Appears in MICRO-33

Compiler Controlled Value Prediction using Branch Predictor Based Confidence

Eric Larson and Todd Austin
Electrical Engineering and Computer Science
University of Michigan
{larsone,austin}@eecs.umich.edu

Abstract

Value prediction breaks data dependencies in a pro-
gram thereby creating instruction level parallelism that
can increase program performance. Hardware based
value prediction techniques have been shown to
increase speed, but at great cost as designs include pre-
diction tables, selection logic, and a confidence mecha-
nism. This paper proposes compiler-controlled value
prediction optimizations that obtain good speedups
while keeping hardware costs low. The branch predic-
tor is used to estimate the confidence of the value pre-
dictor for speculated instructions. This technique
obtains 4.6% speedup when completely implemented in
software and 15.2% speedup when minimal hardware
support (a 1 KB predictor table) is added. We also
explore the use of critical path information to aid in the
selection of value prediction candidates. The key result
of our study is that programs with long dynamic depen-
dence chains benefit with this technique while pro-
grams with shorter chains benefit more so from simple
selection methods that favor optimization frequency. A
new branch instruction that ignores innocuous value
mispredictions is shown to eliminate unnecessary
mispredictions when program semantics aren’t violated
by confidence branch mispredictions.

1. Introduction

High performance computing requires high through-
put instruction execution. Control and data hazards
impede this goal, preventing programs from using all of
the available resources. Research has shown that the
outcomes of many instructions are highly predictable
leading to a growing body of work in value prediction.
Values are predicted for selected instructions, breaking
output dependencies that allow dependent instructions
to execute concurrently. This technique breaks data
hazards, extracting additional instruction level parallel-
ism (ILP) and increasing the number of instructions
executed per cycle (IPC). There are several different
types of value predictors: last value predicted [10],
stride [3], context-based [19], or hybrid [3].

To date, most value prediction research has focused
on hardware-based schemes. In these predictors, the
prediction table is indexed very early in the pipeline
using the PC. Typically, the prediction is known in the
fetch and/or dispatch stages, such that predicted values
can be forwarded immediately to dependent instruc-
tions stalled waiting for inputs. Speculative instructions
must delay retirement until the value prediction is veri-
fied. If the prediction is correct, any dependent instruc-
tions that have executed can retire immediately. If the

prediction is wrong, the errant instruction and all
dependent instructions must be re-executed. The high
cost of value mispredictions (tens of cycles in proposed
microarchitectures) limits the application of value pre-
diction to only the most highly predictable instructions.

To increase the scope of value prediction, it is possi-
ble to employ confidence mechanisms to reduce the
probability that a value is mispredicted [7]. A confi-
dence mechanism is a meta-predictor, it predicts if the
prediction of the value predictor is correct. If the confi-
dence mechanism is not very confident that a prediction
will be correct, it will not predict the value, thereby
avoiding an expensive misprediction. Many instruc-
tions with low overall prediction accuracies do have
highly predictable confidence, making it possible to
leverage more predictions without incurring more
mispredictions.

One technique to measure the confidence of value
prediction is to use a saturating counter [3] where the
counter is incremented on every correct prediction and
subtracted or reset to zero when an incorrect prediction
occurs. If the value of the counter is greater than some
threshold, it will be considered a high-confidence pre-
diction and will be subject to value prediction. Another
scheme to measure confidence is to base predictions on
the past n predictions [3]. This implementation allows
for highly confident predictions on instructions that
exhibit a specific pattern of correct and incorrect pre-
dictions. This scheme is very similar to pattern-based
branch predictors.

Hardware-based value predictions, while efficient,
have significant hardware costs. Value predictors are
often on the order of cache sizes before they attain
respectable accuracies and coverage. In addition,
misprediction recovery mechanisms, especially partial
re-execution techniques [20], are quite complex. Efforts
have been made to address these costs through soft-
ware-based value prediction optimizations. For these
techniques, the compiler is responsible for locating pre-
diction candidates, implementing the prediction optimi-
zation, verifying the prediction, and providing fixup
code in case of a misprediction [5]. Typically, the com-
piler chooses value prediction candidates based on pro-
filing data.

To date, software-based value prediction techniques
have only rendered small speedups compared to hard-
ware-based techniques. The primary reason for this
disparity is because software-based techniques have not
employed confidence mechanisms that can increase the
coverage and accuracy of value prediction. Without a
confidence mechanism, software-based techniques

must choose between either low accuracy or few candi-
dates - neither choice provides much opportunity for
performance gains. Moreover, candidates are selected
using profiles from a particular input set; choices made
for a particular input set may hinder performance for
another.

Another factor that limits software-based speedups
is the cost of applying the technique. Instructions must
be added to implement predictions, update predictor
tables, and fix up mispredictions. To limit these costs,
most previous work has employed simple predictors
such as last-value predicted or static stride. More pow-
erful methods require too many instructions and con-
sumes too much code and data space to be efficiently
handled by software. Moreover, the additional instruc-
tions required to maintain software-based predictors
increase register pressure and consume valuable mem-
ory bandwidth. One technique for solving both prob-
lems is to add explicit predict and update instructions to
the instruction set architecture (ISA) [6]. The prediction
state is completely stored in hardware and allows for
more sophisticated context-based predictors. Candidate
selection and misprediction recovery is still imple-
mented by the compiler.

In this paper, we present an optimized approach to
compiler-controlled value prediction. Our approach
improves the performance of compiler-controlled value
prediction while keeping hardware costs significantly
lower than hardware-only based techniques. It also
addresses many of the drawbacks endemic to compiler-
controlled value prediction.

