. and finally illustrate the proposed solution procedure with an
Consider next the trade = w041 that is a terminating example.
trace of L. It is easy to see by inspection 6f that this trace
t2 does not violate conditiorD; of diagnosability. Further,
we see that if the event sequene@ is observed, with no  We formulate the active diagnosis problem (ADP) as fol-
further event thereafter, then we can conclude for sure thaws.
the system executed the tratze hence we can conclude that Active Diagnosis ProblemGiven the regular, live lan-
the failureos; occurred. This diagnostic information can bguage L generated by the systed (of Section II-A), and
obtained from the diagnose®i* by noting that the trace given a regular, normal (with respect fo and P) language
t, followed by the Stop event leads to th&-certain state K C L such that every live sublanguage Kfis diagnosable,
{(8,{F1})}. find a (partial observation) supervisdtp, for G such that
This concludes our discussion on the diagnosability df(Sp/G) = L** where
nonlive languages. Based on the above discussion, we see th&l) L*t C K;
even when the language generated by the syste@ is not C2) L** is diagnosable;
live, it can be extended to a live language in a straightforwardC3) Lt is as large as possible.

A. Problem Formulation
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From standard results on supervisory control under partiahguage ofK. The resulting language is also the supremal
observations [7], we know that a supervis®p for G, such controllable, observable, and diagnosable sublanguagk of
that L(Sp/G) = L>, exists if and only ifL>°* # () andL***  because whenevét, C 3, [Assumption A3)], normality, and
is controllable with respect td and>,,. and observable with controllability together imply observability as was mentioned
respect tal. and P. Therefore, the ADP is to find the supremain Section 1I-A8
controllable, observable, and diagnosable sublanguage of (th&/e now present the solution procedure. Implementation of
legal language)X. We note that: 1) diagnosability is not athis procedure is discussed in Section IV-C.
property that is preserved under union of languagesl 2) Initialization:

a subset of a diagnosable language need not be diagn@sableg,tep 0-1: Obtain an FSM generator &f, henceforth re-

Therefore, the supremal diagnosable sublanguage of a given ferred to as@lesel,

nondiagnosable language need not always exist. Howevergtep 0-2: Build the diagnoseGlfgal corresponding to
we will show later,by a constructive proofthat the desired (legal

supremal element does indeed exist under the assumptiongtep 0-3: Leti = 0; Hy(0) = Hive(0) = Gllegal; and
made in this paper, i.e., the ADP is well formulated. We shall My(0) = L(H4(0)).

refer to the supervisofp that solves the above ADP as @iaration:

diagnostic controllerfor G. Module A:

In view of Proposition 1, the assumption that every live sub-
language ofK is diagnosable is equivalent to the assumption
that the supremal live sublanguage &fis diagnosable. This
condition can be checked by building the diagnoser for the c,. .
supremal live sublanguage é&f; this sublanguage is obtained %2t . HJ () denote the FSM generating
by removing all terminating traces df. In Section IV-E we My~ (0)- e
will present a class of languagé§ C I, [ > O that satisfy the ~ Step A-2: Computel (i) = P, ~[M," (i)]. Let the FSM
above-mentioned properties Af, i.e., every live sublanguage H(i) be such thatl.(H(i)) = M ().
of K;, for any givenl, is diagnosable, an&; is normal with Module B:
respect toL and P. This class of languages can be obtained Step B-1: Letk = 0; H(0) = H(4); M(0) = L(H(0)) =

Step A-1: Compute the supremal controllable sublanguage
Mjc(i) of M,(¢) with respect to P(L)(=
L(Gy)) and Z,,. N 3,.

using the diagnoser corresponding fo M{(i); and Hy(0) = H;C(i);
Step B-2: ExtendM (k) to the live languageM™*(k) as

B. Solution Procedure per (6) in Section Ill-A. LetH'(k) denote the

We first present a description of the solution procedure. FSM that generated/"(k), and let H"*(k)
The procedure computes the supremal controllable, normal, denote the diagnoser corresponding48™ (k).
diagnosable sublanguage &F and consists of three stages. Step B-3: Eliminate fromH,(k) all statesq such that
We start with the initial condition (languag&) and at g Is a Stop-indeterminate state of the pair
the first stage we compute the supremal controllable and (Ha(k), Hy(k)); let Hy(k + 1) denote the
normal sublanguage of<. This calculation is presented in accessible part of the resulting machine.
Module A of the procedure below and is based on a result ofStep B-4: If Ha(k + 1) = Ha(k), then letHy(i + 1) =
Brandtet al. [1, Th. 4]. At the second stage we compute the Hy(k); let My(i + 1) = L(Ha(i + 1)); let
supremal diagnosable and normal sublanguage of the language Hi™(i + 1) = Hy"*(k) and go to Step C-1.
resulting from the first stage. This computation is performed in Else letM(k + 1) = Py (L(Ha(k + 1))); let
Module B of the procedure below and uses the assumption that H(k + 1) be the FSM generator a¥/(k + 1);
every live sublanguage df is diagnosable and uses Properties let k. = k£ +1; and go to Step B-1.

P1) and P2) of Section Ill. The third stage (Module C) is Module C:
test for convergence; this is necessary since the constructiostep C-1: If Hy(¢ + 1) = Hy(é), stop. The solution to

described in the second stage may result in a language that is the ADP isL>* = M (i) and the corresponding
not controllable, and further iterations of the above procedure supervisorSp is realized by the FSMH 4(4). Else
may be required to obtain a language that is controllable, go to Step A-1.

normal, and diagnosable. It is shown in Theorem 2 that this
solution procedure converges in a finite number of iteratio&s_ Implementation of the Solution Procedure

to the supremal controllable, normal, and diagnosable sub- i ] )
We explain how to implement, using FSM’s, all the steps of
°ConsiderL; = osa* andL, = a* whereS; = {os} anda € To.  the preceding procedure. The relationships between the various
ThenL; and Ly are trivially diagnosable buk; U Ly = oo™ 4 o™ is not ESM's in th d depicted in Fig. 3: in that fi
diagnosable as can be seen by choosing o/, t = o andw = o, for . S_ n _e Proce ure are depic e_ n Ig._ » In that Tigure,
an arbitrarily largek, in Definition 2. ’ solid lines indicate actual computations while dotted dashed

8Consider’; = {aod,ac,c} with =y = {o;} and ¥, = {a,d,c}, lines indicate relationships.
and L = {aoy,aoy}; we have thatLo is not diagnosable whild is.

Refer to Proposition 1. 8For computationally efficiency, the solution procedure does not actually

"Henceforth, in this paper, normality and observability are taken to be wittompute the supremal diagnosable and normal sublanguage; rather, it stops
respect toL and P, and controllability is taken to be with respect foand with computing its projection. The inverse language is retrieved in the
Y .c unless otherwise mentioned. subsequent iteration of Module A.
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- — > S _lagnoser
Eliminate Hy M H(1) H 1) >H; (1)
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live
—————— > Hy (i+1)

Live Diagnoser Extension

Fig. 3. Finite-state machines involved in the solution procedure.

