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Abstract

In this paper, we present a pointer and array access checking technique that provides

complete error coverage through a simple set of program transformations. Our technique,

based on an extended safe pointer representation, has a number of novel aspects. Foremost, it

is the �rst technique that detects all spatial and temporal access errors. Its use is not limited

by the expressiveness of the language; that is, it can be applied successfully to compiled or

interpreted languages with subscripted and mutable pointers, local references, and explicit and

typeless dynamic storage management, e.g., C. Because it is a source level transformation,

it is amenable to both compile- and run-time optimization. Finally, its performance, even

without compile-time optimization, is quite good. We implemented a prototype translator

for the C language and analyzed the checking overheads of six non-trivial, pointer intensive

programs. Execution overheads range from 130% to 540%; with text and data size overheads

typically below 100%.

� c 1993 by Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. This work was supported by grants from the
National Science Foundation (grant CCR-9303030) and O�ce of Naval Research (grant N00014-93-1-0465).
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1 Introduction

It is not di�cult to convince programmers (or employers of programmers) that programming errors are

costly, both in terms of time and money. Memory access errors are particularly troublesome. A memory

access error is any dereference of a pointer or subscripted array reference which reads or writes storage

outside of the referent. This access can either be outside of the address bounds of the referent, causing

a spatial access error, or outside of the lifetime of the referent, causing a temporal access error. Indexing

past the end of an array is a typical example of a spatial access error. A typical temporal access error is

assigning to a heap allocation after it has been freed.

Our own experiences as programmers as well as published evidence lead us to believe that memory

access errors are an important class of errors to reliably detect. For example, in [MFS90], Miller et.

al. injected random inputs (a.k.a \fuzz") into a number of Unix utilities. On systems from six di�erent

vendors, nearly all of the seemingly mature programs could be coaxed into dumping core. The most

prevalent errors detected were memory access errors. In [SC91], Sullivan and Chillarege examined IBM

MVS software error reports over a four year period. Nearly 50% of all reported software errors examined

were due to pointer and array access errors. Furthermore, of these errors, 25% were temporal access

errors { an error our checking methodology is particularly adept at catching.

Memory access errors are possible in languages with arrays, pointers, local references, or explicit

dynamic storage management. Such errors are particularly di�cult to detect and �x because:

� The e�ects of a memory access error may not manifest themselves except under exceptional condi-

tions.

� The exceptional conditions which lead to the program error may be very di�cult to reproduce.

� Once the error is reproduced, it may be very di�cult to correlate the program error to the memory

access error.

Consider the erroneous C function in Figure 1. This function can create a memory access error in

the return statement expression. The function will reference the word immediately following the array

referenced by the pointer data if the array does not contain the token. To �x this function, the return

expression should be changed to (i < count).

The function illustrates the three di�culties in �nding and �xing memory access errors. First,

FindToken() will only produce an incorrect result if the word following the array referenced by data

contains the same value as token (or is inaccessible storage). This event is unlikely if the word contains

an arbitrary value. Second, when (or if) FindToken() creates an incorrect result, it will be di�cult to

recreate during debugging. The programmer will have to condition the inputs of the program such that

the word following the array referenced by data once again contains the same value as token. If the value

of the illegally accessed word is independent of the value of token, the probability of success will be very

low. Third, correlating the visible errors of the program to the incorrect actions of FindToken() may be

very di�cult. This connection may be very subtle and may not be visible for a long period of time.

In the vernacular of fault tolerant computing circles, debugging can be viewed as correlating the

program fault to the program error. A program error is de�ned as an output of a program that is

incorrect with respect to the speci�cation of that program { this e�ect is what the users see. The program

fault, on the other hand, is the initial incorrect condition (possibly many) that ultimately caused the

error condition to occur. The primary goal of any good debugging environment is to provide a good
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int FindToken(int *data, int count, int token) f
int i = 0, *p = data;

while ((i < count) && (*p != token)) f
p++; i++;

g
return (*p == token);

g

Figure 1: A C function with a (spatial) memory access error.

correlation between faults and errors. Our checking methodology ensures that memory access errors are

detected immediately, thus creating perfect correlation between the error and the fault, simply because

they are one in the same!1

Many execution environments do provide some level of protection against memory access errors. For

example, in most Unix based systems, a store to the program text will cause the operating system

to terminate execution of the program (usually with a core dump). Unix typically provides storage

protection on a segment granularity { the segments are the program text, data, and stack. Other, more

hostile environments such as MS-DOS, do not o�er such luxuries, and stores to the program text may or

may not manifest themselves as a program error. If a program error does occur, correlating it to a fault

may be di�cult, if not impossible.

Ideally, we would like the language execution environment to support memory access protection at

the variable level, that is, an access to a variable should only be valid if the access is within the range

(for both time and space) of the intended variable { all other accesses should immediately ag an error.

We call any program that supports these execution semantics a safe program.

Our solution to the memory access error problem is simple and provides e�cient and immediate

detection of all memory access errors. We transform programs, at compile-time, to use an extended

pointer representation which we call a safe pointer. A safe pointer contains the value of the pointer as

well as object attributes. The object attributes describe the location, size and lifetime of the pointer

referent. When a safe pointer value is created, either through the use of the reference operator (e.g., `&'

in C) or through explicit storage allocation, we attach to it the appropriate object attributes. As the

value is manipulated, through the use of pointer operators, the object attributes are transferred to any

new safe pointer values. Detecting a memory access error involves simply validating dereferences against

the object attributes { if the access is within the space and time bounds of the object, it is permitted,

otherwise an error is agged and the access error is detected immediately.

We implemented a prototype source-to-source translator for the C language and examined the perfor-

mance of six non-trivial programs. The performance is quite good. Instruction execution overheads range

from 130% to 540%, and text and data size overheads are typically below 100%. We also benchmarked our

prototype system against two commercially available tools that support memory access checking (Purify

[HJ92] and CodeCenter [KLP88]) and found that our checking technique consistently uses less resources,

even while providing better error coverage for memory access errors.

This paper is organized as follows. Section 2 introduces our extended safe pointer representation.

Section 3 details the program transformations required to create safe programs, and in Section 4 we

1Hence, we can use the termsmemory access fault and memory access error interchangeably under our checking method-
ology, as they are indeed the same.
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typedef f
<type> *value;

<type> *base;

unsigned size;

enum fHeap=0, Local, Globalg storageClass;

int capability; /* plus FOREVER and NEVER */

g SafePtr<type>;

Figure 2: Safe pointer de�nition. This C-like type de�nition is parameterized by <type>, the type of the pointer

referent.

discuss the translation and performance implications of providing complete error coverage. In Section 5,

we present compile- and run-time optimization frameworks. Section 6 describes our prototype implemen-

tation and presents results of our analyses of six programs. Section 7 compares our checking technique

to other published techniques. Section 8 concludes the paper.

2 Safe Pointers

To enforce access protection, we must extend the notion of a pointer value to include information about

the referent. The idea is similar to tagged pointers used in many Lisp implementations [Lee91]. Figure

2 shows our safe pointer representation. The de�nitions of the contained �elds follow:

value: The value of the safe pointer; it may contain any expressible address.

base and size: The base address of the referent and its size in bytes. In languages where pointers are

immutable, base is redundant and may be omitted. With this information, we can detect all spatial

access errors with a range check.

storageClass: The storage class of the allocation, either Heap, Local, or Global. Using this value, it

is possible to detect errant storage deallocations, e.g., it is illegal to free a global or local variable.2

capability: A capability to the referent. When dynamic variables are created, either through explicit

storage allocation (e.g., calls to malloc()) or through procedure invocations (i.e., a procedure call

creates the local variables in the stack frame of the procedure), a unique capability is issued to

that storage allocation. The unique capability is also inserted into an associative store called the

capability store and deleted from that store when the dynamic storage allocation is freed or when

the procedure invocation returns (the exact mechanics of this process are discussed in a following

section). Thus, the collection of capabilities in the capability store represent all active dynamic

storage. Temporal access errors occur whenever a reference is made through a stale pointer, i.e.,

a pointer which references storage whose capability is no longer in the capability store. Two

capabilities are prede�ned. FOREVER is unique and always exists in the capability store; this

capability is assigned to all global objects. NEVER is unique and never exists in the capability

store; this capability can be assigned to invalid pointers to ensure any dereference causes an error.