Low coverage and accuracy can be addressed by
adding confidence. We implemented a confidence pre-
diction mechanism using the underlying branch predic-
tor. The branch predictor has a choice of executing a
section of code using the predicted value or the actual
value. Based on previous history, the branch predictor
will make an informed decision on which section of
code should be executed. If a selected candidate turns
out to be unpredictable, the branch predictor will pre-
dict that the non-speculative value should be used,
resulting in performance comparable to the original
code. Assuming a fixed accuracy, a scheme with confi-
dence will have higher coverage and a higher potential
for speedup.

To address overhead concerns, we propose improve-
ments to the optimized instruction selection process.
By selecting more gainful sites for selection, we can
select fewer of them, thus limiting the overheads asso-
ciated with software-based value prediction. Typically,
the basis for choosing candidates is based upon the pre-
diction accuracy and the number of times it is executed.
While these are good characteristics, it does not tell the
complete story. Research has shown [3, 12] that select-
ing candidates on the critical path is important to realize
the maximum potential of value prediction.

Ideally, a long chain of dependent instructions
should be split in half resulting in two chains that can
be executed in parallel. Past work [4] has employed
static analysis to identify instructions in the middle of

these output dependence chains. This approach does not
provide complete information regarding true critical
paths, since it is difficult to tell where the performance
degrading (e.g., long latency) instructions lie and how
much of a particular chain actually resides in the
instruction window. As a result, we analyze the depen-
dence chains at runtime in the instruction window of a
detailed processor simulator. Instructions are given
scores based on how far they are to either end of a
dependence chain. The final candidates are selected as a
function of this critical path metric, optimization fre-
quency, and optimization accuracy.

In all software-based value prediction techniques, a
branch is used to validate the prediction. If a prediction
is incorrect, the branch will re-direct the program to the
fixup code where the computation proceeds with the
non-speculative value. We use a similar approach when
mapping confidence to the branch predictor. This
approach introduces unnecessary branch misprediction
when the branch predictor directs instruction fetch
down the fixup path and the value prediction is correct.
When the branch direction is verified to be incorrect
(i.e., the value prediction was correct), the pipeline is
flushed and instruction fetch is redirected to the value
speculative code. Since the fixup path is always correct,
regardless of the value prediction, this branch mispre-
diction is superfluous. We create a misprediction toler-
ant branch that eliminates the misprediction recovery
when this situation occurs.

The rest of this paper is organized as follows: Sec-
tion 2 describes our three value prediction optimiza-
tions in more detail: compiler-controlled value
prediction with confidence, critical path based selec-
tion, and a special branch that tolerates certain mispre-
dictions. Section 3 describes our results. Section 4
describes related work in value prediction and Section 5
gives a conclusion and some ideas for future work.

2. Value prediction optimizations

This section details techniques used to improve
compiler-controlled value prediction while keeping
implementation costs low. The first technique described
employs the existing branch predictor as a confidence
mechanism. This allows for additional optimization
candidates to be selected while keeping the accuracy
high. The second technique is a critical path based
selection technique which selects instructions based on
their position in the critical path. The approach reveals
to the compiler the best candidates to select for optimi-
zation. The final optimization is a misprediction toler-
ant branch that will remove unnecessary mispredictions
when program correctness remains intact.

2.1 Branch based confidence

In order to reap the full benefits of value prediction,
it is necessary to have a confidence scheme. This is dif-
ficult to implement directly in software since the data
used to keep track of the previous history must be
stored in data memory and additional instructions will
be needed to extract and update this confidence data. To
avoid adding this complexity, we propose using the

branch predictor to measure the confidence of a value
prediction. The primary benefit is that the information
needed to make the confidence estimate and the mispre-
diction recovery scheme is already built into the proces-
sor. In addition, a good branch predictor will provide a
better measure of confidence than any reasonable soft-
ware implementation could attain because the predictor
implements powerful algorithms directly in hardware.
For value predictions, it is necessary to record if a value
was correctly predicted or not. To use the branch pre-
dictor for value prediction confidence, we map “value
prediction was correct” to “not taken” and “value pre-
diction was incorrect” to “taken” by bracketing value
prediction sites with a controlling confidence branch.

BEFORE: AFTER:
r3 <- load X r3 <- predict index
r4 <- add r3, rl r9 <- load X

r5 <- sub r4, r8 ri0 <- cnpeq r9, r3
beq r10, fixup

A. update index, r3
r4 <- add r3, ri

r5 <- subr4, r8

fixup: r3 <- nov r9
br A

Figure 1: Software Value Prediction with Confidence
Example. Value prediction is applied to the initial load
instruction. The branch predictor will try to predict if the
predicted value (r3) matches the actual value (r9).

Our technique is illustrated by the example in Figure
1. The code before the optimization shows a chain of
two instructions that are dependent on a load instruc-
tion. In this example, the optimization is applied to the
load instruction. The destination register of the load is
replaced by a register that is free during this segment
(r9 in this case). The prediction is written into the origi-
nal destination register of the load (details on the pre-
dict and update instructions are given later; assume for
now that the destination register automatically contains
a prediction for the load instruction). After the load,
compare and branch instructions are added to validate
the prediction. If the prediction is incorrect, the branch
is taken where fixup code will place the proper value
into the destination register. If correct, no fixup code is
executed, and the program proceeds with the speculated
value. The dependent instructions that follow the pre-
diction remain unchanged.

The branch instruction gauges the confidence of the
prediction. If the branch predictor predicts the branch
not taken, it is predicting with high confidence that the
value will be predicted correctly. In this case, execution
of the dependent instructions can begin as soon as the
predicting instruction has completed (and, if necessary,
data from other sources is also ready). If the branch pre-
dictor predicts the branch taken, it predicts low confi-
dence and speculates down the unoptimized path. The
instruction on the unoptimized path is dependent on the
actual value of the load instruction (or whatever
instruction was being predicted) so progress will not be
made until this instruction has completed. If the branch
predictor was wrong, the penalty is the cost of a branch
misprediction.