Step 0-1:

Step 0-2:

Step A-1:

Step A-2:

(To obtairi?*#2!) Given the regular language,
an FSMG's?! that generates this language can

events in%,,. With slight abuse of notation we
refer to this operation a®~'(H (i)). Then

always be obtained (see, e.g., [4]). We also build H(i) = P~YH] () x G*t.
a refined system model*** with the following Step B-1: [To obtalthve( ) and H(lilve( k)] Hllve( ), the

properties:

. L(G) = L;
. Glegal C Gref.

Given G223, the refined system modél™! can
be obtained from the system modg&lfollowing
the refinement procedure in [5].

(To obtairG*5™) GX5*! and G, the diagnosers
corresponding toGIan‘1 and Gref, respectively,
can be built fromG*22! and G*¢!, respectively,
following the usual construction procedure of
the diagnoser. From Step 0-1 above, it follows
that G¥5*' C @', Also note thatL(Gf) =
L(Gy) = P(L) and L(GX*) = P(K).

[To obtainH“(i)] Given two FSM's@; and
Go such thatL(G;) C L(G2), several finite
step procedures to obtai@IC (where GIC is
the generator of.(G;)'¢ with respect tal.(G>)
and the set of uncontrollable events(f) exist.
We follow the procedure in [5]. This procedure
requires that?; C G5. Lemma 1 in Appendix A
establishes thaf (i) T G5! for all i > 0.
Hence the procedure of [5] can be used to com-
pute H|“ (i) from G and Hy(4), for all i > 0.
[To obtainA (¢)] Let 6TC( ) denote the transition
function ofHTC( )). At each state; of HTC( )
add a new transition as followéT (i)(q,0) =

q, 0 € Y- In other words, add self-loops at
every state offf|“ (i) due to all unobservable

live extension of the FSM{ (k), can be obtained
from H (k) following the procedure described in
Section I11-B [cf., (9)]. While H've(k), the diag-
noser corresponding tH'™ve(k), can be obtained
following the usual construction procedure of
the diagnoser, it can be obtained as a simple
extension ofH,(k) as follows, thereby reducing
computation. Since'V¢(k) is the live exten-
sion ofH( ), then HYve(k) can be constructed
from H,(k) following the diagnoser extension
procedure described in Section IlI-B1 if it can
be established thally(k) is the diagnoser cor-
responding toH (k). This result is proved in
Lemma 4 in Appendix A. Hence the extension
procedure of Section IlI-B1 can be used to obtain
Hbve(k) from Hy(k) once the “dead” states
QIad(H,(k)) are identified. Identification of
Q4 (Hy(k)) in general involves examining
every statey of Hy(k) and checking, fronH (k),

if D(q) (cf., (11) in Section I1I-B1) is nonempty.
However, since we have at had#y!, the diag-
noser of the live languagé > K (constructed
in Step 0-2) the identification oR<*!( H,(k))
can be simplified by: 1) comparing the transitions
defined at each state &f, (k) with those defined
in G%f and 2) for only those statege Hy(k)
such that there exists a transition outydh G*¢*
which is not present itHy(k), checking if D(g)

iS honempty.
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Step B-2: [To obtainFId(k + 1)] From the assumption on longest prefix of the last event of which is observable. Define
K (that every live sublanguage &f is diagnos- Pre,(T(M(0))) = {Pre,(t) : t € T(M(0))}. By Properties
able) and from Property P2) (cf., Section 11I-B2)P1) and P2) of Section IIl-B2 every trace ¥{A/(0)) leads
every indeterminate cycle il}v¢(k), if any, to a stop-indeterminate state H;C(O) = H4(0). The first
is caused by a self-loop at sontg-uncertain iteration of Module B (i.e., Steps B-1 through B-4) of the
state of HY¥*(k) due to the Stop event; there-solution procedure removes the stop-indeterminate states of
fore the indeterminate cycles if}v¢(k) and the pair(H(0), H}¥*(0)). Further iterations (if necessary)
hence the stop-indeterminate states of the paf Module B remove the Stop-indeterminate states of the
(Ha(k), HY¥e(k)) can be determined simply byresulting pairs Hy(k), H¥v(k)) that cause a violation of di-
identifying in ﬁI}iive(k) F;-uncertain states with agnosability and, on convergence, result in the macHipg ).

a self-loop due to the Stop event for any failurd®y construction,P; *(L(Hy(1)) is the supremal normal and
type F;. Once the stop-indeterminate states amiagnosable sublanguage 8f(0) since the only traces re-
determined,H4(k + 1) is obtained by eliminat- moved are traces that violate diagnosability, and Lemma 5
ing these states frorﬁFId(k) and obtaining the of Appendix A proves that such removal preserves normality.
accessible part of the resulting machine. The languageP’; ' (L(H4(1))) may not be controllable since

Step B-3: [To obtainH (k 4+ 1)] H(k 4 1) can be obtained ¥. C ¥,, and hence, the last observable events that are
from Hd(k + 1) following the same procedureeliminated in the last iteration inside Module B may not be
as in Step A-2 for obtaining? (i) from H“(s), controllable. IfP;*(L(H(1))) is not controllable the solution
e, H(k+1) = P~Y(Hy(k 4+ 1)) x G*L. procedure proceeds with the iteration, witiy ' (L(H4(1))) in

Note: The procedure to obtain the refined system mod#ie place o, and withHy(1) in the place ofif,(0) = Giy*™.

Gl (Step 0-1) is of polynomial complexity (cf., [5]). The From Lemma 2 in Appendix A, we havély(i + 1) C
procedure to obtain the diagnose®&®* and G (Step 0- Ha(i) Vi > 0. SinceH,(0) is an FSM, the solution procedure
2) is of exponential complexity (cf., [10]). Each step of thds guaranteed to converge in a finite number of steps. The lan-
iterative part of the solution procedure (i.e., Steps A-1 througivagel (), obtained when the solution procedure converges,
C-1) is of polynomial complexity. Thus, once the initializatioris regular because it is realized by the F&\). Furthermore,
part of the procedure is completed the rest of the procedut&(é) is, by construction, the supremal controllable, normal,

can be implemented with polynomial complexity. and diagnosable sublanguage /6f Under Assumption A3),
controllability and normality together imply observability.

Consequently}M () is the supremal controllable, observable,

) ) and diagnosable sublanguage I§f The supervisorSp that
We now prove that the iterative procedure presented nihesizes the closed-loop languagé(i) is realized by

Secti.on IV-B converges in a finite number of steps to th?[d(i) (= H;C(i),the diagnoser corresponding to the generator
solution of the AD_P' ) ) ) H(z) of M(4), at convergence). Furthermore, online failure
Theorem 2: The iterative solution procedure of Section 'V'diagnosis of the closed-loop systesi»/G can be performed

B for solving the ADP converges in a finite number OLsing the FSMHLYe (i) which is the live diagnoser of (i)
iterations. M (¢) at convergence is the supremal controllabl?cf Lemma 6) m

observable, and diagnosablg sublanguageKofand is a Remark: Since HY¥<(i) can be used to perform online
regular language. The supervisdp that achieves the closed-¢,;, re giagnosis of the closed-loop system formed by system
loop Ianguallgdw(z) can be reallz‘ed b}Hd(fL)* the diagnoser « ang the supervisoH (i), we see that the solution proce-
corresponding to the generatéi(z) of M (i). dure of Section IV-B provides both a controller that ensures