2We cannot completely encode this information into the capability �eld. We need to discern local objects from heap
objects so that errant frees can be detected. This distinction is not possible by simply examining the capability �eld, as
both locals and heap objects have real capabilities. If the various storage classes have distinct locations in the address
space, it may be possible to derive this value from the address in base.
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The value attribute is the only safe pointer member that can be manipulated by the program

source; all other members are inaccessible. base and size are the spatial attributes. storageClass

and capability are the temporal attributes.

Safe pointers can exist in three states: unsafe, invalid, and valid. If the object attributes are incorrect,

we say that the pointer has become unsafe; dereferencing this pointer may cause an undetected memory

access error. It is the goal of this work and the impetus of the discussion in Section 4 to ensure that a

safe pointer never becomes unsafe. If the safe pointer is not unsafe, it is either invalid or valid, depending

on whether a dereference would ag an error. Languages with mutable pointers allow the program to

legally create invalid pointers; for example, iterating a pointer across all the elements of an array exits

the loop with the pointer pointing to the memory location following the last object. If the invalid pointer

is never dereferenced, the program would not be in error. This behavior illustrates precisely why we only

place error checks at dereferences; it is not illegal to have an invalid pointer { only to use it.

The initial value of a safe pointer, if not speci�ed by an initialization expression, must be invalid. This

condition ensures that a dereference before the initial assignment is detected. A simple way to invalidate

a pointer value is to assign it the unique capability NEVER.

3 Program Transformations

Creating a safe program from its unsafe counterpart involves three transformations: pointer conversion,

check insertion, and operator conversion. The �rst, pointer conversion, extends all pointer de�nitions and

declarations to include space for object attributes. Check insertion instruments the program to detect all

memory access errors. Operator conversion generates and maintains object attributes. In this section,

we also describe the run-time support.

3.1 Pointer Conversion

All pointer de�nitions and declarations must be extended to include object attributes. To make this

transformation transparent, the composite safe pointer must mimic the �rst class value semantics of

scalar pointers. That is, when passed to a function, the safe pointer must be passed by value, and when

operators are applied to a safe pointer, the result, if a pointer, must be a new safe pointer.

There is no need to add object attributes to array variables. Array variables (in the C sense) are

merely address constants, and thus only exist as statically allocated objects or within structure de�nitions;

as a result, the spatial attributes can be generated from the address constant and its type size, and the

temporal attributes can be taken from the safe pointer to the containing object or derived from the array

name.

3.2 Check Insertion

Assuming the safe pointer object attributes are correct (how to ensure this property is detailed in the

following sections), complete safety for all pointer and array accesses is provided by inserting an access

check before each pointer or array dereference.3

The dereference check �rst veri�es that the referent is alive by performing an associative search for the

3We use the term dereference as a blanket term for any indirect access { either through application of the dereference
operator (e.g., `*' or `->' in C) or through indexing an array or pointer variable (e.g., `[ ]' in C).
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void ValidateAccess(<type> *addr) f
if (storageClass != Global && !ValidCapability(capability))

FlagTemporalError();

if ((unsigned)addr - (unsigned)base > size-sizeof(<type>))

FlagSpatialError();

/* valid access! */

g

Figure 3: Memory access check. This C-like function is parameterized by <type>, the type of the safe pointer

referent. FlagTemporalError() performs system speci�c handling of a temporal access error, e.g., force a core dump.

FlagSpatialError() performs the same function, but for a spatial access error. The function ValidCapability() indicates

whether or not the passed capability is currently active, i.e., in the capability store.

referent's capability. If the referent has been freed, the capability would no longer exist in the capability

store and the check would fail. Because capabilities are never re-used, the temporal check fails even if the

storage has been reallocated. Once the storage is known to be alive, a bounds check is applied to verify

that the entire extent of the access �ts into the referent.

Our access check, shown in Figure 3, takes advantage of the wrap-around property of unsigned arith-

metic to simplify the bounds check. If the accessed address is prior to the start of the array, the unsigned

subtraction underows and creates a very large number, causing the test to fail. The advantage of this

expression over traditional bounds checks4 is that it only requires one conditional branch to implement.

This simpli�cation reduces the additional control complexity introduced by dereference checks, which can

result in better optimization results and better dynamic executions.

3.3 Operator Conversion

Pointer operators must interact properly with the composite safe pointer structure. When applied, they

must reach into the safe pointer to access the pointer value. If the operator creates a new pointer value,

it must include an unmodi�ed copy of the pointer operand's object attributes.5 For example, in the C

statement q = p + 6, the application of the `+' operator on the pointer p creates a new safe pointer

which is assigned to q. The new pointer value in q shares the same object attributes as p. Operators

which manipulate pointer values never modify the copied object attributes because changing the value

of the pointer does not change the attributes of the storage it references. This property holds even for

pointers to aggregate structures. In this case, the object attributes refer to the entire aggregate.

The assignment operator requires special handling if the right hand side is a constant. Two common

pointer constants are the NULL value and string constants (for C). If the assignment value is NULL, the

NULL value can be replaced by an invalid safe pointer value, e.g., one with the capability NEVER. For

string constants, we can generate the needed object attributes at compile-time. If the right hand side of

the assignment is a pointer expression, the resulting pointer value (and its object attributes) is copied to

the pointer named on the left hand side of the assignment.

4Our check is functionally equivalent to:

(addr < base || addr > base+size-sizeof(<type>))

which requires two conditional branches (or extra instructions to combine the boolean terms).
5In C there exists one operator with two pointer operands, namely `-', which produces the di�erence between two pointers.

The semantics of this operator imply that the object attributes of both operands should refer to the same object, so we can
take the object attributes from either operand.
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Expression Access Path

Pre�x Pre�x Type Su�x

a a direct {

a.b a direct b

a.b.c[4].d a direct b.c[4].d

(**p)[3] **p indirect [3]

(*p)->b *p indirect b

w->x w indirect x

w->x->y w->x indirect y

w->x->y[3].z->c[4].b w->x->y[3].z indirect c[4].b

Table 1: Access path examples for C. In the above examples, the �eld c is an array variable, and y is a pointer.

Casting between pointer types does not require any special program transformations. Casting only

alerts the compiler that future pointer arithmetic or dereferences of a particular pointer value should be

made with respect to the new type size. Casting to a non-pointer type requires that the object attributes

be dropped (if only pointers carry object attributes) and then the cast is carried out as de�ned by the

language. Casting from a non-pointer type to a pointer type is problematic if non-pointer types do not

carry object attributes. We address this problem in Section 4.

Handling of the reference operator, e.g., the `&' operator in the C statement q = &p->b[10], is slightly

more complex as it must generate object attributes.

The reference operator is applied to an expression (p->b[10], in our example) which names some

storage. We call this expression the access path. The result of the operation is a new pointer value to the

referent named by the expression.

To facilitate conversion, we decompose access paths into two parts, a pre�x and su�x. The access

path pre�x is always non-empty and describes the sequence of variable names, dereferences, subscripts,

�eld selectors, and pointer expressions leading to the memory object being referenced. It is from this

pre�x that we generate temporal attributes. The remaining part of the access path, the access path su�x,

is composed of a sequence of �eld selectors and subscripts (on array variables only). The su�x describes

what extent of the object is being referenced.

We further classify access paths as direct or indirect. A direct access path refers to an object in the

global or local space by name. An indirect access path contains at least one pointer traversal.

Given a reference operator expression, we can parse the pre�x by traversing the expression tree starting

with the left-most, lowest precedence operator. The part of the expression up to but not including the

last pointer traversal is the access path pre�x, the remaining part of the expression is the access path

su�x. If the access path does not contain any pointer traversals, the access path pre�x is the name of

the referenced variable. Table 1 shows a number of expressions and their decomposed access paths.

