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Abstract
Instruction supply is a crucial component of processor

performance. Instruction prefetching has been proposed as
a mechanism to help reduce instruction cache misses, which
in turn can help increase instruction supply to the processor.

In this paper we examine a new instruction prefetch ar-
chitecture called Fetch Directed Prefetching, and compare
it to the performance of next-line prefetching and streaming
buffers. This architecture uses a decoupled branch predic-
tor and instruction cache, so the branch predictor can run
ahead of the instruction cache fetch. In addition, we ex-
amine marking fetch blocks in the branch predictor that are
kicked out of the instruction cache, so branch predicted fetch
blocks can be accurately prefetched. Finally, we model the
use of idle instruction cache ports to filter prefetch requests,
thereby saving bus bandwidth to the L2 cache.

1 Introduction

At a high-level, a modern high-performance processor is
composed of two processing engines: thefront-end pro-
cessor and theexecution core. The front-end processor is
responsible for fetching and preparing (e.g., decoding, re-
naming, etc.) instructions for execution. The execution core
orchestrates the execution of instructions and the retirement
of their register and memory results to non-speculative stor-
age. Typically, these processing engines are connected by a
buffering stage of some form,e.g., instruction fetch queues
or reservation stations – the front-end acts as a producer, fill-
ing the connecting buffers with instructions for consumption
by the execution core. This producer/consumer relationship
between the front-end and execution core creates a funda-
mental bottleneck in computing,i.e., execution performance
is strictly limited by fetch performance. Efficient instruction
cache performance is critical in order to keep the execution
core satisfied. Instruction cache prefetching has been shown
to be an effective technique for improving instruction fetch
performance [2, 9, 6, 7, 13, 17, 18, 20, 21], and this is the
focus of our paper.

We recently proposed a scalable fetch architecture to re-
lieve the fetch bottleneck [14]. One aspect of that archi-
tecture was to decouple the branch predictor from the in-
struction cache. The branch predictor produces fetch blocks
into aFetch Target Queue (FTQ), where they are eventually

consumed by the instruction cache. This decoupling allows
the branch predictor to run ahead of the instruction fetch.
This can be beneficial when the instruction cache has a miss,
or when the execution core backs up, thereby filling up the
connecting buffers and causing the instruction cache to stall.
This second case can occur because of data cache misses or
long latency instructions in the pipeline. In this paper we
examine using the fetch block addresses in the FTQ to pro-
vide Fetch Directed Prefetching (FDP) for the instruction
cache. We use the fetch block addresses stored in the FTQ
to guide instruction prefetching, masking stall cycles due to
instruction cache misses.

Future branch prediction architectures may be able to
hold more state than the instruction cache, especially multi-
level branch predictors and those that are able to predict
large fetch blocks or traces. When a cache block is evicted
from the instruction cache, we examine marking the en-
try that corresponds to this cache block in the Fetch Tar-
get Buffer (FTB) [14], which is similar to a branch target
buffer, but can predict larger fetch blocks. If a branch pre-
dicted FTB entry is marked as being evicted, we can then
prefetch the predicted fetch block using our fetch directed
prefetching architecture.

We also examine taking advantage of idle ports on the
instruction cache to check if potential prefetch addresses are
in the cache before using them to perform a prefetch. This
will filter prefetch requests and save bus bandwidth to the
unified L2 cache. We use a lockup free instruction cache,
so that the I-cache port(s) can be used for prefetch filtering
even during an instruction cache miss.

The remainder of this paper is organized as follows. In
Section 2 we describe the methodology used to gather our
results. Section 3 describes using idle cache ports to fil-
ter instruction prefetch requests, and Section 4 describes
our previous work on decoupled front-end branch predic-
tor. Section 5 proposes and provides results for our fetch
directed prefetching architecture, and Section 6 describes
and provides results for prior prefetching architectures. Sec-
tion 7 compares fetch directed prefetching to prior prefetch-
ing architectures for different cache sizes and associativities
and when using one or two ports for the cache. Finally, Sec-
tion 9 provides a summary and discusses future directions.
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# inst 16K-2W 16K-4W 32K-2W
program fwd MR IPC MR IPC MR IPC
groff 0 5.9 1.90 4.7 2.05 2.6 2.43
gcc 400 7.1 1.43 6.4 1.48 3.4 1.77
go 1000 3.4 1.48 2.1 1.61 0.9 1.77
m88ksim 1000 2.8 2.08 1.2 2.49 1.2 2.43
perl 2000 3.9 2.18 2.7 2.43 0.6 2.91
vortex 1000 12.8 1.50 10.8 1.61 6.5 2.09

Table 1: Program statistics for the baseline architecture.

2 Methodology

The simulator used in this study was derived from the Sim-
pleScalar/Alpha 3.0 tool set [1], a suite of functional and
timing simulation tools for the Alpha AXP ISA. The tim-
ing simulator executes only user-level instructions, perform-
ing a detailed timing simulation of an aggressive 8-way dy-
namically scheduled microprocessor with two levels of in-
struction and data cache memory. Simulation is execution-
driven, including execution down any speculative path until
the detection of a fault, TLB miss, or branch misprediction.

To perform our evaluation, we collected results for 5 of
the SPEC95 C benchmarks plusGroff a C++ text format-
ting program using the reference inputs. The programs were
compiled on a DEC Alpha AXP-21164 processor using the
DEC C and C++ compilers under OSF/1 V4.0 operating
system using full compiler optimization (-O4 -ifo). Ta-
ble 1 shows the number of instructions (in millions) that
were executed (fast forwarded) before simulation began.
These fast forward numbers were taken from a study by
Sherwood and Calder [16], which shows the time varying
behavior (IPC, cache miss rates, branch misprediction, etc.)
at 100 million instruction intervals for all the SPEC 95 pro-
grams. We report results for simulating each program for up
to 100 million instructions after fast forwarding.