Proof of Theorem 2:From Steps 0-1 through Step A-2yiaqnosability of the closed-loop system and a diagnoser for
of the solution procedure we have online failure diagnosis

D. Correctness of the Solution Procedure

M(0) = P [M;(0)]
= P UL(H4(0))T] E. On the Choice ofC and the Class of Languagds;
= PL(GYEN In this section, we introduce a class of languagasC L,
= P P(K)C] [ > 0 that can be used as initial conditions (i.e., as the language
_ K%CN K) for the active diagnosis problem discussed in the preceding

sections. First, we present the following notation.
where the last equality follows from [1, Th. 4] and from the SuPpose that the statgs: = 1,---,n form an indetermi-

assumption thaf is normal. Let nate cycle in the diagnose&r,;. We shall refer to this cycle
as anelementaryindeterminate cycle ifg; # ¢;, Vi,j €
T(M(0)) = {Terminating traces i/ (0) that violate {1,---,n}. We then define ainterleavedindeterminate cy-
condition D; of diagnosability. cle to be an indeterminate cycle composed of at least two

elementary indeterminate cycles such that they share at least
Note that sincek is such that every live sublanguage Bf one common state (in a manner such that it is possible for
is diagnosable, any trace W that violates diagnosability is the diagnoser to keep alternating between these two cycles).
a terminating trace. For any tragedenote byPre,(t) the Fig. 4 provides examples of some interleaved cycles.
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1 a 2 o
B S
Fig. 4. Some examples of interleaved cycles.

Definition 4: to see that these two languages will differ only in the number
1) A tracew € L(Gy) is said to go through an ele-of times the cycles corresponding to an indeterminate cycle in

mentary indeterminate cycle i, k times if w = the diagnoser are included.
s(o109-+-0,)Ft wWhere s,t € 275 64(q0,8) = qi; Example 4.1: For the system represented in Fig. 1 we have

64(2i,0) = Qit1ymodns ¢ = 1,--+,n; and {g;}7; (with a slight abuse of notation in the usage of *)

forms an elementary indeterminate cycleGy.

2) Atracew € L(G,) is said to go through an interleaved
indeterminate cycle id7, & times if it goes through each and
elementary cycle in the given interleaved cyklémes. ; ; .

Henceforth, whenever we refer to a cycle in the diagnoser i = Pr({a(P1uob)' By0uo, alFroucd) o1 fyrr”,
simply as an indeterminate cycle, we will mean either an op10(3y6) By, opra(By6) ot })
elementary or an interleaved cyéle.

Definition 5: A trace w € L is said to go through an
indeterminate cycle in its diagnosé¥, k times if P(w) €
L(G,) goes through an indeterminate cycleGf & times.

We are now ready to define the languadés

Definition 6: Given a nondiagnosable and live langudge
define

Ko =Pr({afyoue, aop1 fyr7*, o1y, opraar™})

wherePr(L) = L. Note that this is an example df; in the
case of elementary indeterminate cycles.

1) Properties of the Languagds;: We now present some
properties of the languagds; defined above.

Property 1: The languages(;, ! > 0, are regular.

Proof: The languaged(; can be realized by FSM’s. In
Appendix B we present a procedure to obtain a finite-state
K; =L — {st € L : s goes through an indeterminate _generato_r of any;, [ 2 0, give_n the systends and the set of
indeterminate cycles in the diagnos@y, for the case where
G, does not contain any interleaved indeterminate cycles. In

Therefore K consists of all traces ih except those that com- the case wheré7, does contain interleaved cycles we present
plete any elementary indeterminate cyclédp, K; consists of appropriate arguments to show that the languajgscan

those traces i that complete any elementary indeterminatBe rtlaalized by FSM's. Hence it follows thdf;, [ > 0 alr:?
cycle in G, at most once, and; consists of traces i, that "€941ar: The | S |
complete any elementary indeterminate cycle7inat mostl Propert)./ 2: The languagest;, [ > 0 are norma. .
times. Note thatk; is defined with respect to the diagnoser Proof: From. S_teps 1 and 2 of the procedure in Appendix
G,. Therefore, it depends on the systéhand not only on the B tolcallculate alflnlte state generator/of we have that(; =

y egal\ _ p— ! 1y
languagel generated by~. In other words, given a IanguageL(G #)=p _[L(Gd)]mL, whgreL(Gd) . P(I.(l) < P(L).
I and two different FSM'sG and @ such that they both From Lemma 7 in Appendlx_A it follows tham_ls normal..d
generate the languagg, any K, obtained fromG may be Property 3: Given a nondiagnosable and live language

different than that obtained frod’. However, it is not difficult and K, 1 > 0

cycle inGy 1+ 1 times}.

c . .
°In the case of interleaved cycle®; could alternately be defined by (M = Kl) A (M ||Ve) =M dlagnosable

modifying Definition 4 as follows: a trace is said to go through an e . . .
interleaved indeterminate cycle @», & times if the total number of times that Proof: Since K; is Obta_mEd by _removmg fronL all
it goes througtany combinatiorof elementary cycles in the given interleavedtraces that go through an indeterminate cycledp more

cycle is equal tok. It is not difficult to see that the resulting definition of than 7 times, it is obvious thatX; and henceM C K;
K, is complementary to the one that results from Definition 4. All of th ’ —

e . . . .
discussions in this section that follow hold true for the modified definition ago not .C'O.ma'n any nomer_mmat'ng trace 6f that violate
well. the definition of diagnosability. (Recall Theorem 1 and the
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explanation preceding it.) This implies thatM is live, then
it is diagnosable. O
In other words, Property 3 states that iff C K; is

nondiagnosable, thel cannot be live; furthermore, any trace

in M that violates the definition of diagnosability has to be
terminating trace. Note tha/ does not have to be regular.
Property 4: Given a nondiagnosable language and

919

Property 7: Given a nondiagnosable language and K,
[ > 0 diagnosable, there exist > 0 andp € K, such that
forall n > 1

a delay(p, Ko) < delay(p, K,,) < delay(p, Kpn+n)-

Property 7 says that when the languadg€s I > 0 are
diagnosable, then for lardethe maximum delays in detecting

K, 120 failures occurs along traces that go through indeterminate
cycles in the diagnoser; further, each additional traversal of
the cycle results in additional delay in detecting the failure.
We now show how the languagds; form good initial
conditions to the ADP posed in Section IV-A. Recall that
Proof: The proof is obvious by noting thigi°, K; = L. given a nondiagnosable system, the goal of the ADP is to
] restrict the language generated by the system to a diagnosable
This result simply states that even if every sublanguage $fblanguage. Ideally, we would like this language to be as
L obtained by including only those traces inthat visit the large as possible since we do not want the control policy to
states of an indeterminate cycle in the diagnaSgra finite restrict the behavior of the system more than necessary in
and bounded number of times (if at all), is diagnosatile, order to make it diagnosable. Further, from the discussion in
itself is nondiagnosable since it contains traces that can viggction II-C (see Theorem 1 and the discussion preceding it),
an indeterminate cycle iG, an arbitrarily large number of in order to obtain a diagnosable and normal sublanguage of
times. any given nondiagnosable language, we need to eliminate the
We now present some additional properties of the languagésindeterminate cycles in the corresponding diagnoser, for all
K that are used primarily to motivate the choice of a particul&ilure typesF;. The language;, by definition, are obtained
K, as initial condition for the ADP. The proofs of Properties ®Y eliminating the traces that go through indeterminate cycles
and 7 are not presented here for the sake of brevity. Tiethe diagnoser, and these languages differ frbronly in
interested reader can find these proofs in Appendix B. those traces associated with indeterminate cycles. Therefore,
Property 5: Given a nondiagnosable language and they are good candidates for the legal langudgeif it
K.,1>0 can be shown that they satisfy the assumptions made on
K in the formulation of the ADP, namely, that every live
sublanguage ok is diagnosable and thaf; is normal. While
the languageds; may themselves not be diagnosable (since
This property means that if the language obtained by cuttigfjminating fromL those traces that go through indeterminate
an indeterminate cycle it¥; before it gets completed once iscycles in the diagnoser may result in nonlive languages, i.e.,
not diagnosable, then so is the language obtained by includifig may contain terminating traces that violate diagnosability),