Our approach assumes the underlying machine con-
tains a dynamic scheduling mechanism. Using this
mechanism, we can dynamically select speculative or
non-speculative code sequences knowing that the
scheduler will extract all available instruction level par-
allelism. In a statically scheduled machine, extracting
instruction level parallelism from the value speculative
code sequence requires that the compiler commit to
applying the optimization at compile time, otherwise,
no benefits are found. For instance, the compare
instruction in Figure 1 will stall on a statically sched-
uled machine, eliminating the benefit of predicting the
load.

The example in Figure 1 uses the predict and update
instructions that were proposed in [6]. These instruc-
tions are additions to the ISA that contain an index
which refers to a specific entry in a hardware value pre-
diction table. Predict instructions employ different indi-
ces to distinguish between different prediction sites.
Each predict instruction also has a corresponding
update instruction which informs the predictor of the
last correct value. The predictor used by these instruc-
tions is transparent to the programmer, permitting the
hardware predictor mechanism to be changed without
impacting correctness of programs.

A static stride predictor [5] is used for all experi-
ments. The static stride is determined by profiling. This
predictor works well and is fairly straightforward to
implement in software. Implementing more powerful
predictors in software incur significantly more over-
head in terms of instructions and memory operations.

The software-only version is applied in a similar
manner. The major difference is where the predictions
are stored. Without hardware support to store the pre-
dictions in a table, predictions must be stored in mem-
ory and/or registers. We chose to keep the predictions in
memory until we enter the function where the instruc-
tion resides. At that time, the prediction is transferred
into a register. Throughout the function, all updates are
done by updating the register. At the end of the func-
tion, the value is stored back into memory for future
use. This approach cannot always be applied as it
requires that the prediction consume a register through-
out the entire function. The optimization was applied at
link-time when sufficient free registers were available
(no spills). As a result, fewer sites were optimized in
the software-only implementation. For some bench-
marks, we were unable to apply the optimization to any
site. We also explored loading and storing the predic-
tion to and from memory instead of using a register but
this resulted in consistent slows down due to the high
number of additional memory operations.

Any instruction can be selected as a value prediction
candidate. This includes floating-point instructions as
well as integer instructions. Floating-point predictions
are restricted to last-value only since there is no floating
point immediate instruction to add a static stride. This is
not a significant concern since there are very few float-
ing point instructions that are predictable with nonzero
static strides.

2.2 Value prediction candidate selection

Profiling data is used to select candidates for value
prediction. We examine two techniques to determine
which instructions are the best candidates for applying
the optimizations. It it best to apply the optimization
when the following equation holds true:

OPTaccuracy X OPThenefit >> OPTinaccuracy X OPTpenaity

Optimization accuracy and inaccuracy is only
gauged at sites where the branch predictor indicates a
high-confidence prediction. The optimization accuracy
(OPT,ccuracy) is computed (using profiling) as the num-
ber of times a value was correctly predicted divided by
the number of high-confidence predictions. Similarly,
the optimization inaccuracy (OPTipaccyracy) i the per-
centage of incorrect high-confidence predictions (or 1 -
OPTyceuracy)- When a misprediction tolerant branch is
implemented (described in the next section), the low-
confidence case is equivalent to no optimization being
applied at all. Therefore, we do not consider low-confi-
dence predictions when computing the optimization
inaccuracy. There is a small penalty due to the instruc-
tions added as a result of the optimization and increased
pressure of the branch predictor. We ignore this effect
in order to simplify the selection process.

The optimization penalty (OPTenarry) is equivalent

to a branch misprediction plus the overhead of execut-
ing the fixup code. In addition, there are issues such as
increasing code size and branch predictor pressure that
could adversely affect performance. Since the number
of optimized candidates is small, the effect is a second
order consideration and is not considered further.

The optimization benefit (OPTepefit) IS much more
difficult to measure in an out-of-order microarchitec-
ture. Instead of trying to derive an equation, we esti-
mate the benefit using two techniques: a naive approach
that assumes a fixed benefit each time the optimization
is executed and a critical-path based approach which
looks at how often the instruction is on critical paths in
the processor instruction window.

In the naive approach, we assume the benefit is fixed
with a value of one, making the overall benefit equal to
the number of times the optimization was successfully
applied. This fixed benefit model does not hold true in
modern out-of-order machines as reducing the latency
of different instructions will have varying levels of ben-

Initial chain of dependent Lat. Dist. Dist. Middle
instructions Top Bottom Metric

lda r0 <- 40(r29)
load r3 <- 0(r0)
sub r9 <- r5, r3
sll r13 <- r9, 8
add r8 <- r6, ri3
cnpeq r1l1 <- r8, 3

P RRPRNPR
~NOoO b~ weE
PNWNON
P NWAWE

efit. For example, a load instruction that misses the
cache and heads a long chain of dependent instructions
will have a higher benefit than a load instruction that
hits in the cache and has no dependencies.

Previous research [3] has shown that applying value
prediction to instructions on the critical path will have a
higher benefit than applying it to instructions that are
not on the critical path. In order to maximize the benefit
of value prediction, it is desirable to split long chains of
dependent instructions in half so the two halves can
execute in parallel, improving performance. Our criti-
cal-path based selection technique estimates the benefit
by looking at how often it is in the middle of a depen-
dence chain.

An example of a dependence chain is given in Fig-
ure 2. From each instruction in the dependence chain, a
“middle metric” is computed by taking the minimum
distance from the endpoints of the chain. The profiled
latencies of the instructions are used in calculating the
distance to properly weight long latency instructions.
This middle metric is an estimate of the parallelism
gained by splitting the chain at that particular instruc-
tion. In the example, the subtract instruction has the
best middle metric, and thus is the best candidate to
apply value prediction to in this dependence chain.
When the chain is split, each chain requires only four
cycles to execute. Since both chains can be executed in
parallel, the savings is three cycles over the original
execution.