2.1 Metrics

To evaluate instruction prefetching we provide results in
terms of (1) percent speedup in IPC achieved from using
prefetching over the base IPCs shown in Table 1, (2) percent
L2 bus bandwidth used, and (3) instruction cache miss rates.
When providing the results for bus utilization, the utilization
is the percent of cycles the bus is busy servicing L1 instruc-
tion and data cache misses, and any instruction prefetches.
The instruction cache miss rates are in terms of the percent
of fetched cache blocks that missed in the instruction cache.
This is calculated by taking the number of cache blocks
fetched that missed in the instruction cache, and dividing
this by the number attempted cache blocks fetched during
execution.

2.2 Baseline Architecture

Our baseline simulation configuration models a future gen-
eration out-of-order processor microarchitecture. We’ve se-
lected the parameters to capture underlying trends in mi-
croarchitecture design. The processor has a large window of
execution; it can fetch up to 8 instructions per cycle. It has
a 128 entry reorder buffer with a 32 entry load/store buffer.
To compensate for the added complexity of disambiguating
loads and stores in a large execution window, we increased
the store forward latency to 3 cycles.

There is an 8 cycle minimum branch misprediction
penalty. The processor has 8 integer ALU units, 4-
load/store units, 2-FP adders, 2-integer MULT/DIV, and 2-
FP MULT/DIV. The latencies are: ALU 1 cycle, MULT 3
cycles, Integer DIV 12 cycles, FP Adder 2 cycles, FP Mult
4 cycles, and FP DIV 12 cycles. All functional units, except
the divide units, are fully pipelined allowing a new instruc-
tion to initiate execution each cycle.

2.3 Memory Hierarchy

We completely rewrote the memory hierarchy in Sim-
pleScalar to better model bus occupancy, bandwidth, and
pipelining of the second level cache and main memory.

We examine the performance of instruction prefetching
for a 16K 2-way and 4-way associative cache, and a 32K
2-way associative cache, each with 32-byte lines. Table 1
shows the percent of fetched cache blocks that missed (MR)
for each of these cache configurations, along with their cor-
responding IPCs. The data cache for each configuration is a
4-way associative 32K cache with 32 byte lines.

The second level cache is a unified 1 Meg 4-way asso-
ciative pipelined L2 cache with 64-byte lines. The L2 hit
latency is 12 cycles, and the round-trip cost to memory is
100 cycles. The L2 cache has only 1 port. We examine two
different L2 caches. The first configuration corresponds to
pipelining the L2 cache to allow a new request each cycle,
so the L2 bus can transfer 32 bytes/cycle. The second con-
figuration corresponds to allowing a new request every 4 cy-
cles, so the L2 bus can transfer 8 bytes/cycle. The L2 bus is
shared between instruction cache block requests, data cache
block requests, and prefetch requests.

3 Using Idle Cache Ports to Filter Instruction
Prefetch Requests

Lockup-free caches were originally proposed to increase the
performance for a unified instruction and data cache [8], and
have been shown to improve the performance of data caches
by allowing multiple outstanding loads [4]. Lockup free
caches are inexpensive to build, since they only require a
few Miss Status Holding Registers (MSHRs) to hold the in-
formation for an outstanding miss. When the missed block
has been completely fetched from memory it is then inserted
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into the cache. In this paper we make use of a lockup-free
instruction cache to implement a form of prefetch filtering
during an I-cache miss.

3.1 Cache Probe Filtering

Prefetching blocks that are already contained in the instruc-
tion cache results in wasted bus bandwidth. When the in-
struction cache has an idle port, the port can be used to
check whether or not a potential prefetch address is al-
ready present in the cache. We call this techniqueCache
Probe Filtering (CPF). If the address is found in the cache,
the prefetch request can be cancelled, thereby saving band-
width. If the address is not found in the cache, then in the
next cycle the block can be prefetched if the L2 bus is free.
Cache probe filtering only needs to access the instruction
cache’s tag array. Therefore, if it is found to be beneficial to
add an extra port for CPF, it would only effect the timing of
the tag access, and not the data array.

An instruction cache (port) may be idle and go unused
because of (1) an instruction cache miss, (2) a full instruc-
tion window, or (3) insufficient predicted fetch blocks. If
an instruction cache miss occurs, then the fetch engine will
stall until the miss is resolved. When the instruction window
becomes full because of a slow instruction in the execution
core, the instruction cache has to stall since the fetch buffer
is full. In addition, a dual ported or banked instruction cache
can potentially have idle ports if the branch predictor does
not provide enough cache block addresses to fetch in a given
cycle.

To use the idle cache ports to perform cache probe fil-
tering during a cache miss, the cache needs to be lockup-
free. To benefit from cache probe filtering in the presence
of (2) and (3) above, the instruction cache does not have to
be lockup-free.

3.2 Prior Cache Probe Filtering Research

Prior instruction cache prefetch studies have examined fil-
tering instruction prefetches based on whether or not the ad-
dress was already in the instruction cache [2, 9]. For every
instruction prefetch, these studies first check the instruction
cache and only perform the prefetch if the block is not in
the instruction cache. This assumes extra instruction cache
ports to perform the cache probe check.

In our simulations we examine the performance with
and without cache probe filtering. We model cache port us-
age in our simulations, and only allow cache probe filtering
to occur when there is an idle cache port.