Ko, K1,--- K, --- diagnosable=- U K; diagnosable
=1

K, diagnosable= K; diagnosable

the loop! times and then cutting it before it gets complete®e have from Property 3 that any live sublanguge fof
for the [ + 1th time, and vice versa. Therefore, as far a§ diagnosable. Further, from Property 2 we have that
diagnosability is concerned, there is nothing to be gainé® normal. Therefore, the languagé§ satisfy the required
by simply extending a nondiagnosable language by ex@asumptions.

traversals of an indeterminate cycle.
Definition 7: Given a diagnosable languadeands € L,

Thus, we see that each of the languaggsof Definition 6
is a candidate for the initial conditiok’. The question then

define the equation shown at the bottom of the page. In ottgrwhich of thesek; does one choose? The following factors
words, the delafs, L) denotes the maximum number of evenfnotivate the choice of; for a particular problem.

occurrences possible ih after the traces before which the
occurrence of the failure eves cannot be diagnosed.
Property 6: Given a nondiagnosable language, and
K;, I > 0 diagnosable, thervp € K, delayp, K;) <
delay(p, Ki41).
Proof: The proof is straightforward from Definition 7
of delay and from the fact thak; C K;,:. Note that the

above inequality becomes an equality if the maximum delay

in detecting a failure event id(;; occurs along a trace
such thats is also contained ;. O

e From Property 5, we have that iK; is diagnosable,
then K is diagnosable, and vice-versa for 4lj. Hence
diagnosability considerations do not have to be taken into
account in the choice okj;.

Consider the two languagds,,, and K,,,; and letL,,
(Lm+1) denote the closed-loop behavior resulting when
K,, (K+1) is chosen as the desired; in the ADP.
Then it is obvious that.,,, C L,,+1 sinceK,, C K41,

i.e., we get a larger closed-loop behavior if we choose
Krn-l—l-

delay(s, L) = {

undefined,

Max{||¢|| : (t € L/s) A (st satisfiesD; A D3)A
(Vu € st,u does not satisfyD; v Ds)},

if sy € Xy for some:i € 11
otherwise
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Fig. 5. The refined system modé™f and the diagnose6's’.

< From Properties 6 and 7, the detection delay of all failurése final event that completes the indeterminate cycle, is
in K,,41 is greater than or equal to the correspondingot defined at states 21 and 23 @f¢’. Likewise, Glfgal is
delay in K,,, and for a large enough, the detection the same a<¥;f except thaté is not defined at the state
delay in K,,, 11 is strictly greater than that itk,,,. {(21,{F'1}), (24 {F1}),(22,{N})} of Giff. By definition
Thus, the choice ofK; is dictated primarily by two con- Ha(0) = Gega
siderations: closed-loop behavior and failure detection delay.lteration 1: Since the event is uncontrollable,H ) (0)
This choice reflects the designer's tradeoff between minimexcludes from H,(0) the state {(21,{F1}), (24,{F1}),
detection delay and maximal closed-loop behavior. Once tfi2, {V})} and the transitions associated with this state (see
appropriatek; is chosen based on the above design considéig. 6). The corresponding “inverse” machine £5(0). W
ations, we look for the largest sublanguag®t of K; thatis now set Hy(0 ) = HTC( 0) and H(0) = H(0). H(0), its
diagnosable and that can be achieved by control. The solutlre extensionH'(0), and the corresponding live diagnoser
to the ADP is then given by that supervis® that synthesizes H¥*(0), are as depicted in Fig. 6. Inspection &v¢(0)

this closed-loop languagé®“t. reveals anF}-indeterminate cycle formed by thié -uncertain
. state{(16, {F'1}),(20,{F1}),(18,{N})} and the Stop event.
F. lllustrative Example Hence the state{(16, {F1}), (20,{F1}),(18,{N})} is a

We now present a simple example to illustrate the steps stbp-indeterminate state of the pdit,(0), H¥¢(0)). We
the solution procedure for the ADP. In Section V we presenbtain~Hd( ) by eliminating this stop-indeterminate state
a physical system and illustrate the application of the theofyom H,(0) (see Fig. 7). SmceHd( ) # Hy(0) we compute
developed in this paper to the design of a diagnostic controllér(l), the inverse machine ofHd( ), and continue the
for this system. iteration of Module B. Fig. 7 depict& (1), its live extension

Example 4.2: Consider the system represented in Fig. 1.A§“V"(1), and the corresponding live diagnosé?}}ve(l).
before let>; = ¥4 = {o1} and let>,, = 3, U {ou}. Inspection of Hy(1) and H}v*(1) (see Fig. 7) shows that
Also let 3,. = ¥ U {6}. As seen in Example 2.1 thisthere are no stop-indeterminate states and hddge2) =
system has one indeterminate cycle formed by the three staEf-;ﬁ{l). This completes the iteration inside Module B, and
{3, {F11), (11, {ND}, {(4,{F1}), (8 {F1}),(12,{N})}, we set Hy(1) = Hy(1) and H¥(1) = H¥*(1). Since
and{(5,{F1}), (9, {F1}),(13,{N})} with the corresponding Hu(1) # H.(0) we continue to the second iteration of the
event sequencg~é, and it is not diagnosable. solution procedure.

We solve the ADP for this system withl = K. Figs. 5-7 lteration 2: Since the event$ leading into state
illustrate the various steps of the solution procedure for th{§16, {F'1}),(20,{F1}),(18,{N})} [that was eliminated
problem. in iteration 1 to obtainH,(1) = Hy(1)] is controllable,

Initialization: Fig. 5 depicts the refined systet’ and H,“(1) is the same asiy(1) = Hy(1) (of iteration 1) and
the corresponding diagnoséty®. Note that the indeterminate H(1) = H(1) (of Iteration 1). Moving onto Module B of
cycle has been expanded out once Gif. G'#! is the the solution procedure, as before, we £B1(0) = H;C(l)
same asG*™! in Fig. 5 except that the ever, which is and H(0) = H(1).
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Fig. 6. First part of solution procedure.