Obtaining the required data for profiling in this step
requires the use of a detailed microarchitectural simula-
tor that captures the state of the instruction window for
each cycle of execution. Examples of tools that could
perform this analysis include the SimpleScalar tool set
[1] or Intel’s VTune [24]. Addressing the performance
of these analyses is beyond the scope of this paper,
however, we believe techniques such as microarchitec-
tural memoization [21] or sampling could be used to
limit the cost of dependence chain profiling.

2.3 Misprediction tolerant branches

An important optimization scenario occurs when the
value is predicted correctly but the branch predictor
indicated it would be predicted incorrectly. With a nor-
mal branch instruction, the processor will speculate
down the path using the actual value of the instruction
assuming the prediction is incorrect. When the branch

Resulting chain 1 Resulting chain 2

Ida r0 <- 40(r29)
load r3 <- 0(r0)
sub r9 <- r5, r3

predict r9

sl ri3 <- r9, 8
add r8 <- r6, ri13
cnpeq rll1 <- r8, 3

Latency: 4 cycles Latency: 4 cycles

Figure 2: Example of computing the middle metric and the resulting chains. The left diagram shows the computation of the
middle metric and indicates that the subtract instruction is the best choice. The right diagram shows the resulting chains when the
initial chain is split at the sub instruction. This results in a potential savings of three cycles over the initial chain.

executes, a misprediction takes place and control is
transferred down the path which uses the predicted
value. However, using the actual value of the predicted
instruction does not violate the semantics of the pro-
gram. Useful instructions are thrown away when recov-
ering from the misprediction. To solve this particular
problem, we add a special branch instruction that will
not recover from such a misprediction. We call this
branch BEQIT, which stands for “Branch if EQual to
zero Ignoring mispredictions down the Taken path”. If
the branch predictor speculates down the taken path, no
misprediction will take place if the branch was mispre-
dicted. The branch predictor is still updated with the
correct choice so it can potentially make a better choice
in the future. If the predictor speculates the branch is
not taken but should be, a branch misprediction will be
declared as normal (to fix the incorrect value). While it
is still preferable to go down the optimized code path,
there is no overall benefit to reaching it by taking a
misprediction.

One advantage to the misprediction tolerant branch
is that it is inexpensive to implement. It only requires
some additional decoding logic and a few gates to pre-
vent the processor from entering a speculative state
when the branch is mispredicted in the taken direction.

3. Results

In this section, the results of our experimental evalu-
ation are detailed. The initial experiment looks at the
coverage and accuracies of a value predictor with and
without confidence. This is followed up with simula-
tion-based performance analysis. Next, we look at the
effectiveness of software-only value prediction. The
final experiments evaluate the utility of various selec-
tion mechanisms, and analyzes the performance impact
of the misprediction tolerant branch.

3.1 Experimental framework

We obtained our results using a mix of SPEC95 and
SPEC2000 benchmarks including integer and FP
benchmarks. The benchmarks were compiled using the
Compagq C (version 5.9) and Fortran (version 5.3) com-
pilers under using full compiler optimization (-O4). The
benchmarks used are listed in Table 1. The train input

set was used during all profiling runs.

Table 1: Benchmarks used in simulation

Name Fastfwd Sim. ?:ée ?:ée

Cycles Cycles (train) (ref)

art (2000 FP) 100 M 250 M 0.8988 0.9106
compress (95 INT) none 51M 2.1864 1.4796
crafty (2000 INT) 100 M 250 M 1.7819 1.7524
equake (2000 FP) 100 M 250 M 2.6225 2.5963
go (95 INT) 100 M 250 M 1.5356 1.5478
m88ksim (95 INT) none 150 M 2.3362 2.2220
mcf (2000 INT) 100 M 250 M 2.5588 2.5630
tomcatv (95 FP)! none 85 M 2.3905 2.1885

1. For tomcatv, the reference set was used for profiling and will
be referred to train throughout the paper and vice versa.

The simulators used in this study are derived from
the SimpleScalar/Alpha 3.0 tool set [1], a suite of func-
tional and timing simulation tools for the Alpha AXP
ISA. The timing simulator executes only user-level
instructions, performing a detailed timing simulation of
an aggressive 4-way dynamically scheduled micropro-
cessor with two levels of instruction and data cache
memory. Simulation is execution-driven, including exe-
cution down any speculative path until the detection of
a fault, TLB miss, or branch misprediction.

Initially, the benchmarks were run with SimpleSca-
lar twice to obtain profiling information. In the first
pass, the best static stride and average latencies were
determined for each instruction that wrote to an output
register. In this phase, all instruction latencies are
assumed to be one cycle except loads and branches. The
latency for each load is the average latency given an L1
cache hit is one cycle and an L1 miss is eight cycles.
The average latency for branches is computed given
that a correct prediction executes in one cycle and an
incorrect prediction recovers in six cycles. In the sec-
ond profiling pass, the predictability, optimization
accuracy, and the middle metric was computed for each
instruction. The predictability was determined by using
an infinite sized static stride predictor to eliminate con-
flicts. Optimization accuracies were determined using a
16k gshare branch predictor to estimate confidence.

Statistics gathered from profiling were then used to
select the candidates to apply the value prediction opti-
mization. The optimization was applied using ALTO
[16] - a link time optimizer that provides a set of classic
compiler optimizations that can be applied to Alpha
COFF object files. To normalize results, we disabled all
ALTO optimizations, only utilizing its intermediate rep-
resentation construction and analysis features.