Temporal attributes are derived from the access path pre�x. If the pre�x is direct, the referenced

object is either a global or a local variable. If global, we assign the capability FOREVER to the new safe

pointer. If local, we assign the capability allocated to the local variable's stack frame (frame capability

allocation is discussed in the following section). If the access path pre�x is indirect, the temporal attributes

are taken from the safe pointer named by the access path pre�x.
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Last pointer dereference

Access Path SuffixAccess Path Prefix

p = &f−>g−>h[3].i−>j.k[4]

f−>g−>h[3].i j.k[4]

p.value = &f−>g−>h[3].i−>j.k[4]

p.base = f−>g−>h[3].i−>j.k

p.size = sizeof(f−>g−>h[3].i−>j.k)

p.storageClass = f−>g−>h[3].i.storageClass

p.capability = f−>g−>h[3].i.capability

Figure 4: Access path decomposition and safe pointer construction. In this example, h is a pointer, while k is

an array variable.

To generate the spatial attributes for the reference, we start with the spatial attributes of the access

path pre�x. This value is either the address and size of the named variable if the access path pre�x

is direct, or the spatial attributes from safe pointer if it is indirect. Using these spatial attributes, we

compute the actual base of the reference from the access path su�x, which describes the sub-object being

referenced. Since all members of the referenced object (i.e., the member of any contained structure) are

of a known size, we can easily compute the o�set into the object and its size at compile time. In the

event the �nal term of the su�x is a subscript, we set the spatial attributes to the extent of the entire

array. This technique allows the safe pointer to be subsequently manipulated to point to other members

of the array.

Figure 4 shows an access path, its decomposition into the pre�x and su�x, and the C statements

required to construct the correct safe pointer value in p. The example also demonstrates the widening

required if the �nal term is an array subscript.

3.4 Run-Time Support

The explicit storage allocation mechanism must be extended to create safe pointers. During allocation,

a capability must be allocated for the storage, and any contained pointers must be invalidated. At

deallocation, the capability given to the storage must be destroyed.

Figure 5 shows how this support would be provided for malloc(), the storage allocator provided

under Unix. During allocation, malloc() generates a safe pointer using the size and location of the

allocation request. The call to NextCapability() returns the next available and unused capability.

NextCapability() can be implemented with an incrementing counter or a pseudo-random number gen-

erator. The capability is inserted into the capability store via the call to InsertCapability(). The call

to bzero() clears the entire storage allocation. This action ensures that any pointers in the untyped

allocation are initially invalid (assuming the storage class of Heap and capability NEVER are both as-

signed the value of 0). calloc() simply calls malloc() as in either case the storage is cleared before it

is returned.

The implementation of realloc() is slightly more subtle. This function takes an existing storage

allocation and resizes it to the requested size. The reallocated storage may move for any request, either
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void *malloc(unsigned size) f
void *p;

p.base = p.value = unsafe malloc(size);

p.size = size;

p.storageClass = Heap;

p.capability = NextCapability();

InsertCapability(p.capability);

bzero(p.value, size); /* assuming capability NEVER == 0 */

return p;

g

void *calloc(unsigned nelem, unsigned elsize) f
return malloc(nelem*elsize);

g

void *realloc(void *p, unsigned size) f
void *new;

new = malloc(size);

bcopy(p.base, new.base, min(size, p.size));

free(p);

return new;

g

void free(void *p) f
if (p.storageClass != Heap)

FlagNonHeapFree();

if (!ValidCapability(p.capability))

FlagDuplicateFree();

if (p.value != p.base)

FlagNonOriginalFree();

DestroyCapability(p.capability);

unsafe free(p.value);

g

Figure 5: Safe malloc implementation with additional checking. InsertCapability(), ValidCapability(), and
DestroyCapability() insert, locate, and delete capabilities, respectively. bzero() clears size bytes of memory starting

at p.value. bcopy() copies min(size, p.size) bytes of storage from p.base to new.base. FlagDuplicateFree() is a

system speci�c function which ags an error indicating that the program attempted to free a previously freed heap allo-

cation. FlagNonHeapFree() ags an error indicating that the program attempted to free memory that is not in the heap.

FlagNonOriginalFree() ags an error indicating that the program attempted to free memory without using a pointer to

the head of the allocation. NextCapability() returns the next unique capability. unsafe malloc() and unsafe free() are

interfaces to the system-de�ned storage allocator.
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void Func(int a) f
/* procedure prologue */

unsigned frameCapability = NextCapability();

InsertCapability(frameCapability);

ZeroFramePointers(); /* assumes capability NEVER == 0 */

.

.

/* procedure epilogue, common function exit point */

DestroyCapability(frameCapability);

return;

g

Figure 6: Function frame allocation and deallocation. InsertCapability() inserts a capability into the capability

store. ZeroFramePointers() is a system speci�c function which clears all pointers in the newly allocated stack frame.

DestroyCapability() deletes a capability from the capability store. NextCapability() returns the next unique capability.

larger or smaller. If moved, the contents of the new allocation will be unchanged up to the lesser of

the new and old sizes. In our safe programming environment, we must move the storage in all cases,

otherwise, there may exist safe pointers (which we cannot locate and change) whose object attributes have

incorrect records of the referent size. If dereferenced, these pointers may ag errors even though the access

was valid in the reallocated storage, or worse, the reallocation may have shrunk the referent, creating

unsafe pointers whose referent sizes are too large. We can solve both these problems by always moving

the storage. This action will force the program to update any old pointers to the previous allocation.

Because the reallocated storage is allocated under a new capability, any stale pointers to the previous

allocation will ag errors if dereferenced. We need not clear the remaining storage in the reallocation if

it is larger, as the call to malloc() returns cleared storage.

At calls to free(), the capability of the allocation (contained in the safe pointer object attributes) is

deleted from the capability store by the call to DestroyCapability(). Our implementation also veri�es

that the freed storage is indeed a heap allocation and a pointer to the head of the allocation (as this

condition is required by free()).

The same allocation mechanism is applied to the dynamic storage allocated in procedure stack frames.

When a function is invoked, a capability must be allocated for the entire frame if it contains any referenced

locals. Any pointers contained in the frame must be set to an invalid state.

Figure 6 shows how this rewriting would be done for a C function. The function ZeroFramePointers()

serves the same purpose as the call to bzero() in malloc(); it ensures that any pointers in the procedure

stack frame are initially invalid by clearing the frame storage. Because stack frame allocations are strongly

typed, ZeroFramePointers() could be replaced by NULL assignments to all the frame pointers.

If the language supports non-local jumps, e.g., longjmp() in C, the run-time support must delete the

frame capabilities of any elided function frames. This operation can be simply and portably implemented

if the local capability space and heap capability space are kept disjoint, and function frame capabilities

are allocated using an incrementing counter. The allocation of frame capabilities then becomes a depth-

�rst numbering [ASU86] of the dynamic call graph. When a non-local jump occurs, all elided frame

capabilities between the source frame and destination frame are deleted by removing all frame capabilities

in the capability store that are larger than the frame capability of the destination frame. This mechanism

only works if the source and destination frames are on the same call stack { this stipulation may not be

true in all cases, e.g., coroutine jumps.
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p q capability store

[x,x,x,x,NEVER]

[x,x,x,x,NEVER]
       "
[1011,1001,100,Global,FOREVER]
[1010,1001,100,Global,FOREVER]
       "
       "
       "

[x,x,x,x,NEVER]

[1000,1000,101,Global,FOREVER]
       "
       "
       "
       "
[798,1000,101,Global,FOREVER]
       "

      { }

      { }
       "
       "
       "
       "
       "
       "

struct {
    char a;
    char b[100];
} x, *p;
char *q;

p = &x;
*p; /* no error */
q = &p−>b[10];
q−−;
*q;
p −= 2;
*p; /* error!!! */

p q capability store

[x,x,x,x,NEVER]

[x,x,x,x,NEVER]
[2006,2000,10,Heap,1]
       "
       "
       "
       "

b)

a)

char *p, *q;

p = malloc(10);
q = p+6;
*q; /* no error */
free(p);
p = malloc(10);
*q; /* error!!! */

[x,x,x,x,NEVER]

[2000,2000,10,Heap,1]
       "
       "
       "
[2000,2000,10,Heap,2]
       "

      { }

     { 1 }
       "
       "
      { }
     { 2 }
       "

Figure 7: Memory access checking examples. Figure a) is an example of a spatial access error, Figure b)

is an example of a temporal access error. Safe pointer values are speci�ed as a 5-tuple with the following format:

[value,base,size,storageClass,capability]. An occurrence of x indicates a don't care value.