Since H,4(0) (of Iteration 2)= Hjc(l) = Hy(1) = Hy(1) Consider a simple system consisting of a pump and a valve.
of Iteration 1, H¥<(0) of Iteration 2 is equal taH'*(1) of Suppose that the valve has two failure modes, a stuck-open
lteration 1. It follows that the paifH,4(0), H4v*(0)) contains failure mode and a stuck-closed failure mode. We assume that
no stop-indeterminate states; henlg(1) = H,(0) and the the valve can get stuck open only from its open state and it can
procedure exits out of Module B witlhf,(2) = H,(0) and get stuck closed only from its closed state. Let the system be
HYve(2) = HIv(0). Since Hy(2) = H4(0) = Hy(1), the equipped with just one sensor, a flow sensor that can read one
solution procedure terminates at the second iteration. of two possible values: F, indicating that there is a flow and

The solution to the ADP i€2* = M(1) = L(H(1) and the NF, indicating that there is no flow. Suppose that we need to
supervisorSp that synthesizes/(1) is realized byHy(1), the design a controller for this system that achieves the following
diagnoser ofH (1). Further, H4v*(1) can be used to perform objectives.
online diagnosis of the closed-loop formed by the systé&m

and the controllerH 4(1). 1) When there is a load on the system, the controller must

respond by starting the pump and opening the valve.
V. APPLICATION: DESIGN OF A DIAGNOSTIC 2) When there is no load on the system, the controller must
CONTROLLER FOR APUMP-VALVE SYSTEM respond by stopping the pump and closing the valve.

In this section we demonstrate the application of the theory3) The sequence of start-pump, stop-pump, close-valve, and
developed in this paper to the design of a diagnostic controller  open-valve commands has to be chosen in a manner such
for a pump—valve system. that the resulting system is diagnosable.
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Fig. 7. Second part of solution procedure.
Fig. 8 depicts the FSM models for the pump and the valve. TABLE |
Also shown in Fig. 8 is a controller model. This controller THE GLOBAL SENSORMAP FOR THE PUMP—VALVE SYSTEM
captures requirements 1) and 2) above and is straightforward h( VC, POFF, s) = NF
to build. The problem now is to design a second controller R{ VO, POFF,e¢) = NF
that ensures diagnosability of the closed-loop system while h( SC, POFF,e¢) = NF
still meeting objectives 1) and 2). We now demonstrate how h( SO, POFF,s) = NF
this problem can be solved in the framework of the ADP. h( VC,PON,e) = NF
The first step is to obtain the system modg&! In this h( VO, PON,¢) = F
exampleG is chosen to be the closed-loop system formed h(SC,PON,e) = NF
A(SO,PON,e) = F

by the pump, the valve, and the controller of Fig. 8. A
systematic methodology to obtain the global system model
starting from the individual component models (including
the controller model) and from the sensor map (listed e controllability/uncontrollability of events, as explained
Table 1} can be found in [11]. However, it is necessarpelow. The modeling formalism presented in [11] translates
to modify the modeling methodology of [11] to account foall sensor information into the event set. As a result, the
global system model consists of “composite” events of the

10The o’s in Table | stand for the state of the controller and are used gprm (COMMAND, RESULTANT SENSOR READING as

indicate that the sensor map is independent of the controller state. for example, the even{START_PUMP, F. Note that while
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CLOSE_VALVE OPEN_VALVE

OPEN_VALVE, CLOSE_VALVE OPEN_VALVE, CLOSE_VALVE
VALVE
START _PUMP
STOP_PUMP START_PUMP
SToP_PUMP
PUMP
No_LoAD

@ OPEN_VALVE

Loap

CONTROLLER

Fig. 8. Component models for the pump-valve system.

the command event is a controllable event, the event coresnounts to classifying the composite events as controllable
sponding to the resultant sensor readings is uncontrollabdeents and requiring that all events of the fof@OMMAND
Hence, where it is necessary to partition the event set of the Y1), (COMMAND A, Y2), ---, (COMMAND A, YN)
system into controllable and uncontrollable events, as in tebould be enabled/disabled as a group.

active diagnosis problem studied here, use of the compositaVhile the procedure of [5] for computing the supremal
events poses a difficulty. Two approaches could be followedntrollable sublanguage of a given language does not handle
to overcome this difficulty. The first approach is to breakontrol patterns, it can be modified to do so in a straightforward
every composite event in the global system model into twoanner. Thus, either of the two approaches above can be
events: 1) the command and 2) the resultant sensor readingsged. However, for ease of representation, the event labels
the command event is then treated as a controllable event wihiilethe figures and tables that follow are left as composite
the event corresponding to the sensor readings is consideggdnts. A complete listing of the transition table for the
to be uncontrollable. Note that this leads to the introduction pimp—valve system can be found in [9, Appendix C]. If the
new states in the system model. The second approach is bdast approach of breaking the composite events is adopted,
on the notion of control patterns [3], [12]. Simply speakinghen the controllable events in this system are the command
the use of control patterns implies that the set of controllabéeents, OPEN_VALVE, CLOSE_VALVE, STOP_PUMP, and
events that are to be enabled or disabled at any point of ti88ART_PUMP, while the uncontrollable events are the failure
cannot be arbitrarily chosen but are constrained to be withéwents, STUCK_CLOSED and STUCK_OPEN, and the events
prespecified subsets, i.e., certain events may only be enabledaresponding to the presence and the absence of a load on the
disabled together as a group. In our modeling framework, thegstem, namely, LOAD, and NO_LOAD. On the other hand, if
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< CLOSE_VALVE, NF

9N 13F1 < Stop_pump, NF >

17N 19F1
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y < SToP_PUMP, NF >
SF1 |

< Loap, NF >
OPEN_VALVE, NF >

10N 14F1

< Stop_rump, NF >

< CLOSE_VALVE, NF >

< No_Lo4p, NF >

22 F1

< SfrOP_PUMP, > OSE_VAL\E, NF P < No_LoAD;

27F2

< Stop_pump, NF >

| 14 F1 || 26 F1 ]

< CLPSE_VALVENNF > < 8Top_PUMP|NF >
4

19F1 < START_PUMP| NF >

< CLOSE_VALYVE, F >
< CLOSE_VALVE, NF >

>

4
. < Loant NE > open| vaLve| NF > < STAHT_PUMP, F >

< STARY PUMP, NF > 1 Iy < OPEN_VALVE, NF >
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F >

P, NF >

Fig. 9. The diagnoser for the pump-valve system.