4 Decoupled Front-End

A traditional fetch engine couples its branch prediction ar-
chitecture with the instruction cache. Each cycle the branch

prediction architecture is used to produce the fetch ad-
dress(es) to be used in the next cycle’s cache fetch. If
the instruction cache stalls, then instruction fetch stops and
the branch predictor and instruction cache sit idle until the
cache miss is resolved.

In [14], we examined decoupling the branch predictor
from the instruction cache. To provide a decoupled front-
end, aFetch Target Queue (FTQ) is used to bridge the gap
between the branch predictor and the instruction cache. Ev-
ery cycle, the branch predictor will produce a fetch target
block prediction and store it in the FTQ, where it will even-
tually be consumed by the instruction cache. The FTQ pro-
vides the buffering necessary to permit the branch predictor
and instruction cache to operate autonomously. The FTQ
allows the branch predictor to work ahead of the instruction
cache when it is stalled due to a cache miss or a full instruc-
tion buffer. If the instruction cache is multi-ported, multiple
valid FTQ entries can be consumed in a single cycle until
ports are exhausted.

Any branch predictor (Basic Block Target Buffer [22],
Two-Block Ahead Predictor [15], or Fetch Target
Buffer [14]) can be put in front of the FTQ and produce
fetch block addresses to be consumed by the instruction
cache. It is the FTQ that allows the branch predictor to run
ahead of the instruction cache.

4.1 Baseline Branch Prediction Architecture

In prior work, we showed that a 2-level Fetch Target Buffer
(FTB) can provide scalable branch prediction [14]. In this
paper we use a single level 4K entry 4-way associative FTB,
which feeds a 32 entry FTQ, instead of a 2-level FTB table,
in order to concentrate on fetch direct prefetching. A 4K
entry FTB is large, but is implementable using the 2-level
FTB approach described in [14]. We are currently evaluat-
ing using FDP with a 2-level FTB design. For conditional
branch prediction, we use the McFarling bi-modal gshare
predictor [11], with an 8K entry gshare table and a 64 entry
return address stack in combination with the FTB.

Table 2 shows the effects of using the FTB with a dual
ported instruction cache. The results show that 7% speedup
is achieved on average when using 2 ports instead of 1 port
for the instruction cache. The last 3 columns in table 2
show the percent of executed cycles when (1) both of the
ports were idle, (2) when only one of the ports was idle, and
(3) when none of the ports were idle. The first case occurs
because of a stalled fetch engine. The second case occurs
when the FTQ can only provide enough fetch bandwidth to
fetch from one cache block. The final column shows that
on average the FTQ can provide enough fetch bandwidth to
keep both ports on the instruction cache busy 20% of the
time. Cache probe filtering, as described in section 3, can
take advantage of these idle cache ports to filter prefetches
the remaining 80% of the time. In our baseline architec-
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% speedup % port availability
program with 2 ports 2 idle 1 idle 0 idle
groff 8.2 35.1 45.6 19.3
gcc 6.9 36.8 46.1 17.1
go 5.4 32.2 44.0 23.9
m88ksim 5.6 31.0 46.5 22.5
perl 11.2 32.3 42.5 25.3
vortex 6.9 41.2 47.7 11.1

average 7.4 34.8 45.4 19.9

Table 2: Baseline statistics for the dual-ported instruction
cache. The first column shows the percent speedup obtained
when using a dual-ported instruction cache over a single
ported cache for the baseline architecture. The last three
columns represent the percent of executed cycles when both
ports on the cache are idle, when one port is idle, and when
both ports are busy.

ture we use 2 ports for the instruction cache. In section 7,
we compare the prefetching performance of single and dual
ported L1 instruction caches.

5 Fetch Directed Prefetching

Fetch Directed Prefetching (FDP) follows the predicted
stream, enqueuing prefetches from the FTQ. This is made
possible if the branch prediction architecture can run ahead
of the instruction fetch, which is what the FTQ based branch
predictor provides [14]. One advantage of this design, is
that FDP can continue to prefetch down the predicted stream
even when the instruction cache is stalled. We now describe
our Fetch Directed Prefetching architecture, describe the
heuristics that were used to better select which fetch blocks
to prefetch, and evaluate their performance.

5.1 Fetch Directed Prefetching Architecture

Figure 1 shows the FDP architecture. As described in sec-
tion 4, we use a decoupled branch predictor and instruc-
tion cache, where the FTQ contains the fetch blocks to be
fetched from the instruction cache. The FDP architecture
uses aPrefetch Instruction Queue (PIQ), which is a queue
of prefetch addresses waiting to be prefetched. A prefetch
from the PIQ will start when the L2 bus is free, after first
giving priority to data cache and instruction cache misses.

One of the benefits of the FTB branch predictor de-
sign is that it can provide large fetch blocks [14]. A fetch
block from one prediction can potentially span 3 cache
blocks. Therefore, each FTQ entry contains three cache
fetch block entries providing the fetch addresses for up to
3 cache blocks. Each fetch block entry contains a valid bit,
a candidate prefetch bit, and anenqueued prefetched bit, as
well as the cache block address. The candidate bit indicates
that the cache block is a candidate for being prefetched. The

Instruction 
Fetch

Branch 
Predictor

Prefetch
Buffer

Prefetch Enqueue
(filtration mechanisms)

L2 Cache
Prefetch

PIQ

FTQ

current FTQ
prefetch candidate

Figure 1: Fetch Directed Prefetching Architecture.

bit is set using filtration heuristics described below. The en-
queued bit indicates that the cache block has already been
enqueued to be prefetched in the PIQ. Candidate prefetches
from FTQ entries are considered in FIFO order from the
FTQ, and are inserted into the PIQ when there is an avail-
able entry. The current FTQ entry, under consideration for
inserting prefetch requests into the PIQ, is tracked via a
hardware-implemented pointer.

