Shubbendu S.
Mukberjee

Intel

Sarita V.
Adve

University of Illinois
at Urbana-
Champaign

Todd Austin

University of
Michigan

Joel Emer
Intel

Peter S.

Magnusson
Virtutech Inc.

Tools

igh-performance computing has grown
largely in scale with Moore’s law. As hun-
dreds of millions—and soon to be bil-
lions—of transistors crowd onto proces-
sor chips, they support computing devices
of extreme complexity. Predicting the performance
of these machines often requires using sophisticated
software programs to model them. Performance
simulators—software programs typically written
in a high-level language such as C or C++—enable
exploration of design alternatives for future high-
performance computers.

Since the early 1980s, the design of high-perfor-
mance computers has been largely data-driven. For
example, analyses of instruction usage revealed that
real machines do not use all instructions with equal
frequency. Designers used this observation to opti-
mize the implementation of these machines.

Direct measurement, however, is a post-design
step and does not always help optimize machines
under design. As an alternative, designers adopted
analytical models to predict performance. Such
models are successful in many cases, particularly in
culling the design space in preliminary explorations.
However, analytic models have been less successful
in assessing detailed design tradeoffs. Because these
tradeoffs are crucial in today’s highly competitive
high-performance computing market, designers
have reverted to simulation models to predict
machine performance.

Computer

GUEST EDITORS”’

INTRODUCTION

Understanding the performance of microprocessors,
multiprocessors, and distributed computers requires
studying them in isolation as well as observing their
interaction with the entire system architecture.

Performance modeling and analysis are now inte-
gral to the design flow of modern computing systems,
especially for high-performance microprocessors. As
Figure 1 shows, designers begin by developing per-
formance models of the target architecture, followed
by actual logic design—also called Register Transfer
Language, or RTL. Circuit designers convert the logic
specification into circuits, and layout engineers even-
tually position the circuits on the processor floor plan.

For very complex designs, such a design process
can take as long as seven years. Of course, the
process involves close interactions between the
steps. The performance model, in particular, is
refined as logic, and circuit designers feed back bet-
ter timing estimates for different hardware compo-
nents of the target architecture. Thus, the per-
formance model’s fidelity to the target architecture
is often key to the success of the architecture itself.

Additionally, the performance model must run at
least faster than RTL; otherwise, developers could
obtain performance estimates from the logic blocks
themselves. Our experience shows that perfor-
mance models usually run several orders of magni-
tude faster than RTL.

The increased complexity of target architectures
and applications has made performance modeling
a daunting task. Microarchitecture pipelines have
extended from five to 20 stages to exploit increasing
levels of parallelism. This trend will continue as Web
server and database markets require both fine-

0018-9162/02/$17.00 © 2002 IEEE

grained multithreading embedded in aggressive
pipelines and coarse-grained multiprocessing span-
ning multiple processors. Such multithreading and
multiprocessing architectures are even moving on
chip, exemplified by Intel’s Hyperthreaded archi-
tectures, IBM’s Power4, and Hewlett-Packard’s
Mako processor.

Understanding the performance of distributed
computing, network server, and parallel applica-
tions on this new generation of processors requires
studying how they interact with the system archi-
tecture and the operating system. Unfortunately,
performance models that can evaluate system archi-
tectures and operating systems have evolved into
extremely complex and gigantic software projects.

IN THIS ISSUE

This special issue presents four performance sim-
ulators—Rsim, Simics, SimpleScalar, and Asim—
that address different aspects of the complexities
encountered in performance simulation.

In “Rsim: Simulating Shared-Memory Multi-
processors with ILP Processors,” Christopher J.
Hughes and coauthors review the development
process for Rsim, an architecture simulator widely
used in academic research related to multiproces-
sors. It provides detailed models for shared-mem-
ory multiprocessors based on processors that
support dynamic scheduling. The experience with
Rsim’s detailed processor modeling demonstrates
that simple models of an older generation of
sequential processors cannot approximate the more
complicated dynamically scheduled processors.

The Simics simulation platform is based on the
idea that reliable performance estimates require full
system simulation. Simics runs unmodified firmware,
operating system kernels, and device drivers. In
“Simics: A Full System Simulation Platform,” Peter
S. Magnusson and colleagues describe how this sys-
tem simulates a network of multiple, heterogeneous
computers that designers can use to duplicate real-
world scenarios. Simics also can export the models
for these functions to other tools. Originally an aca-
demic research project, Simics is today a commer-
cial product, available from Virtutech.

“SimpleScalar: An Infrastructure for Computer
System Modeling,” by Todd Austin, Eric Larson,
and Dan Ernst describes how researchers can reuse
this uniprocessor performance simulator’s tools to
quickly obtain meaningful results from complex
architectures. Subsequent to its development, other
researchers incorporated models of multithreaded
and multiprocessing architectures into Simple-
Scalar.

Performance Logic Circuit

v

Layout

modeling design |l ’ design

v

design

T |

Finally, Asim extends SimpleScalar’s reuse phi-
losophy to finer-grained modular components
within the simulator itself. “Asim: A Performance
Model Framework” by Joel Emer and his col-
leagues explains how Asim provides a simulation
infrastructure with a library of modules that model
different hardware components, such as caches and
branch predictors. With this library, designers and
researchers can easily reuse, extend, and modify
architectural components to quickly build complex
performance models. Currently, Asim is a propri-
etary tool within Compaq and Intel.

erformance simulation is a research topic of

long-standing importance that comprises a

huge body of literature. Comprehensive cov-
erage is impractical in a single special issue, but
these four articles and tools demonstrate the over-
all state of the art in performance simulation and
also offer a glimpse of the problems and challenges
that lie ahead. We hope you enjoy them.

Shubbendu S. Mukberjee is a senior hardware engi-
neer in VSSAD at Intel. Contact him at shubu.
mukherjee@intel.com.

Sarita V. Adve is an associate professor in the Com-
puter Science Department at the University of 1lli-
nois at Urbana-Champaign. She is a member of the
ACM and the IEEE. Contact her at sadve@cs.uiuc.
edu.

Todd Austin is an assistant professor in the Depart-
ment of Electrical Engineering and Computer Sci-
ence at the University of Michigan. Contact him at
taustin@eecs.umich.edu.

Joel Emer is an Intel Fellow in VSSAD. Contact
him at Joel.emer@intel.com.

Peter S. Magnusson is CEO of Virtutech. Contact
him at psm@uirtutech.com.

February 2002

Figure 1. Typical
flow in a micro-
processor design
process. Interaction
between the process
steps refines the
performance model
throughout the
process.