we use control patterns, then the controllable subsets involveFinally, it is interesting to note that this design approach
events of the form(OPEN_VALVE, X), (CLOSE_VALVE, results in a much less restrictive system behavior than what
X}, (STOP_PUMP, X, and(START_PUMP, X, where X can could be obtained by a fixed control protocol, which also
take either of the two values, F or NF. Finally, the set of failurachieves the same design objectives. Consider for instance
events is partitioned into two sefs;; = {STUCK.CLOSED} the control sequence(START_PUMPB, (OPEN_VALVE),
andX;, = {STUCK.OPEN}. (CLOSE_VALVE}, (STOP_PUMP. This control sequence
The diagnoserG, for this system (with the compositesatisfies both design objectives. Further, it is not difficult
events) consists of 32 states and is shown in Fig. 9. (It tis see from the diagnoser of Fig. 9 that this would result
not difficult to see that the diagnoser for this system with tha a diagnosable system. However, it is evident that the
composite events broken up into two events will consist abntroller of Fig. 10 obtained as a solution of the ADP
64 states.) A careful examination of the diagnoSgrand the achieves a much larger closed-loop behavior. Consider next
system@ (cf., [9, Appendix C]) reveals that the cycle formedhe control sequencdOPEN_VALVE), (START_PUMB,
by the highlighted states in Fig. 9 is &-indeterminate cycle; (STOP_PUMP (CLOSE_VALVE). While this protocol also
as long as the diagnoser remains in this cycle, one canachieves the desired control objectives, it does not result
detect stuck-open failures of the valve. in a diagnosable system, as can be verified by tracing this
We solve the ADP for this system with= 0. A partial control sequence through the diagnoser of Fig. 9. However, the
realization (up to the point where failures are diagnosed) dfagnostic controller for this system allows the above control
the diagnostic controller is depicted in Fig. 10. (For the sake séquence to occur, provided that this sequence is followed
brevity, we have presented only the final solution here, omity the sequencéSTART_PUMRE, (OPEN_VALVE) which
ting the various steps of the solution procedure; it can be verésults in a diagnosable system. (Again, refer to Fig. 9.) Thus,
fied that the procedure converges to the solution of the ADPstarting from a controller that allows maximum flexibility of
just one iteration with again, just one iteration of Module Bjhe closed-loop system while achieving the desired control
Note that this controller satisfies all three design objectives:abjectives, and then restricting its behavior to vyield a
guarantees that the system responds appropriately to the pdisgnosable system, results in a much larger closed-loop
ence or absence of a loaddit results in a diagnosable systembehavior than that obtainable by a fixed control protocol.
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< CLOSE_VALVE, NF < Stop_pump, NF >

< No_Loap, NF >
< Stop_pump, NF

< Loap, NF >

< START_PUMP, NE OPEN_VALVE, NF >
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v

Failure ldentified
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< CLOSE_VALVE, NF >
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“
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< START_PUMP, F >
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Fig. 10. Part of the diagnostic controller for the pump-valve system.

VI. CONCLUSION determined, in the framework of the active diagnosis problem,
fy starting from a completely flexible system that allows for

cussed primarily on answering the following question: “giveﬁ" feasi_ble pr_obe sequences a_m_d eIiminating_ those that do
a system with several possible failure modes, how does diy achieve diagnosis with a finite delay. This amounts to

detect and diagnose these failures?” Several approaches tﬂ%inating tho;e tra_lces that Ie_ad to indeterminate cycles_in
e corresponding diagnoser. Finally, one may further restrict

been proposed for the design and implementation of diagno ) o i X
modules for such systems. However, not much research e set of feasible test vectors by taking into consideration
' ’ actors such as detection delay, cost of probing, etc.

has been directed auilding systems that ardiagnosablein
other words, there have been few attempts at answering the
question, “given a system with multiple failure modes, and
given a set of diagnostic requirements, how do we ensure that
a system satisfies these requirements?” One way to ensure
diagnosability is to equip the system with an appropriate setLemma 1: Hy(i) C G** for all i > 0.
of sensors; the challenge then is to determine the optimal, Proof: The above submachine requirement is satisfied
feasible set of sensors that will meet the requirements. Apr Hd(O)(:fogal) since Gfgal C Gt (cf, Step 0-2 in
alternate approach, where applicable, is to restrict the behavi@ction IV-C); hence we can follow the procedure of [5] to
of the system, by control, in a manner such that it results @btain H;C(O) from G*! and Hy(0). Next, as can be seen
a diagnosable system. In other words, the system controlleffrism [5], H;C(O) resulting from the procedure is a submachine
to be designed in such a way that it not only satisfies othef H,;(0). From Steps B-0 and B-2 of the solution procedure
specified control objectives, but it also results in a diagnosalvie haveH(0) = Hy(0); Hy(k) C Hq(0) ¥k > 0. Since
system. In this paper we have investigated the above proble}m(o) is an FSM, it follows that the iteration of Steps B-0
of integrated control and diagnostici the framework of through B-3 will converge in a finite number of steps, and
DES’s. In particular, we have presented a procedure for thence from Step B-3 of the solution procedutg (1) =
design of diagnostic controllers for DES'’s, based on the theoﬁyd(k), for some finitek > 0. It follows that H,(1) C Hy(0)
of failure diagnosis for DES developed in [10] and on existing/hich then implies thatd,(1) C G*f. Following the same
results in supervisory control under partial observations. arguments as above we see thf(i) = G, for all ¢ > 0.

The solution methodology presented here for the design of O
diagnostic controllers can also be used, with some modifica-Lemma 2: Hy(é + 1) T Hy(i), Vi > 0.
tions, to solve the problem of test/probe vector determination Proof: The proof follows from the Proof of Lemma [
for offline diagnosis. Loosely speaking, the set of all probe Lemma 3: H;C(i) is the diagnoser corresponding F:)
sequences that achieve diagnosis of system failures mayfdreall ¢ > 0.

Research in the area of failure diagnosis has so far

APPENDIX A
PROOFS OFTECHNICAL RESULTS
USED IN THE SOLUTION OF THE ADP
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Proof: From the proof of Lemma 1 and from Step A-1Also, since at convergencéﬁc(i) = Hy(i) = Hy(k) for
of the solution procedure we note that some finite k,¢ (cf., STtgp B-3 of the solution procedure),
we have thatP~1(H.“(:)) = P~1(Huk)). It follows
H,O()C Gyt and L(H;7() = M;7().  (15) from Steps A-2 a(ndd B(-%) of the séluti(orz)procedure that
H(i) = H(k). It follows that H¥¥*(i) is the live diagnoser
of H(:). Further, from Lemma 4 we have thdi,(k) is
the diagnoser corresponding fé(k). Since at convergence
LD(M(6) = P () = PP [MC0)]) = 4] (0)  Halk) = Hali), and H (k) = H(D), it follows that Hu(i) is
(16) the diagnoser o (i). Since H¥<(4) is the live diagnoser of
where the second equality follows from Step A-2 of thél (i), thenH; (i) is the live diagnoser extension &f,(i). O
solution procedure. Sincg! = P=1(Giet) x G*I| H(i) = Lemma 7: Co_nsiderL =LCY¥* and_K =K CL Then
P—l(H;C(,L')) x Gt and sinceH;C(i) is a submachine of & is normal (with respect t&”> and L) iff K is of the form
K =P Y(M)nL whereM C P(L)andM = M.
Proof (=>): K normal implies that = P=[P(K)]N
L. ChoosingM = P(K) C P(L) we have thatk =
P=YM] N L.
D(M(i)) C Gy". (17)  (<=): We prove that ifK = P~Y(M)N L, thenP(K) =
M. 1t then follows thatK = P~[P(K)] N L which implies
From (15)—(17) we see that both FSM¥ M (i)) andH)“ (i)  that K is normal.

are submachines of the same machi#g’, and they generate 1) To prove thatP(K) € M: Let t € P(K). Then

Let D(M (%)) denote the diagnoser corresponding to the la
guageM () represented by the FS¥I (). Then

G*¥!, then H(i), the generator of¥/(), is a submachine of
G*f, This implies that the diagnoser correspondind#@) is
a submachine of the diagnoser correspondingd, i.e.,

the same languag®/|“ (i). Since all of the above FSM's are 35 € K such thatP(s) = . Now, s € K implies that
deterministic [4], it follows thatD(M (i) = H (i). O s € P"Y(M) ands € L. Further,s € P~1(M) implies
Lemma 4: For each iterationt > 0 of Module B of the that P(s) € M which in turn implies that € M.

solution procedurefId(k) is the diagnoser corresponding to  2) To prove thatM C P(K): Pickt € M
H(k).