A fetch directed FIFO prefetch buffer is added to the
FDP architecture to hold the prefetched cache blocks. This
is very similar to a streaming buffer [7], except that it gets
its prefetch addresses from the FTQ. Each time a cache
block is inserted into the PIQ for prefetching, an entry is
allocated for that cache block in the prefetch buffer. If
the prefetch buffer is full, then no further cache blocks are
prefetched. When performing the instruction cache fetch,
the FIFO prefetch buffer is searched in parallel with the in-
struction cache lookup for the cache block. If there is a hit
in the oldest entry in the FIFO prefetch buffer, it is removed
from the buffer, and inserted into the instruction cache. The
prefetch buffer is flushed on a branch misprediction to keep
the FIFO prefetch buffer in-sync with the FTQ which is also
flushed on a misprediction.

An alternative approach would be to use a fully associa-
tive prefetch buffer with a sophisticated LRU replacement
strategy, adding a replaceable bit to each prefetch buffer en-
try. A prefetch would be initiated (allocated in the prefetch
buffer) only if there was an entry marked as replaceable in
the prefetch buffer, choosing the least recently used replace-
able entry. On a branch misprediction, all entries would
be designated as replaceable, rather than flushing the whole
prefetch buffer as in the FIFO prefetch buffer. They would
also be marked as replaceable in the prefetch buffer when
the matching cache blocks are fetched during the instruc-
tion cache fetch. Using a fully associative prefetch buffer
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like this would allow prefetches down a mispredicted path
to still be useful — especially in the case of short, forward
branches. A buffer with this design would be expected to
perform better than a FIFO design, but at the cost of more
complex hardware. We are currently investigating the per-
formance of using a fully associative prefetch buffer with
replaceable bits. In this paper we only report results for the
FIFO prefetch buffer.

We examined several approaches for deciding which
FTQ entries to prefetch and insert into the PIQ, which we
describe in the following sections.

5.2 Filter Based on Number of FTQ Entries

The earlier the prefetch can be initiated before the fetch
block reaches the instruction cache, the greater the potential
to hide the miss latency. At the same time, the farther the
FTQ entry is ahead of the cache, the more likely that it will
be on a mispredicted path, and the more likely a prefetch
from the FTQ entry might result in a wasted prefetch, since
the prefetch buffer is flushed on a branch misprediction.

We examined filtering the number of FTQ entries to be
considered for prefetching based on the position of the fetch
block entry in the FTQ. Our prior results showed that when
using an FTQ, its occupancy can be quite high [14]. The
FTQ contains 16 or more fetch blocks for 30% of the exe-
cuted cycles on average, and 4 or more fetch blocks for 60%
of the executed cycles. We found that starting at the second
entry from the front of the FTQ and going up to 10 entries
in the FTQ provided the best performance. We skip the first
entry in the FTQ, because there would be little to no benefit
from starting it as a prefetch when it is that close to be-
ing fetched from the instruction cache. The FTQ we imple-
mented can hold up to 32 entries, but stopping prefetching
at 10 entries provided good performance, since prefetching
farther down the FTQ resulted in decreased probability that
the prefetch would be useful, and potentially wastes mem-
ory bandwidth.

5.3 Cache Probe Filtering

Cache probe filtering uses idle cache ports to check if a po-
tential prefetch request is in the cache. We examined two
approaches to CPF.

The first approach, called cache probe enqueuing (En-
queue CPF), will only enqueue a prefetch into the PIQ from
the FTQ if it can first probe the instruction cache using an
idle cache port to verify that the cache block does not exist
in the first level cache. This is a very conservative form of
prefetching.

The second approach, called remove cache probe filter-
ing (Remove CPF), enqueues all cache blocks into the PIQ
by default, but if there is an idle first level cache port, it will
check the cache tags to see if the address is in the cache.

If the address is in the cache, the prefetch entry will be re-
moved from the list of potential prefetch addresses. If there
are no idle cache ports, then the request will be prefetched
without checking the cache tags.

5.4 Cache Miss Filtering

It is desirable to concentrate on prefetching only those fetch
blocks that will most likely miss in the instruction cache in
order to reduce bus utilization. If a given cache set has a
lot of conflict misses, then it can be beneficial to prefetch
all blocks that map to that high conflict cache set. To cap-
ture this behavior we examine using a confidence counter
associated with each instruction cache set to indicate which
cache sets miss most frequently. Fetch blocks that access
these cache sets will have a greater chance of missing in the
instruction cache and will therefore be worth prefetching.

We examined adding a cache miss buffer that contains a
2-bit saturating counter for each instruction cache set. We
index the cache miss buffer in parallel with the FTB. If the
fetch block being predicted maps to a cache set that has
missed frequently in the past, that fetch block is marked
to be prefetched, otherwise it is not a candidate for being
prefetched.

We found the following finite state machine to work well
for the miss counters. When a cache miss occurs, its corre-
sponding set counter in the miss buffer is incremented. A
cache hit does not change the cache set miss counters. In-
stead, the confidence counters are cleared every million cy-
cles to prevent extraneous prefetching. A predicated cache
block from the FTB whose set counter is saturated (has a
value of 3) is marked as candidate for being prefetched, oth-
erwise it is not.