The capability store is an associative memory containing the capabilities of all active memory. It

can be implemented as a hash table with the capability as the hash key. Accesses to the capability store

exhibit a great deal of temporal locality, so moving accessed elements to the head of the hash table bucket

chains is likely to decrease average access time.

We close this section with two examples. Figure 7(a) shows a spatial access error, and Figure 7(b)

demonstrates a temporal access error. Safe pointer values are speci�ed as a 5-tuple with the following

format: [value,base,size,storageClass,capability]. x indicates a don't care value. In the �rst example, a

spatial access error is agged when the program dereferences a safe pointer whose value is less than the

base of the referent. In the second example, a stale pointer, q, is dereferenced. Even though the same

storage has been reallocated to p, the capability originally assigned to q has been destroyed during the

call to free(); thus, the temporal access error is detected.

4 Implications of Complete Error Coverage

Our safe programming technique can detect all memory access errors provided that the following condi-

tions hold:

� Storage management must be apparent to the translator.

� The referents of all pointer constants must have a known location, size, and lifetime.

� The program must not manipulate the object attributes of any pointer value.

Our claim to complete error coverage must be limited to storage management controlled by the safe

programming run-time system. If a program implements a domain speci�c allocator at the user level,
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some memory access errors, as viewed by the programmer, can be missed.

Consider, for example, a �xed size storage allocator. If a program relies heavily on a �xed size

structure, storage requirements and allocation overheads can be greatly reduced by applying a �xed size

allocation strategy. At the program level, the �xed size allocator calls the system allocator, e.g., malloc()

or sbrk(), to allocate a large memory allocation. The �xed size allocator then slices the system allocation

into �xed size pieces with a zero overhead for each allocation. Under this scheme, our safe programming

technique would ensure that no accesses to a �xed size allocations are outside of the space and time

bounds of the block from which the �xed size allocation was derived. This imprecision occurs because

the translator can not disambiguate the user level storage allocation actions from other pointer related

program activities.

With some programmer intervention this problem can be solved. Any useful safe compiler imple-

mentation will have to include an application programmers interface, or API, through which systems

programmers can construct and manipulate the object attributes of safe pointers. In the case of the �xed

size storage allocator, the programmer would specify the base and size of the �xed size allocation. The

storage class and capability would be generated from the safe pointer to the block from which the �xed

size allocation was derived.

Without the second quali�cation, the compiler may not be able to generate correct object attributes

for a pointer constant. For example, device driver code typically creates pointers to device bu�ers and

registers by recasting an integer to a pointer value. The translator has no way of knowing the size

and lifetime of the referent; thus, program safety cannot be maintained. In C, the only well de�ned

pointer constants are NULL, strings, and functions.6 For all other cases, this problem can be avoided

by supplying the programmer with an API suitable for specifying the size and lifetime of problematic

pointer constants.

The second quali�cation does not, however, preclude the use of recasts from non-pointer variables

to pointer variables. To successfully support these operations, object attributes must be attached to all

variables. In general, to provide complete safety, we need to attach object attributes to any storage that

could hold a pointer value. It is our contention that most \well behaved" programs will only require

pointer variables to carry object attributes.

The �nal quali�cation protects object attributes. If a program can arbitrarily manipulate the object

attributes of a pointer value, then safety can always be subverted. For example, changing the storage

class of a pointer from Global to Heap and then freeing the pointer would likely cause disastrous e�ects

under our storage allocation scheme, and these e�ects would not be detected by our safe programming

framework.

If object attributes are only attached to pointer values, the danger exists of manipulation through the

use of recasts or unions. With a recast, it is possible to type storage in the referent �rst as a non-pointer

value, manipulate the storage arbitrarily, and then recast the referent storage to a (possibly unsafe)

pointer. Using a union, it is possible to create a pointer value under one �eld and then manipulate the

object attributes of the pointer value through another overlaid, non-pointer �eld of the union.

6There are two ways we can integrate functions into our safe programming framework. If we assume that function
pointers can only be assigned and dereferenced, they will not intermix with safe pointers and may remain simple pointers.
The only check required at dereferences is a non-NULL check. If cast operators may be applied to function pointers, they
can be represented as safe pointers with a storage class of Function. At dereferences of function pointers, we need to ensure
the pointer value is a function pointer and has not been changed (e.g., value == base); at non-function pointer dereferences,
we must check that the pointer value is not a function pointer.
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The only solution that we can conceive to prevent this kind of manipulation is to attach object

attributes to each byte of allocated storage. For types larger than one byte, the object attributes would

be copied to all other storage holding the allocation. In this way, any arbitrary overlaying of types would

still not allow the object attributes to be manipulated at the program level.

In reality, we can provide a high margin of safety for \well behaved" programs by attaching object

attributes only to pointer values. We consider a well behaved program to be one in which pointer values

are never created from or manipulated as non-pointer values. If a program violates this rule intentionally

(e.g., through a recast), the safe compiler can make a conservative approximation as to the intended

referent of the new pointer value and allow the pointer to access any live storage.7 If the rule is broken

unintentionally (e.g., through incorrect use of a union), the error will likely be caught because it is di�cult

to manufacture, accidentally, an unsafe pointer.

5 Optimizing Dereference Checks

In the interest of performance, it may be possible to elide dereference checks and still provide complete

program safety. If we can determine that the following invariant holds, the check may be elided.

A check at a dereference of pointer value v may be elided at program point p if the previous,
equivalent check executed on v has not been invalidated by some program action.

We can implement this check optimization either at run-time or at compile-time. Run-time check

optimization has the advantage of being more exible. We only need to execute the checks absolutely

required to maintain program safety. However, the cost for this precision is extra safe pointer state which

must copied, maintained, and checked at each dereference. Compile-time check optimization, on the

other hand, is less exible because we must constrain the decision to elide a check to all previous possible

executions leading to a program point. The advantage of compile-time check optimization is that no

additional overhead is required at run-time to determine if a check may be elided.

5.1 Run-Time Check Optimization

We have designed and implemented a framework for dynamically eliding spatial and temporal checks.

Spatial checks have no side e�ects, thus we can employ memoization [FH88] (or function caching) to elide

their evaluation. We store the operands to the last check in the safe pointer object attributes, which

amounts to the e�ective address of the last dereference. At any dereference, the spatial check may be

elided if the e�ective address since the last check has not changed. This test is shown in Figure 8 in the

if statement surrounding the bounds check. It may be useful to memoize more than one set of operands.

In our implementation, we memoize both the e�ective address of the last dereference, i.e., use of `*', and

the e�ective address of the last subscript operation, i.e., use of `[ ]'. Changes in the former can be tracked

with only a single \dirty" bit. Changes in the latter are tracked by retaining a copy of the last index

applied to the pointer value.

