Detecting Malicious Activity with DNS Backscatter

Kensuke Fukuda • John Heidemann Proc. of ACM IMC '15, pp. 197-210, 2015.

Presented by Xintong Wang and Han Zhang

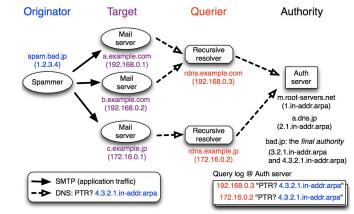
Challenges in Network Monitoring

- Need a better monitoring service for network-wide activities
 - Malicious activity: Spammer, scanner
 - Non-malicious activity: Ad tracker, CDN
- Hard to achieve: Decentralized nature
- Reverse DNS (DNS Backscatter) provides a centralized strategic point

Reverse DNS

zhanghan@Koffing:~/Desktop							
<pre>\$ host tcprst.us</pre>							
tcprst.us has address 52.54.234.153							
tcprst.us mail is handled by 15 eforward4.registrar-servers.com.							
tcprst.us mail is handled by 10 eforward3.registrar-servers.com.							
tcprst.us mail is handled by 10 eforward2.registrar-servers.com.							
tcprst.us mail is handled by 10 eforward1.registrar-servers.com.							
tcprst.us mail is handled by 20 eforward5.registrar-servers.com.							
zhanghan@Koffing:~/Desktop							
\$ host 52.54.234.153							
153.234.54.52.in-addr.arpa domain name pointer tcprst.us.							

DNS Backscatter Sensor



DNS Backscatter

- DNS backscatter is the set of reverse DNS queries observed by a DNS authority
- Cache happens at all layers
- Final authority vs. root authority
 - Final authority sees all queries for a specific originator
 - \circ \quad Root authority should see all originators, if not cached

Privacy Concerns over DNS traffic

- Get approval from IRB (though sometimes an IRB review is not enough)
- Reasons to address privacy concerns in this case:
 - Caching and shared cache mask individual traffic, focusing on prevalent network activity instead
 - Authorities have little interaction with targets due to recursive resolvers
 - Mostly automated traffic, not human traffic, in reverse DNS

Methodology - Datasets

- Collected at authorities
 - \circ $\,$ $\,$ One national authority managing .jp country TLD, two root servers (B, M) out of 13 $\,$
 - \circ $\;$ And a final authority? (Not clear in the paper)
- Format: (originator, querier, authority) tuple

						querie	es (×10 ⁹)	\mathbf{qps}	$(\times 10^{3})$
type	dataset	operator	start (UTC)	duration	sampling	(all)	(reverse)	(all)	(reverse)
ccTLD	JP-ditl	JP-DNS	2014-04-15 11:00	$50 \mathrm{hours}$	no	4.0	0.3	22	1.8
root	B-post-ditl	B-Root	2014-04-28 19:56	36 hours	no	2.9	0.04	22	0.2
root	B-long	B-Root	2015-01-01	5 months	no	290*	5.14	22^{*}	0.39
root	M-ditl	M-Root	2014-04-15 11:00	50 hours	no	8.3	0.06	46	0.3
root	M-ditl-2015	M-Root	2015-04-13 11:00	$50 \mathrm{hours}$	no	9.9	0.07	55	0.4
root	M-sampled	M-Root	2014-02-16	$9\mathrm{months}$	1:10	36.2	1.5	1.6	0.07

Table 1: DNS datasets used in this paper.

Methodology - Features

- Derive static features from querier's domain name (mail.google.com)
 mail, ns, firewall, cdn, nxdomain, etc
- Dynamic features from query patterns
 - o queries per querier, unique ASes, unique countries, etc
- Classes for originator
 - o ad-tracker, cdn, cloud, mail, spam, etc
- Manually label originators for training

Constraints in Backscatter

- Limited information about targets
 Based only on querier domain name
- Backscatter is spread over multiple authorities due to anycast
- Could be tricked by careful spammer. Only increase the cost at certain degree

\$ host google.com

google.com has address 172.217.4.238

Outline

- DNS Backscatters
- Methodology
- Validation
- Evaluation

Validation

- Select appropriate features
- Label ground truth
- Choose learning algorithm
- Validate through cross-validation

Select Appropriate Features

• Static features to distinguish different classes of originators

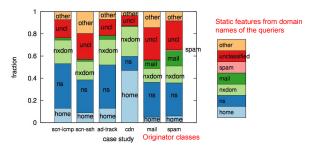


Figure 2: Static features for case studies, derived from querier domain names. (Dataset: JP-ditl.)

Select Appropriate Features

• Dynamic features to distinguish different classes of originators

case	queries/ querier	global entropy	local entropy	queriers/ country
scan-icmp	3.3	0.83	0.92	0.006
scan-ssh	4.7	0.84	0.96	0.006
ad-track	2.3	0.85	0.94	0.017
cdn	4.4	0.48	0.97	0.018
mail	1.7	0.71	0.94	0.009
spam	3.4	0.85	0.95	0.005

Table 2: Dynamic features for case studies.