5.5 Fetch Block Evicted Prefetching

Another approach for finding fetch blocks to prefetch that
may have been evicted from the instruction cache due to
cache conflicts is to keep track of these cache blocks in the
branch prediction architecture. To achieve this, we store an
evicted bit in each FTB entry and it is set when the cache
block of the corresponding branch is evicted from the in-
struction cache. The implementation we examined stores N
bits with each cache block to identify the FTB entry that last
caused the cache block to be brought into the cache. For the
implementation we simulated, 12 bits are used to map the
block to the FTB entry – 10 bits to index into the set, and
2 bits for the way (4-way associative FTB). Since the bits
stored in the cache are a direct index into the FTB, there is
no guarantee that the entry that loaded the cache block is
still in the FTB, but for an FTB which can hold more state
and have a larger associativity than the instruction cache,
the mapping will likely be correct.

When a cache block is evicted from the cache, the N
bit index is used to access the FTB. The evicted bit in the
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FTB entry corresponding to that index is set, indicating that
the cache block will be prefetched the next time it is used
as a branch prediction. An eviction can cause at most one
prefetch, since the evicted bit is cleared for an FTB entry
when it is inserted into the FTQ.

5.6 Fetch Directed Prefetching Results

Figure 2 shows results for fetch directed prefetching without
any filtering (NoFilt), for remove cache probe filtering (Re-
move CPF), remove CPF along with using the 2-bit Cache
Miss table for filtering, for cache probe enqueuing (Enqueue
CPF), using only evicted bits (Evict) to guide prefetching,
and when using both evicted bits and enqueue CPF (Enq
CPF + Evict). Results are shown for bus bandwidths of 32
bytes/cycle and 8 bytes/cycle for a shared instruction and
data bus to the pipelined L2 cache, which has 1 port. Fig-
ure 3 shows the average percent L2 bus utilization for all of
these configurations.

Fetch directed prefetching, even without any filtering
techniques, provides substantial benefits (38% on average
for a bandwidth of 32 bytes/cycle). As can be seen in fig-
ure 3, this technique uses a great deal of bus bandwidth
(67% bus utilization). For an 8 byte/cycle bandwidth, uti-
lization reaches 90% on average, and the IPC speedup ob-
tained drops to 19% on average.

Using cache probe filtering to remove prefetches (Re-
move CPF) reduces bus utilization (56% utilization for a
bandwidth of 32 bytes/cycle and 80% for a bandwidth
of 8 bytes/cycle) by reducing the number of the useless
prefetches. This allows more useful prefetches to be en-
queued sooner, resulting in an average speedup of 40%
and 26% in the high and low bandwidth cases respectively.
Cache probe enqueuing (Enqueue CPF) only prefetches a
cache block if it can first verify that it is not in the cache, and
this eliminates useless prefetches and brings the bus utiliza-
tion down to 17% for the high bandwidth case, and down
to 37% for the low bandwidth case. Its performance is 20%
on average for high bandwidth, and 16% on average for low
bus bandwidth.

Using the 2-bit Cache Miss Table with Remove CPF,
only marks predicted cache blocks from the FTB as candi-
dates for prefetching if its corresponding cache set counter
is saturated. These candidates are then filtered using Re-
move CPF if an idle cache port is available. Adding the
Cache Miss Table to Remove CPF provides about the same
percent speedup as applying Remove CPF on all predicted
cache blocks. The big difference is the drop in bus utiliza-
tion, which drops from 56% without cache miss filtering to
44% with cache miss filtering.

Using only the Evicted bit to determine which predicted
cache blocks to prefetch provides an average 11% speedup
for the high bandwidth case, while only using 6% of the bus
bandwidth. Combining the use of the evicted bit with cache

probe enqueuing (Evict + Enqueue CPF) provides a large
increase in speedup for some programs (27% for the high
bandwidth case), but still only uses a small fraction (17%)
of the memory bandwidth. For this combination, predicated
cache blocks are marked as candidates for prefetching if ei-
ther their evicted bit is set or the cache block is found not to
be in the instruction cache using CPF.

6 Next Line Prefetching and Streaming Buffers

We now describe the prior instruction prefetching research
we implemented, and compare their relative performance.
We also investigate augmenting streaming buffers with
cache probe filtering.

6.1 Tagged Next Line Prefetching

Smith [17] proposed tagging each cache block with a bit
indicating when the next block should be prefetched. When
a block is prefetched its tag bit is set to zero. When the block
is accessed during a fetch and the bit is zero, a prefetch of
the next sequential block is initiated and the bit is set to one.
Smith and Hsu [18] studied the effects of tagged next line
prefetching and the benefits seen based upon how much of
the cache line is used before initiating the prefetch request.

6.2 Target and Wrong Path Prefetching

Smith and Hsu [18] also examined the benefits of combin-
ing next-line prefetching with target prefetching. For target
prefetching, they used a table of branch target addresses,
which was indexed in parallel with the instruction cache
lookup. If there was a hit, then the target address was
prefetched. For a given branch, they examined prefetching
both the fall through and the target address.

Pierce and Mudge [13] examined what they called
Wrong Path Prefetching, where they examine prefetching
both paths of a branch. There are two major differences
in their approach and the approach suggested by Smith and
Hsu [18]. They only prefetch the taken target if the branch
was not-taken, and they only do this after the taken address
is calculated in the decode stage. The address is not derived
from the branch target buffer. This has the advantage of be-
ing able to prefetch branch targets not in the BTB. Their
results showed that target prefetching provided only a small
improvement over next-line prefetching.