Finally, the optimized program was simulated using
SimpleScalar. Our baseline simulation configuration
models a modern out-of-order processor microarchitec-
ture. The processor has a large window of execution; it
can fetch and issue up to 4 instructions per cycle. It has
a 32 entry re-order buffer with a 16 entry load/store
buffer. Loads can only execute when all prior store
addresses are known. In addition, all stores are issued in
program order with respect to prior stores. A 4k entry
gshare branch predictor was used and there is an six
cycle minimum branch misprediction penalty. The pro-
cessor has 4 integer ALU units, 2-load/store units, 2-FP
adders, 1-integer MULT/DIV, and 1-FP MULT/DIV.
The latencies are: ALU 1 cycle, MULT 3 cycles, Inte-
ger DIV 12 cycles, FP Adder 2 cycles, FP Mult 4
cycles, and FP DIV 12 cycles. All functional units,
except the divide units, are fully pipeline allowing a
new instruction to initiate execution each cycle.

The processor we simulated has 32k 2-way set-asso-
ciative instruction and data caches. Both caches have
block sizes of 32 bytes. The data cache is write-back,
write-allocate, and is non-blocking with 2 ports. The
data cache access latency is one cycle (for a total load
latency of two cycles). There is a unified second-level
512k 4-way set-associative cache with 32 byte blocks,
with a six cycle cache hit latency. If there is a second-

level cache miss it takes a total of 60 cycles to make the
round trip access to main memory. We model the bus
latency to main memory with a six cycle bus occupancy
per request. There is a 16 entry 4-way associative
instruction TLB and a 32 entry 4-way associative data
TLB, each with a 30 cycle miss penalty.

The value prediction table used by the PREDICT
and UPDATE instructions contains enough entries so
that each optimization site gets a unique entry. The
number of entries in the table ranges from 22
(m88ksim) to 136 (mcf) when using the best set of can-
didates. The best set of value prediction candidates is
determined in Section 3.5. This set is used for all other
experiments (except for the software-only section - see
Section 3.4).

3.2 Coverage and accuracy

Value predictors can be measured by their coverage
and accuracy, giving a clear indication how well the
predictor will perform. In profile based candidate selec-
tion, a threshold is used to filter out bad candidates. An
instruction is only a candidate if its accuracy exceeds
this threshold. Using this approach, there is a trade-off
between coverage and accuracy. When the threshold is
increased, the accuracy increases by only allowing the
most accurate candidates; and coverage decreases since
the higher threshold will eliminate many candidates.
Conversely, decreasing the threshold increases the cov-
erages but lowers the accuracy.

Figure 3 looks at the confidence and accuracy for all
value prediction candidates within each of the bench-
marks. The baseline statistics are updated each time the
instruction is executed while statistics in the branch
based confidence scheme are only updated when the
branch predictor indicates a high confidence prediction.
A static stride predictor is used in both instances. The
accuracy for the static predictor is equivalent to the
value prediction accuracy, and the coverage is the per-
centage of instructions (using a dynamic instruction
count) that meet or exceed the threshold. For the predic-
tor with confidence, the accuracy is equal to the number
of times a prediction is correct when the branch predic-
tor indicates a high confidence prediction and the cov-
erage is the percentage of instructions that were
predicted to have high confidence.

The results in Figure 3 show that the value predictor
with confidence has better coverage - accuracy pairs
than with no confidence. Even with a threshold of zero,
accuracy is high for almost all of the benchmarks. Six
of the eight benchmarks have accuracies greater than
94% with crafty (87.6%) and go (79.8%) being the two
exceptions. As threshold increases the predictor with no
confidence obtain high accuracies, but coverage
decreases. This result is expected since using confi-
dence will add candidates that have a pattern of predict-
ability but do not necessarily have overall high
predictability.

3.3 Value prediction with confidence

Now, we measure the actual performance benefit of

the value prediction technique using confidence. We
compare each program to a baseline with no value pre-
diction and to a model of the value prediction scheme

Baseline Accuracy

100

90
80

Percent

70

60

50

Threshold

Baseline Coverage

Percent

0 25 50 75 100
Threshold

Accuracy with Confidence

100
90
80

70

Percent

60

50

0 25 50 75 100
Threshold

Coverage with Confidence

100

75

50

Percent

25

0 25 50 75 100
Threshold

—e—art —m—compress —a—crafty
—<«—equake —»—go —e— ma88ksim
—+—mcf —=—tomcatv

Figure 3: Coverage and accuracy results. The top plots
show baseline value prediction coverage and accuracy with
no confidence and the bottom plots show coverage and
accuracy when the branch predictor is used to estimate
confidence. Given a fixed accuracy, the coverage is higher
when confidence is used resulting in more candidates for
value prediction.

implemented in [6]. This scheme is also compiler-con-
trolled and uses the PREDICT and UPDATE instruc-
tions. It is applied using a statically scheduled compiler
where speculative code is executed before a branch that
will verify if the prediction was correct. The fixup code
re-executes all of the instructions using the correct
value. This is modeled in our implementation by forc-
ing execution down the “not taken” or “use value pre-
diction” path. If the value shouldn’t be used, control
will be transferred to the fixup code. However, a
misprediction penalty is only assessed if the branch pre-
dictor predicted not taken.

The results of this experiment are shown in Figure 4.
An average speedup of 15% is obtained over the base-
line with no value prediction and up to 38.1% for
m88ksim with reference input. The value predictor with
confidence was, on average, 3.3% faster than the
model, but only three benchmarks (compress, equake,
and mcf) exhibited any significant speedup. The static
predictor even did slightly better for the crafty bench-
mark.

We also ran experiments using an identically-sized
bimodal and a hybrid branch predictor (profiling was
still done using a gshare predictor). Not surprisingly,
the gshare predictor outperformed the bimodal predic-
tor (average gain of 5.4%) but was not as good as the
hybrid predictor (average gain of 2.9%).