Proof: First, we have thaf,(0) is the diagnoser corre- te M =te P(L)sinceM C P(L)
sponding toH (0); this is becauséi (0) = H(:) and H,(0) = = dspeL:P(sp)=t
H] (i) from Step B-0 of the solution procedure, aff“ (i) = s, € PHE) C PYM)

is the diagnoser corresponding(i) from Lemma 3 above.

Next, L(H (k) = P(M(k)) = P(L(H(k))) from Step B-3. Ss e PM)NL=K

Finally, H,(k) C H4(0) from Step B-3 and hence it has the = P(sp) € P(K). 0
“structure” of a diagnoser. It then follows thaf,(k) is the
diagnoser corresponding ﬁé(k). O APPENDIX B

Lemma5:ConsiderL = L C ¥* andM = M C L ON THE LANGUAGES K;

such thati/ is normal (with respect ta” and L). Then

H = M — P '[P(Pre,(T(M)))]=* is normal with respect A= proofs of Properties 5 and 7 of the Languadés
o Ppa:ggf:L.Let s € Hands' € L such thatP(s) = P(5'). In_pro_v_ing Properties 5 and 7 below, we assume that the
SinceM is normal ands € M, it follows thats’ € M. Further- multlpl_lcmes of _the cyclgs in the system r_nodé)l corre-
more, we claim that since ¢ P{l[P(PreO(T(M)))]E*, then sponding to an mdetermmate cycle in the diagnaSer(cf.,
s ¢ P;l[P(PreO(T(M)))]E*. To see this, observe thet < paragraph foII_oww_lg Example_2:1 and [10]) are equal to one.
s, P(t) ¢ P(Pre,(T(M)). If &' € P [P(Pre,(T(M)))]", This assumptlon is not restrictive because it can be shown
then3#' < s’ such thatP(#') ¢ P(Préo(T(M))). But P(s) = that Properﬂ_eg 5 and 7 that follow hold true for the general
P(s) implies that3#’ < s such thatP(¢") = P(#'), which case of muItlpllc_lty greater than one as well. However, proofs
in turn implies thatP(t") € P(Pre,(T(M))). This leads to o_f these properties for th_e g_eneral case are not presented h_ere
a contradiction. Hence' ¢ PEI[P(PreO(T(M)))]E*. There- smce_these proof_s are quite |nv.olved and since these pro.pertles
fore, s’ € M—P; {[P(Pre,(T(M)))] £* = H. Consequently, are dIS.Cl-J.SSGd prlmarlly to motivate the choupe of a particular
H is normal. L K; as initial con.d|t|on for theT active diagnosis problem.
Lemma 6: At convergence of the iterative solution proce- Property 5: Given a nondiagnosable languageand X,

dure of Section 1V-B for solving the ADP, the FSK Ve () 1z0

is the live diagnoser ofH (i); further, H}¥¢(4) is the live K, diagnosables K, diagnosable
diagnoser extension off ;(i). )
Proof: Since Hy(k) is the diagnoser ofH(k) (cf., Proof («<): SupposeKj is not diagnosable. Then we

Lemma 4), H}**(k) is the diagnoser off"“*(k) (cf., Step have from Property 3 thak, is not live and that there
B-1 of the solution procedure), and sindé“vi(k) is the is a terminating trace inK, that violates Definition 2. Let
live extension of H(k) (cf., Step B-1), thenH**(k) is s, be this trace; thers, € K, is such thatK,/so = 0,
the live diagnoser oﬂfl(k). At convergence of the solution¥;; € so for some failure typel;, and3sy € Ky such that
procedure, we haved¥e(i) = HI¥ve(k) (cf., Step B-3). Ko/so = 0, P(so) = P(so), and¥y; ¢ so. Now since Ky
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is obtained fromZ (which is live) by removing traces thatand such that?**f includes as a submachine the generator
go through anF;-indeterminate cycle in the diagnoséf; G#2l of K;. These procedures are presented for the case
of L, sg,$0 are of the formsy = sujoy -+ up—_10,—1u,, WhereGy has no interleaved indeterminate cycles. Recall from

and so = svi0y---Up_10n_1v, WhereXy € s, sy € ¥,, Section IV-C that the FSM*<! is necessary to implement the
P(s) = P(3), uj, v; € X%, 0, € X,, Xy ¢ 5o,

5d(¢]07P(5)) = 4, 6(1(‘]]70—]) = q(j—l—l)modn and {‘1}}7:1

solution procedure for the ADP presented in Section IV-B.

Procedure to Obtain the Generat6#es?! of K;: Given

form an F;-indeterminate cycle in,;. Consider next the the languagel generated by the systedd, and givenkj,

tracess;, §; € Kj, corresponding to the traces, 5o € Ko
such that s; =
and 5, =

{
S(ULOL - U0 ) ULOL ~  Up—1 O 1 Uy

[ > 0, the generatoG**#*! of K; can be obtained from the
system model7, and from the diagnosefr; corresponding
s(vioy - vpop) oy - vp_10,_1v,. Since to L, by the following two-step procedure.

6(x0,50) = 6(wo,s:) by the definition of an indeterminate Step 1: Refines,; = (Qa, %0, 84, qo) such that every inde-

cycle, thenK;/s; = Ko/so = 0 and K,;/$; = Ko/so = 0.
Therefore,s; violates Definition 2 forK;, and henceK; is
not diagnosable.
(=): Interchangédy; and kK in the above proof and follow
the same arguments. O
Property 7: Given a nondiagnosable language and K7,
[ > 0 diagnosable, there exist > 0 andp € K, such that
foralln > 1

delay(p, Ko) < delay(p, K,,) < delayp, Kytn)-

terminate cycle inG, is “expanded out! times but
left “open” (not completed) after the+ 1th copy.
This step is explained in detail below (Steps 1-1 to
1-5).

Let ¢/, = (@, %,,8},9) denote the refined
machine. ThenL(G!) = P(K;).
DefineG'#?l = P~1(@),) x G. In other words,
G'*#2l is obtained from&, by: 1) adding self-loops
at every statey of G/, due to allo € ¥, and 2)