6.3 Streaming Buffers

Jouppi proposed streaming buffers to improve the perfor-
mance of directed mapped caches [7]. If a cache miss
occurs, sequential cache blocks, starting with the one that
missed, are prefetched into a streaming buffer, until the
buffer is filled. A streaming buffer is implemented as a FIFO
queue. The streaming buffer is searched in parallel with the
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Figure 2: Percent IPC speedup for fetch directed prefetching using a 16K 2-way instruction cache. Results are shown for
both high and low bus bandwidths. The first bar shows results for unfiltered fetch directed prefetching. The next two bars
show results for fetch directed prefetching with Remove Cache Probe Filtering: first alone, and then in conjunction with
cache miss filtering. The fourth bar shows results for Enqueue Cache Probe Filtering. The fifth bar shows results when using
the evicted bit alone, and the sixth bar shows results when using the evicted bit and Enqueue CPF together.
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Figure 3: Percent bus utilization for fetch directed prefetching results.

instruction cache when performing a lookup. He also exam-
ined using multiple streaming buffers at the same time.

Farkas et. al., [5] examined the performance of using a
fully associative lookup on streaming buffers and a unique-
ness filter. These were shown to be beneficial when using
multiple streaming buffers, so that each of the streams did
not overlap, saving bus bandwidth.

6.4 Performance of Prior Work

We now examine the performance of next-line prefetching,
next-line with target prefetching, and streaming buffers. We
then compare the performance of these prefetching archi-
tectures with fetch directed prefetching in section 7.

6.4.1 Next-line and Target Prefetching

Figure 4 shows the performance and bus utilization results
for prior instruction prefetching work. We implemented
tagged Next-Line Prefetching (NLP) as described in [17],
except we prefetch the cache blocks into a 4-way associative
32 entry prefetch NLP buffer with LRU replacement. This
buffer is queried in parallel with the cache during a lookup
to find a potential hit. We then implemented target prefetch-
ing and combined that with NLP as described in [18], called
NLP+T in figure 4.

Next line prefetching provides large speedups for high
and low bandwidth (23% and 19% respectively), while us-
ing very little bandwidth. In fact, for our low bandwidth
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Figure 4: Percent IPC speedup and percent bus utilization comparisons for prior work using a 16K 2-way associative I-
cache. Results shown are the average of all benchmarks, and are shown for high (32 bytes/cycle) and low (8 bytes/cycle)
bus bandwidths. The first two bars in each set correspond to results obtained through next line prefetching with and without
target prefetching. The remaining bars represent streaming buffer results. Results are shown for streaming buffers for 1, 2,
and 8 buffers, and with cache probe filtering alone and with cache probe filtering that stops when a cache hit is seen.

architecture, NLP performed almost as well as streaming
buffers, while using the least amount of bandwidth. Adding
target prefetching to NLP provided minimal improvement.

6.4.2 Streaming Buffers

We implemented stream buffers as described earlier in sec-
tion 6.3. In addition, we used the uniqueness filter proposed
by Farkas et. al, [5]. Therefore, a given cache block will
only appear in one stream at a time, and all valid entries in
all streaming buffers are checked for a hit in parallel with
the instruction cache lookup. We provide results using a
single four entry streaming buffer (S1), an architecture with
2 four entry streaming buffers (S2), and 8 four entry stream-
ing buffers (S8) in figure 4. When using multiple streaming
buffers a streaming buffer is allocated on a cache miss using
a modified least recently used algorithm. A use of a stream-
ing buffer is considered to be a streaming buffer allocation
or a cache block hit in the streaming buffer.

We found that four entry streaming buffers provided
good performance for our pipeline architecture. Streaming
buffers performed well (ranging from 32% speedup for 1
streaming buffer to 37% speedup on average for 8 stream-
ing buffers), but performance degraded when used at a lower
bus bandwidth. Single streaming buffers performed better
at the lower bandwidth (20% in the best case), while the 8
streaming buffers provided 14% performance improvement
on average.

We also investigated using cache probe filtering with
streaming buffers. We used the remove CPF heuristics de-
scribed in section 5.3. If a free port is available on the in-
struction cache, it can be used to filter out streaming buffer
prefetches that are already in the cache. This filter could be
used in one of two ways. If a cache block is found in the in-

struction cache, the prefetch can be skipped, and the stream-
ing buffer can continue as usual and attempt to prefetch the
next cache block. This is labeled as (Sx CPF) in figure 4.
Alternatively, once a cache block is found in the instruction
cache, the prefetch can be skipped, and the streaming buffer
can be prevented from producing further prefetches until it
is reallocated. We refer to this latter technique as the stop fil-
ter (Sx CPF Stop). When using cache probe filtering, about
the same performance is achieved for high bus bandwidth,
and larger speedups are seen for the low bus bandwidth. For
low bus bandwidth, the stop filter provides the same perfor-
mance, with a 10% decrease in bus utilization.

We also examined combining tagged next-line prefetch-
ing with streaming buffers (results not shown), but this pro-
vided only slight improvements. This is because the stream-
ing buffers follow the sequential path after a cache miss,
which overlaps the prefetch blocks that next-line prefetch-
ing captures.

7 Performance Tradeoffs

We now compare fetch directed prefetching with prior in-
struction prefetching work, and the performance from com-
bining these techniques. Figures 5, 6, and 7 show re-
sults for next-line prefetching (NLP), streaming buffers with
stop cache probe filtering (SBx CPF Stop), fetch directed
prefetching without any filtering (No Filt), and fetch di-
rected prefetching with a variety of filtration techniques.
These techniques are described in detail in sections 5 and 6.