3.4 Software value prediction

The results of software-only value prediction are
shown in Figure 5. Speedups were a mixed bag, ranging

from 1% for art and mcf to 13% for m88ksim. The aver-
age speedup for the five benchmarks is 4.6%. Com-
piler-controlled value prediction with ISA support did
much better. The slower performance can be attributed
to the fact that the predictor state is stored in memory,
resulting in larger overheads compared to hardware.
Another problem can be attributed to the fact we do not
allow register spills in our implementation. Candidates
were rejected if there wasn’t a free register to hold the
prediction. This means far fewer candidates were opti-
mized (a subset of the best set as determined in section
3.5) compared to the experiments with ISA support. In
fact, no instructions were optimized for this reason in
three of the benchmarks (compress, crafty, and tom-
catv). A possible improvement is to include more
sophisticated register allocation techniques but this
require balancing register files spills in to memory and
the benefit of applying the value prediction optimiza-
tion.

3.5 Selecting value prediction candidates

Selecting proper candidates is an important aspect to
obtaining the maximum speed up for value prediction.
In this experiment, we look at three different selection
criteria. In the first case, we assume that each time the
optimization is executed, it has a constant or fixed bene-
fit. As a result, this selection criteria is tied to the num-
ber of times the instruction will successfully execute
the optimization. In the second case, the benefit is tied
to its estimated position and frequency in the critical
path. This middle metric is computed for each instruc-
tion by determining the distance from the closest end-

40.0%

30.0%

20.0%
10.0%

% Speedup

0.0%

-10.0%
art compress crafty

equake go

tomcatv

m88ksim mcf

‘ W VP No conf - Train

EVP Conf - Train

E VP No conf - Ref EIVP Conf - Ref ‘

Figure 4: Measuring value prediction with confidence. Using the branch predictor with confidence obtains an average
speedup of 15.2% compared to a program with no value prediction and an average speedup of 3.3% speedup over programs

with value prediction but no confidence.

30.0%

% Speedup

25.0%

20.0%

15.0%

10.0%

5.0%

0.0%
art

equake

go m88ksim mecf

‘.Soflw are-only VP @V P w ith ISA support ‘

Figure 5: Comparing software-only value prediction to value prediction with ISA support. Software-only value prediction
leads to a average speedup of 4.6% Speedups of at least 1% for each of the five benchmarks including a 13% speedup for
m88ksim but value prediction with ISA support does significantly better. Insufficient free registers were available to apply the
optimization to the three other benchmarks (compress, crafty, and tomcatv).

point in the dynamic instruction window dependence
chain. This result is averaged over the duration of the
simulation and then multiplied by the number of times
the optimization is executed. The third selection crite-
rion is a union of the two previous techniques in an
attempt to gather the best candidates from both selec-
tion criteria. The final selection is based on multiplying
the benefit by the optimization accuracy.

When selecting candidates, only the best instruction
was selected for each basic block since adjacent
instructions tended to have similar benefit scores and
applying optimizations too close together results in
overheads that reduce the effectiveness of value predic-
tion. This heuristic is simple but may be wrong in situa-
tions where the basic blocks are small. We plan to
address this problem in future work.

For each benchmark, four to five sets of candidates
were analyzed for each selection method. The sets were
obtained by taking the best n candidates where n was a
different number for each set. The numbers used to
determine the sets were the same for each criterion
within a benchmark except for the union which con-
tained the union of the two other selection methods.
The numbers used varied from benchmark to bench-
mark due to different static instruction counts.

The results of this experiment are shown in Figure 6.
The graph compares the best performing set of each
selection technique. For most benchmarks, there isn’t
significant differentiation between the three selection
methods. There are three benchmarks (crafty, go, and
tomcatv) where the critical path based techniques did
poorly. This can be explained using the data in Table 2.
This table shows the average number of unique depen-
dence chains present in the instruction window during
execution, the average size of each chain, and the aver-
age length of the longest size chain present in the
instruction window each cycle. Benchmarks crafty, go,
and tomcatv all had an average long chain of 4.2 or less
while the other five benchmarks had an average longest
chain greater than 5.0. Since the longest chain is short,
the benefit of splitting up the chains is reduced since
less instructions are executed in parallel. For bench-
marks that did well, such as m88ksim and equake, there

are a large number of long chains. The other bench-
marks saw little difference between the two techniques
despite long chain sizes. This is due to the selection

methods picking similar lists of candidates.

Table 2: Chain statistics for benchmarks

oanchmark || MGl | A Sumel | Lo
art 1.7572 5.2454 55716
compress 6.6651 3.3440 5.3126
crafty 4.7575 2.6762 3.0922
equake 6.4199 2.9883 5.2122
go 3.8074 3.1829 3.7823
m88ksim 7.4921 4.3198 5.0041
mcf 7.1499 3.1283 5.7780
tomcatv 4.8718 2.8814 4.1790

Table 3: Number of optimized instructions. This table
indicates the number of instructions that were optimized by

the compiler.
Benchmark | oh Cions | Benchmank | oo
art 26 go 78
compress 59 m88ksim 22
crafty 87 mcf 136
equake 134 tomcatv 61

Table 3 shows the number of instructions that are
optimized in the best case and gives a rough estimate of
the size of the value predictor table needed. In the worst
case, mcf optimized 136 instructions, assuming 8 bytes
(standard Alpha data size) for each entry, the predictor
will have an overall size of just over 1 KB. This is sig-
nificantly smaller than hardware-only solutions that
require tables in the 16 - 32 KB range [19]. In addition,
hardware cannot do selection so it must indiscrimi-
nately apply value prediction to highly predictable
instructions while the compiler can selectively apply
the optimization to only the most gainful sites requiring
significantly fewer resources.

30.0%

20.0%

10.0%

% Speedup

0.0%

-10.0%

art compress crafty

equake go

m 88ksim m cf tom catv

‘ OF ixed

BB C ritical P ath

ElUnion ‘

Figure 6: Analyzing different techniques for selecting value prediction candidates. The critical path based technique works
best for benchmarks that have long chains such as equake and m88ksim. Using a fixed benefit model worked best for
benchmarks with short chains such as crafty and go. In other cases, the two techniques were about equal.