To elide temporal checks, we keep a copy of a global counter, incremented when storage is deallocated,

in the safe pointer. If this counter, which we call the free counter, has not changed since the last temporal

check, the referent has not been freed and the temporal check can be safely elided. In our implementation,

7Note that in this case, we cannot try to bind the new pointer value to a live variable because the program may have
manipulated the pointer value to point before of after the intended referent prior to recasting it to a non-pointer value.
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void ValidateAccess(<type> *addr) f
if (freeCount != currentFreeCount) f

if (storageClass != Global && !ValidCapability(capability))

FlagTemporalError();

freeCount = currentFreeCount;

g
if (lastDerefAddr != addr) f

if ((unsigned)addr - (unsigned)base > size-sizeof(<type>))

FlagSpatialError();

lastDerefAddr = addr;

g
/* valid access! */

g

Figure 8: Memory access check with run-time check optimization. This C-like function is parameterized by

<type>, the type of the safe pointer referent. FlagTemporalError() performs system speci�c handling of a temporal access

error, e.g., force a core dump. FlagSpatialError() performs the same function, but for a spatial access error. The function

ValidCapability() indicates whether or not the passed capability is currently active, i.e., in the capability store. The

variable currentFreeCount is a global counter incremented each time storage is deallocated.

we do not increment the free counter when a procedure returns. Rather, we always perform temporal

checks on pointers to locals. This strategy works very well in practice because procedure returns are

quite frequent, while the use of local referents is generally infrequent.

5.2 Compile-Time Check Optimization

We have also designed (and are currently implementing) a compile-time optimization framework like

those proposed by Asuru [Asu92] and Gupta [Gup90]. Our algorithm implements a forward data-ow

framework similar to that used by common subexpression elimination [ASU86]. However, our algorithm

extends previous work to include eliding of temporal error checks, and because of our simpli�ed bounds

check, there is no need to split the optimization into upper and lower bounds check elimination.

Our optimization algorithm is shown in Figure 9. The algorithm is run twice, once for optimization

of spatial checks and again for temporal checks. The algorithm executes in three phases.

In the �rst phase, the algorithm seeds the data-ow analysis by approximating all out sets. For all

blocks except the entry block, the value of out[Bi] is set to all check expressions less those killed by the

block Bi, i.e., U�kill[Bi]. For the program entry block, B1, we must assume that no checks are available,

hence, in[B1] is set to empty and out[B1] is set to the checks generated in the entry block B1.

In the second phase, the data-ow framework is solved to determine where check expressions reach

in the program. For a check expression to reach a node Bi, it must be available at Bi for all executions,

that is, it must be available in the out sets of all predecessors to block Bi. This requirement is precisely

why the conuence operator is intersection. After the data-ow computation converges on a solution,

i.e., change == false, the set in[Bi] contains all checks that reach block Bi.

In the third phase, the in sets are used to elide redundant checks. Checks may be elided wherever

a lexically identical (or equivalent, if value numbering [RWZ88] or equality tests [AWZ88] are applied)

check is available in the block (i.e., the same check is in the in set of the block).

The de�ning feature for each analysis (spatial and temporal) is the speci�cation of what constitutes

a kill. A spatial check is killed by any assignment to a check operand, which includes assignment to the
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Input: A ow graph G with blocks B with gen[Bi] and
kill[Bi] computed for each block Bi 2 B. gen[Bi] is the
set of check expressions generated in Bi. kill[Bi] is the set
of check expressions killed in Bi. The entry block is B1.

Output: A ow graph G with redundant checks deleted.

Method: The following procedure is executed twice, once for
spatial check optimization and again for temporal check
optimization.

/* initialize out sets */
in[B1] = ;;
out[B1] = gen[B1];
U = [

Bi8B
gen[Bi];

for Bi 2 B �B1 do

out[Bi] = U � kill[Bi];

/* compute availability of checks, in sets */
change = true;
while change do begin

change = false;
for B 2 B �B1 do begin

in[Bi] =

T

P2Pred[B]
out[P ];

oldout = out[Bi];
out[Bi] = gen[Bi] [ (in[Bi] � kill[Bi]);
if out[Bi] 6= oldout then

change = true;
end

end

/* elide redundant checks */
for Bi 2 B �B1 do begin

for c 2 gen[Bi] do begin

if c 2 in[Bi] then
elide check c;

end

end

Figure 9: Compile-time check optimization algorithm.
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Figure 10: Experimental framework.

pointer variable or any of the operands of the index expression (if the pointer was indexed in the check

expression). A temporal check is killed by any free of the referent storage. If the referent of a free can

be determined to be di�erent than the check referent (e.g., through alias analysis), the free need not kill

the check.

While performing these analyses, we must also be wary of kills that may occur through function

calls or aliases. In either case, we must make a conservative approximation if insu�cient information is

available and assume that a kill does occur.

6 Experimental Evaluation

We evaluated our safe programming methodology by implementing a semi-automatic source-to-source

translator and examining the run-time, code and data size overheads for six non-trivial programs. For each

program, we analyzed its performance without optimization and with run-time resolved optimizations.

We also generated lower bound statistics for the e�cacy of compile-time optimization through the use of

a trace analyzer.

6.1 Experimental Framework

Figure 10 shows our experimental framework. We translate C programs to their safe counterparts by �rst

rewriting all pointer and array declarations, calls to malloc() and free(), and references (use of the

`&' operator) to use our Safe-C macros. These macros, when passed through the C preprocessor (CPP),

produce either the original C program or a Safe-C program. A Safe-C program has all pointer and array

declarations changed to type parameterized C++ class declarations. Using operator overloading in the

C++ class de�nition, we implement the extended safe pointer and array semantics as described in Section

3. Figure 11 shows a portion of the unoptimized safe pointer implementation.

All explicit storage allocation, i.e., calls to malloc() and free(), call wrapper functions which create

safe pointers from the standard library routines. Our malloc() implementation clears all allocated

storage, so any contained pointers start in the invalid state. If a local in a function is used as a pointer
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template <class Type>

class sp f
/* safe pointer representation */

Type *value; /* native pointer */

Type *base; /* base address of object */

unsigned long size; /* size of object in bytes */

char storageClass; /* type of allocation */

unsigned short capability; /* capability is always unique */

/* constructor */

sp(void) f
value = NULL;

base = NULL; size = 0;

storageClass = None;

capability = NEVER;

g

/* dereference */

Type& operator*(void) f
if (storageClass != Global && !ValidCapability(capability))

FlagTemporalError();

if ((unsigned)value - (unsigned)base > size-sizeof(Type))

FlagSpatialError();

return *value;

g

/* pointer addition */

sp<Type> operator+(int addend) f
sp<Type> p = *this; /* no side-effect on *this */

p.value = p.value + addend;

return p;

g

/* pointer boolean equality test */

int operator==(sp<Type>& p) f
return value == p.value;

g
g

Figure 11: A portion of the (unoptimized) safe pointer implementation.
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Program Instructions Insts per Dereference Class Description

Static Dynamic Static Dynamic

Anagram 10,096 19,457,876 106.3 7.6 S+,T- anagram generator

Backprop 10,840 122,490,093 148.5 8.9 S+,T- neural net trainer

GNU BC 19,508 12,290,996 15.5 7.6 S,T+ arbitrary precision calculator

Min-Span 11,976 13,337,918 48.7 5.9 S-,T+ min spanning tree computation

Partition 13,540 21,116,811 62.4 3.7 S,T- graph partitioning tool

YACR-2 18,584 546,214,295 37.1 14.0 S+,T- channel router

Table 2: Analyzed programs.

referent, we also rewrite the function to allocate a capability for the frame. Any pointer in the stack

frame of a function is initialized to an invalid state in the constructor of the C++ safe pointer class.

Application of the reference operator calls a function which creates a safe pointer from the decomposed

access path.

We compute a lower bound on the number of checks required for compile-time optimization by mod-

ifying the safe pointer implementation to make superuous stores to a global scratch pad array during

dereferences. The location of the superuous stores indicate whether or not a particular program point

required a check at run-time. We employ our run-time resolved optimization scheme to determine if a

check is required at run-time. The superuous stores are tracked by an address trace analyzer which

tabulates, by address, how many checks were executed. When the program terminates, we compute the

total number of program points that did not execute any checks and the total dynamic checks elided at

these program points.

These results form a lower bound on the number of static (in the code) and dynamic (executed at

run-time) checks required for a compile-time optimized program. With true compile-time analysis, the

actual number of checks required may be higher because 1) other inputs may require checks at program

points that did not execute any checks, and 2) limitations in static analysis, e.g., imprecisions due to

program aliases, may force a compile-time optimizer to make conservative assumptions and add checks

where they may not be needed. To increase the e�ectiveness of our lower bound study, we combined the

results of four separate inputs.