7.1 Combination Approaches

Fetch Directed Prefetching (FDP) concentrates on the pre-
dicted path of execution taken by the processor. There

8



NLP S1 CPF Stop S8 CPF Stop No Filt
Remove CPF Enqueue CPF Evict Enq CPF + Evict
Enq CPF + Evict + NLP Rem CPF + S1 CPF Stop

32 bytes/cycle

0

5

10

15

20

25

30

35

40

45

1 Port 2 Port

%
 S

pe
ed

up
 O

ve
r 

B
a

se

8 bytes/cycle

0

5

10

15

20

25

30

35

40

45

1 Port 2 Port

%
 S

pe
ed

up
 O

ve
r 

B
a

se

Figure 5: Average percent IPC speedups for single and dual-ported 16K 2-way associative instruction cache. Results are
shown for high (32 bytes/cycle) and low (8 bytes/cycle) bandwidth architectures.
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Figure 7: Average percent bus utilization for the seven prefetching techniques. Results shown for 16K 2-way associative
instruction cache, for both high and low bandwidth buses.

are two benefits from combining next-line prefetching or
streaming buffers with FDP. The first benefit is that sequen-
tially prefetching down a miss stream could prefetch the
wrong path into a prefetch buffer, which can be beneficial
if the branch was mispredicted. The second benefit, is that

they can potentially prefetch the not-taken path earlier than
the fetch directed prefetch architecture, masking more of the
cache miss latency. We tried several combinations of fetch
directed prefetching and prior work, and present two com-
binations – one that works well for a low bandwidth bus
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Figure 8: Instruction cache fetch block miss rates for the different prefetching architectures for a 16K 2-way I-cache.

architecture and one that works well for a high bandwidth
bus.

The low bandwidth combination combines next-line
prefetching with eviction-based prefetching and Enqueue
Cache Probe Filtering (Enq CPF + Evict + NLP). Prefetch
priority was given first to next line prefetching, then to
eviction-based prefetching, and finally, to Enqueue CPF.

The second approach we looked at involves combining
fetch directed prefetching with streaming buffers. This tech-
nique is aimed at exploiting more available bandwidth. We
used fetch directed prefetching in combination with a single
streaming buffer, with cache probe filtering on both mecha-
nisms (Rem CPF + S1 CPF Stop). The stop filter was also
employed with the streaming buffer.

7.2 Port Comparison

To determine the effect that the number of instruction cache
ports would have on the performance of our prefetching
schemes, we compare the results for instruction prefetching
with both a single and a dual ported 16K 2-way associative
instruction cache in figure 5.

A single ported instruction cache would mean lower in-
struction throughput from the fetch unit, but it would also
mean higher levels of FTQ occupancy. This would in turn
imply that fetch directed prefetching would be able to ini-
tiate prefetches farther ahead of a dual ported configuration
(the longer an entry sits in the FTQ, the more the latency
of the memory access can be hidden). However, less ports
also means less opportunities to perform cache probe filter-
ing. As can be seen in figure 5, most schemes had similar
speedups on a high bandwidth architecture over their base-
line results. The notable exceptions are those schemes with
Enqueue CPF where performance goes down because of the
lack of a free port to perform cache probe filtering.

Overall the single and dual ported configurations
achieve similar speedups (relative to different IPCs). The
dual ported configuration does a better job at cache probe
filtering and the rate in which fetch blocks are processed
is higher during normal instruction fetching than the sin-
gle ported architecture. The single ported architecture still

does very well, since the cache fetch blocks are processed
slower, which results in a higher FTQ occupancy and more
of the miss penalty can be masked when using fetch directed
prefetching.

7.3 Cache Configurations

We now investigate the effect of different cache configura-
tions on the various prefetching schemes. Figure 6 shows
performance across three different cache configurations, for
both high and low bandwidth buses. We examined the per-
formance seen when using a 16K 2-way associative, a 16K
4-way associative, and a 32K 2-way associative instruction
cache. Increasing the associativity of a cache should re-
duce the conflict misses, while increasing the size of a cache
should reduce the capacity misses.

In figure 6, when adding more associativity we see a de-
cline in the speedup obtained with all techniques, although
the general trend of the results remains similar. For exam-
ple, fetch directed prefetching with Remove Cache Probe
Filtering dropped from a speedup of 40% to a speedup of
32% for the high bandwidth architecture, while the com-
bination of next line prefetching, eviction-based prefetch-
ing, and Enqueue CPF dropped from a speedup of 35% to a
speedup of 28%.

When increasing the size of the cache, the speedup ob-
tained with fetch directed prefetching with Remove CPF
falls to 18%. Although not shown, the cache miss filter per-
forms well here, as it concentrates on conflict misses.

7.4 Cache Miss Rates

Figure 8 shows the percent of instruction cache fetch block
misses for the original architecture without prefetching and
for several of the prefetching architectures examined. Re-
sults are shown for a 16K 2-way associative cache. There is
a definite correlation between the cache miss rate and IPC
speedup. However other factors affect IPC speedup, such
as data cache stalls due to low L2 cache bandwidth and the
relative importance of instruction cache predictions.

Remove CPF consistently produces the lowest miss rate
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across all programs for the high bandwidth cases (2.3% on
average) - and for most of the low bandwidth ones (3.6% on
average). The bandwidth for Remove CPF could potentially
be decreased significantly if an extra port was added to the
tag array to further filter prefetch requests.

8 Related Work

In this section we describe related work to instruction cache
prefetching not covered in section 6.

8.1 Fetch Directed Prefetching Research

Fetch directed prefetching was first proposed by Chen and
Baer [3]. In their prefetching architecture they created a sec-
ond PC called the Look-Ahead PC, which runs ahead of the
normal instruction fetch engine. This LA-PC was guided
by a branch prediction architecture, and used to index into a
reference prediction table to predict data addresses in order
to perform data cache prefetching. Since the LA-PC pro-
vided the address stream farther in advance of the normal
fetch engine, they were able to initiate data cache prefetches
farther in advance than if they had used the normal PC to do
the address prediction. This allowed them to mask more of
the data cache miss penalty. Chen and Baer only looked at
using the LA-PC for data prefetching [3].