3.6 Misprediction tolerant branches

The special branch BEQIT is used to ignore branch
mispredictions when the branch predictor mistakenly
uses the actual value when the predicted value is indeed
correct. Using the actual value does not cause incorrect
program behavior so a misprediction is unnecessary in
this case. The results of applying the BEQIT branch are
shown in Figure 7. The misprediction tolerant branch
improved the performance of many of the benchmarks,
especially for compress where a speedup of 13% was
realized for the reference input set. A few programs,
such as m88ksim and tomcatv, saw little benefit as these
programs have few mispredicted value speculation
branches.

4. Related work

Several studies have looked at the predictability of
the instructions and the overall performance potential
of value prediction [2, 9, 10, 11, 13, 19]. Lepak and
Lipasti [9] show that the data used in store instructions
is predictable. Marcuello and Gonzalez [13] look at
how various microarchitectural parameters affect value
prediction performance. They show that small instruc-
tion windows only render moderate speedups, making
the criticality of instructions important. Calder et. al.
[2] found that loads in general are predictable and have
invariant values. They also use this knowledge to spe-
cialize code sequences.

Fu et. al. [4, 5, 6] first examined compiler controlled
value prediction. They applied value prediction optimi-
zations to selected candidates based on profiling data.
In [5], the value prediction is completely software
based. Speedups were obtained for a few benchmarks.
In [6], PREDICT and UPDATE instructions are added
to the instruction set, resulting in better speedups since
predictions could be stored more efficiently in hard-
ware. In [4], the design is modified to incorporate a
CHECKPRED instruction which will rewind the archi-
tectural state in the event of a value misprediction. The
main advantage of this approach is that it eliminates the
need of explicit fixup code since the original code is re-
executed with the proper value. They also look at the
predictability of instructions based on their location in
the static dependence graph and found that instructions
in the middle of dependence chains do not necessarily
lead to the best speedup.

Many researchers have developed techniques for

more accurate value prediction [3, 8, 17, 19, 23]. Calder
et. al. [3] adds the notion of confidence to value predic-
tors so the hardware can identify when it should predict
values. Unlike our scheme, the confidence is com-
pletely implemented in hardware.

Recent research has provided a better understanding
of the behavior of long latency instructions. Zilles and
Sohi [25] looked at the backward slices of performance
degrading instructions. The slice is formed by looking
at the instructions that lead up to the performance
degrading event. The slices can be pre-executed to hide
the latency of the event improving performance. Srini-
vasan and Lebeck [22] found that many load instruc-
tions can tolerate long latencies without hindering
performance. Value prediction tries to remove these
long latencies and this research implies that effort
should be concentrated on predicting load instructions
where the long latency cannot be tolerated without hin-
dering performance.

Other value prediction research has focused on sepa-
rating the value prediction hardware from the rest of the
machine or applying it to different microarchitectures
[12, 14, 15, 18]. Lee et. al. [12] describes an implemen-
tation where the value prediction hardware is decoupled
from the instruction fetch stage. Nakra et. al. [18]
applies value prediction to VLIW machine that uses
two execution engines. One engine is for VLIW code
that uses value prediction to remove data dependencies
and the other executes compensation code when there is
a misprediction. Marcuello et. al. [14, 15] added value
prediction to multithreaded architectures and found it is
important to eliminate serialization caused by inter-
thread dependencies.

5. Conclusions

In this paper, we have shown that using a branch
predictor as a confidence mechanism for value predic-
tion was effective in improving performance while min-
imizing hardware costs. The speedup on average is
15.2% over a program with no value prediction and
3.3% over a program with a static value predictor with-
out confidence. Hardware can be further reduced by
implementing value prediction completely in software.
Moderate speedups were obtained for some bench-
marks (average of 4.6%); others were excluded due to a
lack of free registers to implement the optimization.

45.0%

40.0%

35.0%

30.0%
25.0%

20.0%

% Speedup

15.0%

10.0%

5.0%
0.0%

art compress crafty equake

tomcatv

‘-Trainrwithout mTrain - with gRef - without gRef - with ‘

Figure 7: Speedup with and without a misprediction tolerant branch. There were speedups of greater than 1% in four of the
eight benchmarks. The branch performed well in compress with the reference data set with a speedup of 13%.

The best method for selecting candidates differs
upon the size and number of dependence chains in a
program. Using a constant fixed benefit was better for
programs with fewer and shorter chains while the criti-
cal path technique was better for programs with more
and longer chains. The largest number of optimized
instructions in any one benchmark was 136 for mcf,
requiring a value prediction table of only slightly larger
than 1 KB, much smaller than required by similar per-
forming hardware techniques. A low-cost misprediction
tolerant branch was used to avoid misprediction, result-
ing in speedups for most benchmarks, including a 13%
speedup in compress.

There are several opportunities for future work. One
possibility is to further understand the best set of value
prediction candidates. A factor not looked at in this
paper is the spacing of the optimized instructions. If
optimized instructions are too close together, there will
be too much splitting of dependence chains and the
overhead of the optimization will dominate. On the
other hand, if the optimized instructions are too far
apart, the maximum benefit of value prediction is not
obtained. There may be other uses for the optimizations
outlined in this paper. The branch predictor could be
used to estimate confidence for other forms of specula-
tion, or the misprediction tolerant branch can be used in
optimizations that contain a programmatically correct
path regardless of the actual outcome of the branch.

Acknowledgements

We would like to thank the anonymous reviewers for
their valuable comments. This material is based upon
work supported under a National Science Foundation
Graduate Fellowship. Equipment support was provided
by Intel Corporation.

References

[1] D.C. Burger and T. M. Austin, “The SimpleScalar Tool
Set, Version 2.0”, University of Wisconsin Computer Sci-
ences Technical Report #1342, June 1997.