Our lower bound results are not a strict lower bound. Other static analysis techniques, e.g., range

analysis [Har77] or program restructuring, could decrease the number of static checks required. However,

for our proposed compile-time optimization framework without program restructuring, the lower bound

results are a strict lower bound.

6.2 Analyzed Programs

We analyzed six programs, selected because each exhibits a high frequency of indirect references. Table 2

details the programs that we analyzed. For each, we show the code size (Instructions/Static), the number

of instruction executed without checking (Instructions/Dynamic), the frequency of dereferences in the

program text (Insts per Dereference/Static), and the dynamic frequency of dereferences executed (Insts

per Dereference/Dynamic).

The Class column classi�es each program according to its spatial and temporal complexity. The
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Program Optimization

None Run-time Opt Compile-time Opt (lower bound)

Static Dynamic Static Dynamic (% Unopt) Coverage Static (% Unopt) Dynamic (% Unopt)

Anagram Spatial 95 2,554,106 95 1,000,414 (39%) 83% 46 (48%) 2,019,514 (79%)

Temporal 95 2,554,106 95 0 (0%) 83% 0 (0%) 0 (0%)

Backprop Spatial 73 13,730,020 73 9,157,590 (67%) 70% 40 (55%) 11,766,310 (83%)

Temporal 73 13,730,020 73 0 (0%) 70% 0 (0%) 0 (0%)

GNU BC Spatial 1,259 1,623,490 1,259 329,410 (20%) 34% 77 (6%) 363,568 (22%)

Temporal 1,259 1,623,490 1,259 144,102 (9%) 34% 58 (5%) 499,364 (31%)

Min-Span Spatial 246 2,268,757 246 547,369 (24%) 60% 7 (3%) 548,483 (24%)

Temporal 246 2,268,757 246 72,494 (3%) 60% 22 (9%) 72,494 (3%)

Partition Spatial 217 5,662,107 217 958,802 (17%) 76% 45 (21%) 1,034,748 (18%)

Temporal 217 5,662,107 217 0 (0%) 76% 0 (0%) 0 (0%)

YACR-2 Spatial 501 38,995,428 501 33,476,773 (86%) 76% 213 (43%) 34,125,516 (88%)

Temporal 501 38,995,428 501 0 (0%) 76% 0 (0%) 0 (0%)

Table 3: Checks required by optimization type.

spatial complexity, S, indicates the frequency of pointer arithmetic or indexing: either high (+), medium,

or low (-). The temporal complexity, T, is an indicator of how often the program frees storage. If this

factor is high (+), the program frees storage throughout execution, if low (-), the program never frees

storage (or only at program completion).

All programs were compiled and executed on a DECstation 3100 using AT&T USL cfront version

3.0.1. The output of cfront (C code) was compiled using MIPS cc version 2.1 at optimization level `-O2'.

All instruction counts were obtained with QPT [Lar93].

For all analyses, object attributes were only attached to pointer values. We used a 15 byte safe

pointer (275% overhead) in the unoptimized case: 4 byte pointer value, 4 byte base, 4 byte size, a 1 byte

storage class speci�er, and a 2 byte capability. For run-time resolved optimization, we added a 1 byte

dirty ag, a 4 byte last index, and a 2 byte free counter for a total size of 22 bytes (450% overhead).

Due to a bug in the C++ compiler, we could not use sizeof() in the safe pointer implementation if the

referent referred to itself; as a result, BC, Min-Span, and Partition all required the size of the referent

to be stored in the safe pointer, which added a 4 byte overhead for these programs. There were no

space overheads for array variables, as all required object attributes are known at compile-time. We

only rewrote the actual program code, all system library routines remained unchecked. We did, however,

perform interface checking. Whenever a system library is called, any pointer arguments are validated

against the time and space bounds expected by the library routine. For example, if a call were made to

fread(), the interface check would ensure that the destination of the read was live storage and that the

entire length of the read operation would �t into the referent.

6.3 Results

Table 3 shows the number of program checks required by optimization type. None shows the total

checks required with no optimization, both in the program text (Static) and at run-time (Dynamic). Run-

time Opt shows the number of checks required under our run-time optimization scheme. And Compile-

time Opt shows a lower bound on the number of checks required under our compile-time optimization
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Figure 12: Execution overheads.

scheme. Coverage indicates the fraction of dereferences in the program source that were executed at least

once.

Figure 12 shows the execution overheads for the analyzed programs. The Unopt columns show total

dynamic instruction counts for executions with no optimization, and the Opt columns show instruction

counts with run-time check optimization.

For the run-time optimized executions, the normalized instruction counts range from 2.3 (YACR-2)

to 6.4 (BC). This overhead reects program performance without any compile-time optimization. While

this performance degradation will likely be acceptable for the development cycle of short or medium

length program executions, it may still be prohibitively expensive for very long running programs, and it

is certainly too costly a price to pay for in-�eld instrumentation of a program. Examining more closely

the breakdown of the execution overheads yields much insight into how the performance of our checking

methodology could be improved.

For each program, we break down the overhead costs into �ve categories. Original Program is the

instruction count for the unchecked program, always normalized to one.

User De�ned Ptr is the cost in our framework for implementing all pointers as structures at the

user level. We measure this cost by running the program using safe pointers, but without any object

attributes or checks. The primary factors a�ecting performance here are increased loads, stores, and

function calls. The �rst factor is due to the MIPS cc compiler's handling of structure variables; once

wrapped in a structure, the �eld variables are no longer eligible for register allocation. When data

within a safe pointer is manipulated it is �rst loaded from the structure, used and then possibly stored

back if changed. If it is used again, it is again loaded from the structure. Wrapping attributes around

pointers also increases the costs of procedure call parameter passing. MIPS cc compiler passes most scalar

arguments through registers; however, composite structures are always passed through memory (on the
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stack). The second major factor a�ecting performance is an increased number of function calls. The

AT&T C++ compiler simpli�es complex expressions created during template instantiation by extracting

portions of the expression into static functions. This cost is only a side-e�ect of our implementation.

Spatial Data is the cost of maintaining and copying spatial object attributes. For the optimized

executions, this overhead includes the cost of maintaining the pointer dirty bits and previous index

values. Spatial Checks is the cost of performing spatial checks. Temporal Data is the cost of maintaining

and copying temporal object attributes. For the optimized executions, this overhead includes the cost of

maintaining the additional counter variable. Temporal Checks is the cost of performing temporal checks.

For BC, Min-Span, and Partition, run-time check optimization paid o� with a slightly lower execution

cost for spatial checking. For Anagram, Backprop, and YACR-2, adding run-time checks resulted in a

higher cost for spatial access checking; and in the case of Backprop, a higher overall execution overhead.

These programs demonstrate the trade-o�s involved in providing run-time check optimization. Run-

time optimization adds the extra overhead of copying, maintaining, and checking the extra safe pointer

state. If this added overhead, plus the overhead of the required checks, is greater than doing all the checks,

there is no advantage to run-time check optimization. With faster checks, compile-time optimization,

and spatially complex programs, this trade-o� becomes even more acute.

Since Anagram, Backprop, and YACR-2 must execute many of their checks, they do not bene�t from

the run-time optimizations. For YACR-2, the e�ects are much less pronounced because dereferences are

much less frequent (as shown in Table 2). We predict that compile-time analysis will be ine�ective for

most pointer and array intensive programs, as they are either spatially complex or rely heavily on dynamic

storage, two properties which reduce the e�ectiveness of compile-time spatial check optimization.