Chen, Lee and Mudge [2] examined applying the ap-
proach of Chen and Baer to instruction prefetching. They
examined adding a separate branch predictor to the normal
processor; so the processor would have 2 branch predictors,
one to guide prefetching and one to guide the fetch engine.
The separate branch predictor uses a LA-PC to try and speed
ahead of the processor, producing potential fetch addresses
on the predicted path. This separate branch predictor was
designed to minimize any extra cost to the architecture. It
only included (1) a global history register, (2) return address
stack, and (3) an adder to calculate the target address.

In their design, each cycle the cache block pointed to
by the LA-PC is fetched from the instruction cache in par-
allel with the normal cache fetch. If it is not a miss, the
cache block is decoded to find the branch instructions and
the target addresses are also calculated. When a branch
instruction is found in the cache block it is predicted us-
ing the separate branch prediction structures, the LA-PC
is updated, and the process is repeated. This whole pro-
cess is supposed to speed ahead of the normal instruction
fetch, but it is limited as to how far it can speed ahead be-
cause (1) the prefetch engine uses the instruction cache to
find the branches to predict and to calculate their target ad-
dresses, and (2) their fetch directed prefetch engine has to
stop following the predicted stream whenever the LA-PC
gets a cache miss. When the LA-PC gets a cache miss, their
prefetcher continues prefetching sequentially after the cache
line that missed. In contrast, our fetch directed prefetching

architecture follows the fetch stream prefetching past cache
blocks that miss in the cache and does not need to access
the instruction cache to provide predicted branch target and
prefetch addresses since we have a decoupled front-end.

8.2 Out of Order Instruction Fetching

Stark et. al., [19] examined using a lockup-free instruc-
tion cache to fetch instructions, even in the presence of an
instruction cache miss. The branch predictor would con-
tinue to produce one prediction per cycle, fetch the instruc-
tions, and put them into a result fetch queue out of order.
Their idea is similar to our decoupled front-end design [14],
except that there is no FTQ to allow the predictor to run
ahead of the fetch unit, and they do not examine instruction
prefetching. Therefore, they will not see any benefit from
fetching out of order in the presence of cache stalls once the
instruction window becomes full. In our approach, fetch di-
rected prefetching can continue to prefetch until the prefetch
buffer is full.

8.3 Code Placement

Many software techniques have been developed for improv-
ing instruction cache performance. Techniques such as ba-
sic block re-ordering and procedure placement [12], and re-
ordering based on control structure [10] have all been shown
to significantly improve instruction cache performance.

One goal of basic block reordering is to place basic
blocks sequentially for the most likely path through a pro-
cedure. This can allow next-line and streaming buffer
prefetching architectures to achieve better performance than
what we saw in our results [21]. Examining the effects of
code placement and software guided prefetching were be-
yond the scope of what we were able to investigate in this
paper. Using these techniques in combination with fetch
directed prefetching, our filtering techniques, and prior
prefetching architectures is a topic for future research.

9 Summary

Decoupling the front-end of the processor with an FTQ be-
tween the branch predictor and instruction cache was shown
in prior work to provide a scalable branch predictor de-
sign [14]. As we have shown in this paper, this same de-
coupling with the FTQ can allow efficient fetch directed
instruction cache prefetching. We compared fetch directed
prefetching with next-line prefetching and streaming buffers
for different bus bandwidths, number of cache ports, and
cache sizes and associativities.

The results show that NLP is still an attractive prefetch-
ing architecture achieving an average speedup of 20% while
using only a small amount of bus bandwidth. Using one
streaming buffer for prefetching provided 21% to 32%

11



speedup, while using only slightly more bus bandwidth
than NLP. The streaming buffer performs better since it can
continue to sequentially prefetch past a cache miss, which
masks more of the miss penalty than the NLP architecture.

Fetch directed prefetching was shown to be a poten-
tial alternative to streaming buffers achieving the highest
speedups of 25% to 40% on average, but using the high-
est amount of bus bandwidth. We examined using cache
probe filtering to reduce the amount of wasted prefetches,
and to save bus bandwidth. To reduce bus bandwidth fur-
ther it may be beneficial to add an additional port to the in-
struction cache’s tag array to provide additional cache probe
filtering.

Another filtering approach we examined was the ef-
fect of marking evicted cache blocks in the branch pre-
diction architecture, and to only prefetch those predicated
cache blocks that are marked as evicted. Guiding fetch di-
rected prefetching with only the evicted bit used the least
amount of bandwidth and provided 11% speedup on aver-
age. If a processor’s branch predictor can hold state for
more branches than are held in the instruction cache, then
implementing evicted prefetching can be a win for a fetch
directed prefetching architecture.

The fetch directed prefetching architecture we exam-
ined in this paper uses a very simple FIFO prefetch buffer
design. We are currently examining using a fully asso-
ciative prefetch buffer with replaceable bits (as described
in section 5). This will allow the prefetch buffer to hold
prefetched cache blocks down mispredicted paths. In ad-
dition, we are currently investigating using fetch directed
prefetching and the decoupled FTQ architecture to help pro-
vide fetch throughput for Simultaneous Multithreading. In
this design, a separate FTQ is maintained for each hardware
thread, allowing fetch directed prefetching to run ahead of
each thread, which can potentially eliminate a significant
number of instruction cache misses.
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