Step 2:

performing the product of the resulting machine
with G.
It is straightforward to implement Step 2 above. We now
, focus on Step 1 of the procedure.
640, P0w)) = @1 64(05:05) = G4 1ymodn and {¢;}7_, Procedure to Obtain the Refined FSM, from the FSM
form an F;-indeterminate cycle i,. We know that such @ = Ga: The inputs to this procedure are as follows:
ands exist by the definition oK. Lett € Ky/p be suchthat 1) the FSMGy = (Qu, X0, 64, qo);
the maximum delay in detecting the failupg occurs along  2) the setC(G,) of F;-indeterminate cycles iy, for all
the tracet in Ko and let delayp, Ko) = M. Pick anyt' in failure typesF;.
Ky /so such that detection of the failuggs along the traces We assume that each’ € C(G,) is given by C' =
occurs after the system executes the trage but not before, {(q{.q¢}, --,q; ), (o}, 05, -+, 0% )} where the set of states
e, Vur € Pl[P(s1t)] (Xgi € wi) and (Vv € #) 3wy € {g'}sL, forms an indeterminate cycle with corresponding
Py [P(sv)] : X pi ¢ wa. Note that’” may be the empty trace in event sequencéoi}®,. Suppose that the set of statfis=
the case wher&,/so = 0; in this case the failure is diagnosed{qi}?_1 forms an indeterminate cycle if; with correspond-
right after so by noting that no further event occurs in theng event sequencés; }_,. Suppose further thalz;, z; €
system (recall the results of Section IIl on diagnosing failurgs, _ s and oy, as € %, such thatéy(z, 1) = ¢ and
in a nonlive language). Consider next the tragg € K, Sa(z2,00) = q;, 1 <, j < m, i # j. We refer to such states

Proof: Considerp € Ky with py € Xy for some
failure type F;, such that there existsy € Ko where
50 = PWULTT * ** Up—10pn—1Un, Wf € Xy, Uj; € Xy, , 0; € X,

where Smo = pw(ui01 - up0n) M ur0y - T Un—19n-1Un- > andz; asentry statedo the cycle. Then we will consider
Since 6(xo,50) = 6(zo,sm), then the delay in detecting 55 two distinct cyclesC? = {(gi, g1, @n, - Giot)
the failure p, along the traces, in K is given by (5 5. ... 5. o/ ..o 0; 1)} and C? = HCT T

|C€| + (mlal...u%qnulﬂ x m) + |#1al...u?],10@71un| I+ Qo @545 1) (0, 0541500+, 0n, 01,05 1)} In other
|t']. It is not difficult to see that by choosing a larg&yords any sef of n elements that constitutes an indeterminate
enoughm we can get|w/| + (luror - - unonun| X m) + cycle could give rise to up ta distinct cyclesCt, €2, - -, O™
[ur01 -+ tn_10m_1un| + |t'] > M, i.e., the maximum delay gepending on the number of distinct entry states into the cycle,
in detecting the failure evenp, occurs along the trace from states outside of the cycle.
W(Ur01 -+ Un 0 )" U 0L - Un 1 0n 1 upt’. It then follows  por each indeterminate cyol® € C(Gy), we build an FSM
that delayp, K.,) < delay(p, Kynyn) for all n > 1 since  pi guch thatH’ refines the cycleC’. The refined machine
delay(p, o) = [o] + ([u101 - wuten] x (m +n)+ G is then given by
w101 - - Up—1 01| + [¢]. O
_ "=H'x H*...HY
B. Procedures to Obtain a Generat6res?! of K; and
. H ref ; H H

the Refined Machiné™" in the Case Wherery where M refers to the total number of indeterminate cycles
Has No Interleaved Indeterminate Cycles in G..

We now present: 1) a procedure to obtain an FSM thatWe now present a five-step procedure to bdiltigiven G,
generatesds; (henceforth referred to as'°s?!) from the system and given an indeterminate cycle
model& and from the diagnosér, and 2) a procedure to ob-

tain the refined system modé¥<f such thatZL(G*!) = L(G)

Ci = {(QIa q2, ", (Jn)a (alaOQa e aan)}-
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Step 1-1:

Step 1-2:

Step 1-3:
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Defing?;, = (Qu, 25, 61,90) Where Recall that®), is the state space of the diagnoser
_ Gy, 64 is the transition function ofG,, and
61((] O_):{(Sd(%o_—)v if Q75q.1\/0'750'1 Ci:{(q1,q2,'",qn),(O'l,O'Q,"',O'n)}.
’ undefined otherwise. Step 1-4 completes the transition function of
) (12 SO as to ensure that the language generated
In other words,G, is the same agzy, except by the complete machine is equal to the language
that at stateyy, the transition due te, is deleted generated by?, excluding those traces that go
in Gy. _Note that not all states of/; may be through the indeterminate cycté’ more than!
accessible. times
. _ 1 .4
Defingz, = (Q2, %, 62, p1) where we have the  giep 1.5 Letd? = Acc(Gy,) where Acc(G) denotes the
first set of equations shown at the bottom of the accessible part of;.
page. Note that refers to the number of states Step 1-5 simply removes fror;, all states
in the cycleC* and | refers to the number of that are not reachable from the initial stafg
copies of these states in the refined machine. Also and their corresponding transitions.

note that the transition due to the eventis not
defined at the final statgt*. Thus, G, has the
cycle C* expanded ouf times but left “open”
(not completed) after thé+ 1th copy.

Procedure to Obtain the Refined System Ma&téf: Given
the languagel. generated by the systed, and givenkj,
I > 0, the procedure to obtain a refined system magef,
. that includes as a submachine the generaits#®! of K, is
s'\e/lteregeliﬁ t?)mtjhg?st\gtltq tohfe Gstatfeq; C?f G_l identical to the above procedure for generatiEys*! except

q £ 2 12~ for Step 1-2 which is modified as follows.

, X6, 012, denote the merged machine .
(@12 12, %) g Step 1-2: Defing?s = (Q2,%,, 52, p1) where we have the

where :
second set of equations, also shown at the bottom
Q12 = Q1 U Q2 (with ¢ = pt) of the page. Note that the_ transition due to the
8.(g,0), if 81(q, o) is defined evento,, is defined at the final sta J_fl. Thus,
812(q,0) = { 8(q,0),  if 8:(q,0) is defined G has the cycleC” expz_;mdeq ouf times and
undefined. otherwise. completed after the+1th time sinced: (pi, o,,)
' is defined to beyl, the initial state of,. This is
Note that the states @p; are distinct from those unlike the previous procedure for obtaining the
of ()2, except for the statg; which is set equal generator of; where the cycle is left open after
to pl. At the stateg; the transition due ter is the I + 1th copy.

Step 1-4:

not defined in;, while at the state; of G> the  In this case we havé(G) = L(Gy). Itis then straightfor-
only transition defined is due t@,. Thus, we see ward to see that this procedure results in a refined system

that 612 is a well-defined function. model G™f such that L(G) = L(G™f) and further that
Step 1-3 simply “pastes” together the machineglegal ¢ Gref,

obtained in Steps 1-1 and 1-2. Examples illustrating the above two procedures can be

Complete the transition functidm, of Gi» at found in [9].

the stategp’}, k=1,---,n,5=1,---,l+1as  We conclude with the following remark on the case where

follows: the diagnoserG; has interleaved indeterminate cycles. Ex-

L amination of the above procedures reveals that the only step

S12(pj o) = 8ulgj, o) Yo € o — {0}, that needs to be modified in building a generator f6rin

j=1,---n k=1,---,14+1. this case is Step 1-2 which “expands” out the cycles. In the

Qg:{pf :j6{1,---,n},k€{1,---,[—1—1}}
P if j=1,---n—1k=1,---1+1
52(]7?7%'): p’f"'l, if j=n,k=1,---,1
undefined, otherwise.

Q= {ph:je{l, - ,n} ke {l, 1 +1}}
Pt fj=1--n—-1k=1---1+1
6 (pk,05) = mt fj=nk=1--1
Y pis if j=nk=1+1

undefined, otherwise
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