The second e�ect to observe when comparing the optimized to unoptimized execution costs is that the

greatest bene�t of run-time check optimization always comes from eliding temporal checks. In fact, adding

run-time optimization for temporal checks caused a signi�cant decrease in all execution overheads except

Backprop. There are two aspects to this result. First, temporal checks are very expensive (requiring

an associative search), so eliding one has a great performance advantage. Second, our run-time check

optimization of temporal checks is very e�ective. Temporal checks are rarely required, even for BC and

Min-Span, both of which free storage often. In the case of Backprop, adding run-time optimization for

temporal checks resulted in an increased execution overhead. Backprop has only one dynamic object, an

array, so temporal checking is relatively cheap without any optimization (the capability is always at the

head of the hash bucket chain). In this case, the cost of maintaining the extra storage required for the

free counter outweighs the cost of executing all temporal checks.

Our lower bound analyses (shown in Table 3) also suggest that few program points require tempo-

ral checks; after inspecting the code, it is apparent that compile-time analysis (even when not inter-

procedural) for eliding temporal checks will be very e�ective on these programs. Few of the dominating

loops and procedures contain procedure calls or calls to free().

Adding checking code reduces the e�ectiveness of many traditional compiler optimizations. We inline

all check code except for calls to ValidCapability() and abort(). These functions are both externally

de�ned, so the compiler must make conservative assumptions as to what actions they take. This conser-

vative approximation has the e�ect of limiting the e�ectiveness of many optimizations such as invariant

code motion, register allocation, copy propagation, and common subexpression elimination. Neither of

these functions produce any side-e�ects for normal executions. Hence, better compiler integration, i.e.,

providing a special channel of communication between the safe program generator and the compiler
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optimizer, would certainly increase the performance of our safe executions.8

Text size overheads are shown in Figure 13. All checking code, except the capability routines and

what the C++ compiler extracts for expression simpli�cation, is inlined into the original program text.

Surprisingly, the text overheads are quite small; 35% to 300% for the unoptimized executables and 41%

to 340% for the run-time optimized programs. The text sizes for the run-time optimized programs are

larger due to additional code required for maintaining, copying, and checking the extra object attributes.

As shown by comparing Table 2 and Figure 13, there is a strong correlation between static dereference

density and the resulting text overhead.

The data size overheads, shown in Figure 14, are measured as the total size of initialized (.data)

and uninitialized (.bss) data segments plus the size of the heap segment when the program terminates

execution. The data size overheads on the stack were not measured. All programs, except Min-Span,

have data size overhead below 100%. Backprop has the lowest overhead (less than 5%) because most of

its storage is large global arrays which do not require any object attributes. Min-Span has the highest

overhead (330%), which stems from the high density of pointers in its heap allocations, most of which

contain eight pointers and three integers. Some of the run-time optimized programs have slightly larger

overheads due to the additional object attributes.

To summarize the main points of our results:

� Execution overheads, even without compile-time optimization, are low enough to make our method-

ology useful during program development. However, the overheads are not likely low enough that

programmers would release software with checking enabled. We are currently exploring the use of

compile-time optimization and better compiler integration as means of increasing the performance

of our approach.

� The largest contributing factors to execution overhead are 1) safe pointer structures are not register

allocated, and 2) many traditional optimizations fail with the addition of checks. Other performance

losses are attributed to the C++ compiler simplifying expressions through the use of static functions,

and, due to a bug in the C++ compiler, the need to include the type size of the referent in the object

attributes. None of these di�culties are without recourse, however. Better integration between the

safe compiler and the optimizer could �x most problems.

� Dynamically eliding spatial checks is generally ine�ective, primarily because maintaining the extra

state, and checking it, quickly outweighs the cost of executing all checks. Our spatial check is very

cheap to execute, and spatially complex programs tend to execute most of the checks anyway.

� Temporal checks, on the other hand, are very expensive to perform and are rarely required, so

run-time optimization shows to be bene�cial in most cases.

� The text and data size overhead are generally quite low. The text overheads for all programs with

run-time optimization, range from 41% to 340%, with all but two below 100%. Data overheads

range from 5% to 330%, with all but one below 100%. Run-time optimized executions have slightly

larger text and data sizes.

8Many compilers, e.g. GNU gcc, already understand the special semantics of abort() and use this inter-procedural
information to improve optimizations. We should be able to achieve the same results for ValidCapability().
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Figure 13: Text overheads.
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Figure 14: Data overheads.
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7 Related Work

Our �rst attempt at creating a safe programming environment for C employed reference chaining. The

technique is similar to that used by many \smart pointer" implementations [EP91, Gin92]. The idea is

to insert any pointer which is generated either through use of explicit storage allocation, e.g., malloc(),

the reference operator (`&'), or assignment into a reference chain rooted at the referent. When a pointer

value is destroyed, e.g., through assignment, storage deallocation, or at procedure returns, the pointer is

removed from the reference chain. This technique has a number of useful properties. First, it is possible

to ensure temporal safety by destroying all pointer values when a referent is freed { just march down the

reference chain assigning NULL to all pointers. Second, if a destructed pointer value is the last value in

the referent's reference chain, a storage leak has occurred and it is detected immediately. Unfortunately,

this technique cannot be made to work reliably in C. It is relatively easy for the programmer to subvert

the checking mechanism through recasting and type-less calls to free(). Storage leak detection also

fails in the presence of circular references. The safe programming technique described in this paper is

signi�cantly more reliable because its correctness does not rely on tracking pointer values.

Some researchers have recently proposed providing complete program safety through limiting the

constructs allowed in the language. The main thrust of this work is the design of languages that support

garbage collection reliably and portably. For example, in [ED93], a safe subset of C++ is de�ned. The safe

subset does not permit any invalid pointers to be created; this restriction, for example, precludes the use

of any explicit pointer arithmetic. If requested, the compiler can enforce safety in a module by ensuring

that the programmer does not use any intrinsically unsafe operations. The safe subset also requires some

checking, but much less than our checking technique requires. Languages which can easily be made totally

safe have existed for a long time; for example, many FORTRAN implementations provide complete safety

through range checking [Cor87]. However, these languages tend to be less expressive than intrinsically

unsafe languages such as C or C++. We felt that it was important not to restrict the expressiveness

available to the programmer. Our checking technique is not limited by the language upon which it is

applied, it can be applied successfully to compiled or interpreted languages with subscripted and mutable

pointers, local references, and explicit and type-less dynamic storage management.

Table 4 details our work (Safe-C) and �ve other published systems that support memory access

checking.

Hastings' and Joyce's Purify [HJ92] is a commercially available memory access checking tool. It is

particularly easy to use because it does not require program source { all semantic changes to the program

are applied to the object code. Purify supports both spatial and temporal access error checking to heap

storage only through the use of a memory state map which is consulted at each load and store the

program executes. Purify also provides uninitialized read detection, and storage leak detection through

a conservative collector [Boe93, BW88]. Spatial access errors are detected by bracketing both ends of

any heap allocation with a \red zone". These zones are marked in the memory state map as inaccessible.

When a load or store touches a red zone a memory access error is agged. Temporal access errors are

detected by setting the memory state of freed storage to inaccessible. Purify cannot detect all memory

access errors. For example, accessing past the end of an array into the region of the next variable, or

accessing freed storage that has been reallocated cannot be detected. These limitations occur because

Purify does not determine the intended referent of memory accesses { it can only verify that the accessed

storage is active. Our checking technique, on the other hand, can detect all memory access errors because

it tracks not only the state of storage, but also the intended referents of all pointer values. To increase the
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Name Environment Method Error Model

Spatial Checks? Temporal Checks? Extensions

Safe-C C/C++ source-to-source yes* yes* errant free's
translation

Purify object �les object code yes yes errant free's,
[HJ92] translation limited to heap limited to heap uninitialized reads,

storage leaks

RTCC C safe yes* no
[Ste92] compiler

CodeCenter C/C++ interpreter yes* yes errant free's,
[KLP88] uninitialized reads,

type checking,
arithmetic errors, etc.

Integral C C safe yes* no
[Ros87] compiler

UW-Pascal Pascal safe yes* yes errant free's,
[FL80] compiler union type checking,

arithmetic faults, etc.