B. Calder, P. Feller, and A. Eustace, “Value Profiling and
Optimization”, in Journal of Instruction-Level Parallel-
ism, March 1999.

B. Calder, G. Reinman, and D. M. Tullsen, “Selective
Value Prediction”, in 26th International Symposium of
Computer Architecture, May 1999.

C. Fu. and T. M. Conte, “Value Speculation Mechanisms
for EPIC Architectures”, Technical Report. Dept. of
Electrical and Computer Engineering, North Carolina
State University, Raleigh, NC 27695-7911, October
1998.

C. Fu, M. D. Jennings, S. Y. Larin, and T. M. Conte,
“Software-Only Value Speculation Scheduling”, Techni-
cal Report. Dept. of Electrical and Computer Engineer-
ing, North Carolina State University, Raleigh, NC
27695-7911, June 1998

C. Fu, M. D. Jennings, S. Y. Larin, and T. M. Conte,
“Value Speculation Scheduling for High Performance
Processors”, in 8th International Conference on Archi-
tectural Support for Programming Languages and Oper-
ating Systems, October 1998.

D. Grunwald, A. Klauser, S. Manne, and A. Pleskun,
“Confidence Estimation for Speculation Control”, in
25th International Symposium of Computer Architecture,

[2]

(3]

(4]

(5]

(6]

(7]

10

June 1998.

J. Huang, Y. Choi, D. J. Lilja, “Improving Value Predic-

tion by Exploiting Both Operand and Output Value

Locality”, Laboratory for Advanced Research in Com-

puting Technology and Compilers Technical Report No.

ARCTIC 99-06, July 1999.

K. M. Lepak and M. H. Lipasti, “On the Value Locality

of Store Instructions”, in 27th International Symposium

of Computer Architecture, June 2000.

[10] M. H. Lipasti and J. P. Shen, “Exploiting Value Locality
to Exceed the Dataflow Limit”, in 29th International
Symposium on Microarchitecture, December 1996.

[11] M. H. Lipasti and J. P. Shen, “The Performance Potential
of Value and Dependence Prediction”, in EUROPAR-97,
August 1997.

[12] S. Lee, Y. Wang, P.Yew, “Decoupled Value Prediction on
Trace Processors”, in 6th International Symposium on
High Performance Computer Architecture, January
2000.

[13] P. Marcuello and A. Gonzalez, “The Potential of Data
Value Speculation to Boost ILP”, in 12th International
Conference on Supercomputing, July 1998.

[14] P. Marcuello and A. Gonzalez, “A Quantitative Assess-
ment of Thread-Level Speculation Techniques”, in 1st
International Parallel and Distributed Processing Sym-
posium, May 2000.

[15] P. Marcuello, J. Tubella, and A. Gonzalez, “Value Pre-
diction for Speculative Multithreaded Architectures” in
32th International Symposium on Microarchitecture,
November 1999.

[16] R. Muth, S. Debray, S. Watterson, and K. De Bosschere,
“alto: A Link-Time Optimizer for the Compaq Alpha”,
University of Arizona Computer Sciences Technical
Report 98-14, December 1998.

[17] T. Nakra, R. Gupta, and M. L. Soffa, “Global Context-
Based Value Prediction”, in 5th International Symposium
on High Performance Computer Architecture, January
1999.

[18] T. Nakra, R. Gupta, and M. L. Soffa, “Value Prediction
in VLIW Machines”, in 26th International Symposium
on Computer Architecture, May 1999.

[19] Y. Sazeides and J. E. Smith, “The Predictability of Data
Values”, in 30th International Symposium on Microar-
chitecture, December 1997.

[20] A. Sodani and G. Sohi, “Dynamic Instruction Reuse”, in
24th International Symposium on Computer Architec-
ture, June 1997.

[21] E. Schnarr and J. Larus, “Fast Out-Of-Order Processor
Simulation Using Memoization”, in 8th International
Conference on Architectural Support for Programming
Languages and Operating Systems, October 1998.

[22] S. T. Srinivasan and A. R. Lebeck, “Load Latency Toler-
ance in Dynamically Scheduled Processors”, in 31st
International Symposium on Microarchitecture, Decem-
ber 1998.

[23] D. M. Tullsen, J. S. Seng, “Storageless Value Prediction
Using Prior Register Values”, in 26th International Sym-
posium on Computer Architecture, May 1999.

[24] VTune™ Performance Analyzer Home Page, http://
developer.intel.com/vtune/analyzer/index.htm

[25] C. B. Zilles and G. Sohi, “Understanding the Backwards
Slices of Performance Degrading Instructions”, in 27th
International Symposium of Computer Architecture, June
2000.

(8]

[°]

	Compiler Controlled Value Prediction using Branch Predictor Based Confidence
	Eric Larson and Todd Austin
	Electrical Engineering and Computer Science
	University of Michigan
	{larsone,austin}@eecs.umich.edu
	Abstract
	1. Introduction
	2. Value prediction optimizations
	Figure 1: Software Value Prediction with Confidence Example. Value prediction is applied to the i...
	Figure 2: Example of computing the middle metric and the resulting chains. The left diagram shows...

	3. Results
	Table 1: Benchmarks used in simulation
	Figure 3: Coverage and accuracy results. The top plots show baseline value prediction coverage an...
	Figure 4: Measuring value prediction with confidence. Using the branch predictor with confidence ...
	Figure 5: Comparing software-only value prediction to value prediction with ISA support. Software...

	Table 2: Chain statistics for benchmarks
	Table 3: Number of optimized instructions. This table indicates the number of instructions that w...
	Figure 6: Analyzing different techniques for selecting value prediction candidates. The critical ...

	3.6 Misprediction tolerant branches

	4. Related work
	5. Conclusions
	Figure 7: Speedup with and without a misprediction tolerant branch. There were speedups of greate...

	Acknowledgements
	References