Table 4: Comparison of memory access checking work. Entries with an asterisk (*) indicate that the method

detects all errors for that particular error class.

e�ectiveness of temporal error checking, Purify ages the heap, holding freed storage in the heap free list

longer than needed. This aging increases the storage requirements of programs that use the heap. The

primary disadvantage of our technique over that used by Purify is that we require source code before any

checking can be implemented; thus, source code is required if libraries are to be checked. Our technique

is also not portable across languages, that is, a given implementation must be tailored for a speci�c

language. However, our technique is quite portable across di�erent platforms, especially if implemented

as a source-to-source translator. Although Purify is portable across languages (on a given platform), it

is not portable across platforms.

Ste�en's RTCC [Ste92] extends the functionality of the C language compiler PCC to include spatial

error checking. RTCC attaches object attributes to pointers in a fashion similar to our technique; it

does not, however, detect temporal access errors, nor does it explore the use of check optimization. Our

checking technique �nds both spatial and temporal access errors, and incorporates run-time and compile-

time optimizations through which access checks can be elided. In the implementation of RTCC the issue

of interfacing to library and system calls is addressed through encapsulation; Ste�en also augmented sdb

to provide users with transparent debugging support.

CodeCenter [KLP88] is an interpreted C language environment. The checking provided is very rich

{ it detects many memory access errors as well as provides dynamic type checking (i.e., the type of

the last store to memory must match the type of subsequent loads), uninitialized read detection, errant

free detection, and other useful checks. The published information describing CodeCenter is somewhat

ambiguous as to how it implements memory access checking. Object attributes (namely, type and size)

are attached to all storage when it is initialized. If a reference is made to storage, it appears that the base

and size attributes, associated with the referent storage, are also attached to the pointer value. Using

this information, CodeCenter provides complete coverage for spatial access errors. However, it does not

employ a capability based temporal checking scheme, so it is (sometimes) possible to access freed storage

25



after it has been reallocated for another purpose. Temporal access checking can also fail for pointer

references to local variables. Because our checking technique employs a capability based scheme, it never

misses temporal access errors. The primary disadvantage of CodeCenter is its resource requirements.

Since programs run in an interpreter, the execution overheads may discourage its use, and in the case of

long running programs, may preclude its use. Due to our use of compile-time instrumentation, resource

requirements are signi�cantly lower. Compile-time instrumentation also allows us to employ static check

optimizations.

Integral C [Ros87] is an integrated programming environment for the C language. The user interface

is very similar to CodeCenter, however, internally it does not employ an interpreter. As the user updates

code, it is incrementally compiled (at function granularity) to machine code. Like RTCC, Integral C

attaches only base and bound attributes to pointer values, thus it can only detect spatial access errors.

Fischer and LeBlanc's UW-Pascal compiler [FL80] supports both temporal and spatial error checking.

However, the lack of mutable pointers and dynamically sized arrays makes access checking much easier.

While UW-Pascal detects all spatial access errors, temporal access errors may not be detected if storage is

reallocated. Use of our checking technique is not limited by the expressiveness of the language; that is, it

can be applied successfully to compiled or interpreted languages with subscripted and mutable pointers,

local references, unions, and explicit and typeless dynamic storage management.

A closely related area of work, which can bene�t from our safe programming technique, is storage leak

detection. A storage leak is any storage to which the program can no longer generate a name. These leaks

occur when the last accessible pointer to a heap object is overwritten. Without the ability to generate a

name to the heap object, it cannot be freed, hence it has \leaked" out of the heap.

For languages like C and C++, leak detection is commonly implemented with a conservative collector

[Boe93, BW88]. A conservative collector sweeps memory looking for unreferenced storage. Because it

is di�cult to know where all pointers are located, the collector makes the conservative assumption that

all program accessible (non-heap) storage contains pointers. It then uses a traditional mark and sweep

collection method. While e�ective, this method has some drawbacks. First, storage leak detection is not

immediate, it is usually applied only when the programmer demands it or when the program completes

execution. Thus, for it to be useful, some dynamic information, like a partial call chain, must be kept

with allocations, in order for the programmer to deduce the circumstances under which the storage leak

occurred. Second, the conservative pointer assumption can cause non-pointer values to be mistaken as

pointer values which seem to reference heap storage. These false hits can hide a storage leak. The problem

is aggravated by large storage allocations because it is more likely that non-pointer values inadvertently

reference them; unfortunately, it is these large allocation leaks that we would most like to �nd. Third,

if the program hides pointers, for example, by encoding type information in the upper bits of a pointer,

or does not keep all pointers within the bounds of memory allocations, the collector may regard heap

storage as a leak when it is still in use.

These false leaks cannot occur under our checking scheme because the base �eld always holds a

pointer to the head of the allocation, and the program cannot manipulate this value. We can also address

the problem of false hits, that is, non-pointer values which appear to reference heap storage, by applying

safe pointer invariants to possible references. One trivial test is to ensure that both the capability and

the free counter values of the possible reference are valid. If an incrementing counter is used for each,

each value should be less than the current counter value. To summarize, using a conservative collector to

detect storage leaks with our safe programming technique makes the process intrinsically more reliable
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by eliminating false leaks and reducing the possibility of false hits.

Zorn and Hil�nger's mprof takes a notably di�erent (and clever) approach to detecting storage leaks

[ZH88]. During the analyzed program's execution, mprof maintains a table of partial call chains, each with

a count of how many malloc()'s and free()'s have occurred to storage whose call chains terminated with

that sequence. Detecting storage leaks then involves adjusting the appropriate counts at calls to malloc()

and free(). At a malloc(), the current call chain is used to increment the appropriate malloc() counter.

At a free(), a hidden pointer in the header of the freed allocation is used to increment the corresponding

free() counter. At program termination, detection of storage leaks involves reporting the partial call

chains whose malloc() and free() counts di�er. Unlike conservative collection, their technique does not

su�er from false hits, that is, a true storage leak will always be detected. The primary disadvantage of

their technique (over conservative collection) is that leak diagnostics may only be gathered after execution

completes, and many programs do not deallocate storage needed until program termination (e.g., in C,

the call to exit() will ensure that all the program's resources are reclaimed). This behavior can yield

many (arguably) false leaks. Mprof also provides a wealth of other information useful for optimizing a

program's memory usage.
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8 Conclusions

In this paper, we presented a pointer and array access checking technique that provides complete error

coverage through a simple set of program transformations. Our technique, based on an extended safe

pointer representation, has a number of novel aspects. It is the �rst technique that detects all spatial

and temporal access errors. Its use is not limited by the expressiveness of the language; that is, it can be

applied successfully to compiled or interpreted languages with subscripted and mutable pointers, local

references, unions, and explicit and type-less dynamic storage management. We showed the transfor-

mations required in the context of the C language, and also developed run-time and compile-time check

optimization frameworks. Finally, we described our prototype implementation, and used it to analyze the

execution, text and data size overheads of six non-trivial, pointer intensive C programs. We showed that

performance with only run-time resolved optimizations was quite good. For all six programs, instruction

execution overheads ranged from 130% to 540%, with text and data size overheads typically below 100%.

The primary factors to performance degradation in safe programs are the lack of safe pointer register

allocation and ine�ective optimization in the presence of check functions. We see the solution to these

problems as better integration between the safe compiler and the code generator.

Our prototype implementation, while successful at showing the viability of our compile-time safe

programming methods, leaves many unanswered questions. We close this paper with a few that we are

addressing with the development of our fully automatic, optimizing Safe-C compiler:

� E�ciency: Can our safe programming method be made e�cient enough for in-production soft-

ware releases? Will compile-time optimization su�ce? Can a hybrid solution be made to work?

Will inter-procedural analysis be required? How can a safe compiler best support \loosely" typed

operations, such as recasting a non-pointer value to a pointer value?

� Usability: What is the best way to integrate safe programming techniques into a development

environment? Into the compiler? As a source-to-source translator? Should libraries be versioned,

i.e., a safe and unsafe version, or will interface checking su�ce? What API can su�ciently support

user developed storage managers and systems programming?

� Extendibility: How can the error model be extended to include detection of other important memory-

related errors such as storage leaks, uninitialized reads, parallel programming races, as well as

others?
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