Label Ground Truth

- Generate moderate to large lists of potential IP addresses in each application class from external sources;
- Intersect with the top-10000 originators in dataset by the number of queries;
- Manually verify intersection

dataset	ad-track	cdn	cloud	crawler	dns	mail	\mathbf{ntp}	$\mathbf{p2p}$	\mathbf{push}	scan	\mathbf{spam}	update	total
JP-ditl	15	8	-	-	26	44	10	37	-	25	64	6	235
B-post-ditl	13	29	16	17	16	46	5	-	12	29	35	-	214
M-ditl	13	36	16	16	17	50	8	-	12	33	43	-	240
M-sampled	54	81	82	35	52	111	-	-	73	124	136	-	746

Table 3: Number of examples of each application class in labeled ground-truth, per dataset.

Choose Learning Algorithm

Learning algorithms:

- Classification And Regression Tree (CART)
- Random Forest (RF)
- Kernel Support-Vector Machines (SVM)

Metrics:

- Accuracy: (tp + tn) / all
- Precision: tp / (tp + fp)
- Recall: tp / (tp + fn)
- F1-score: 2tp / (2tp + fp + fn)

Classification Accuracy

dataset	algorithm	accuracy	precision	recall	F1-score
	CART	0.66 (0.05)	0.63 (0.08)	0.60 (0.06)	0.61 (0.06)
$_{\rm JP}$	\mathbf{RF}	0.78 (0.03)	0.82 (0.05)	0.76 (0.06)	0.79 (0.05)
ditl	SVM	0.73(0.04)	0.74 (0.05)	0.71 (0.06)	0.73 (0.05)
В	CART	0.48 (0.05)	0.48 (0.07)	0.45 (0.05)	0.46 (0.05)
post-	\mathbf{RF}	0.62 (0.05)	0.66 (0.07)	0.60 (0.07)	0.63 (0.07)
ditl	SVM	0.38 (0.11)	0.50 (0.14)	0.32 (0.13)	0.39 (0.13)
	CART	0.53 (0.06)	0.52 (0.07)	0.49 (0.06)	0.51 (0.06)
M	\mathbf{RF}	0.68 (0.04)	0.74 (0.06)	0.63 (0.05)	0.68 (0.05)
ditl	SVM	0.60 (0.08)	0.68 (0.10)	0.52 (0.08)	0.59 (0.09)
	CART	0.61 (0.03)	0.65 (0.04)	0.58 (0.04)	0.61 (0.04)
M	\mathbf{RF}	0.79 (0.02)	0.82 (0.02)	0.77 (0.03)	0.79 (0.02)
sampled	SVM	0.72 (0.02)	0.76 (0.03)	0.70 (0.03)	0.73 (0.02)

- Benchmark: 0.08 accuracy for randomly guessing
- Roots are attenuated (B post-ditl & M ditl)

Discriminative Features

• Gini Impurity $I_G(f) = \sum_{i=1}^J f_i(1-f_i) = \sum_{i=1}^J (f_i - f_i^2) = \sum_{i=1}^J f_i - \sum_{i=1}^J f_i^2 = 1 - \sum_{i=1}^J f_i^2 = \sum_{i \neq k} f_i f_k$

Larger Gini values indicate features with greater discriminative power.

	JP-ditl	\mathbf{M} -ditl			
rank	feature	Gini	feature	Gini	
1	mail(S)	8.4	mail(S)	12.5	
2	home(S)	7.9	ns(S)	8.3	
3	$\operatorname{spam}(S)$	6.3	unreach(S)	7.0	
4	nxdomain(S)	6.2	query rate(D)	6.2	
5	unreach(S)	5.2	home(S)	6.0	
6	global entropy(D)	5.0	nxdomain(S)	5.8	

Table 5: Top discriminative features. Classifier: RF.

Evaluate DNS Caching

Backscatter is highly attenuated due to disinterested targets and DNS caching.

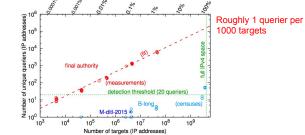
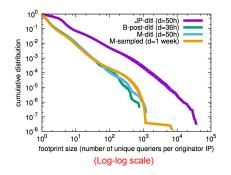


Figure 3: Size of footprint of random network scans at the final authority. (Datasets: B-long and M-ditl.)

Results - Size of Originator Footprints

• There are hundreds of originators that touch large parts of the Internet



Classification of Top Originators

- Focus on the originators with the largest footprints;
- Understand the type of activity and the aggressiveness of activity.

Results - Trends of Network-wide Activities

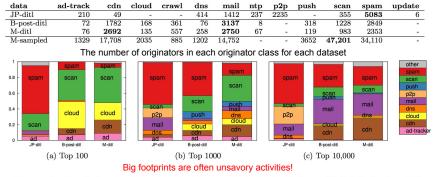


Figure 6: Fraction of originator classes of top-N originators. (Dataset: JP-ditl, B-post-ditl, M-ditl; classifier: RF.)

Results - Trends of Network-wide Activities

 Fluctuations of originators may be explained by reactions to network security events.

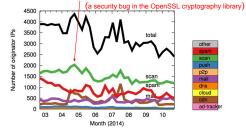


Figure 7: Number of originators over time. (Dataset: M-sampled; classifier: RF.)

Results - Trends of Network-wide Activities

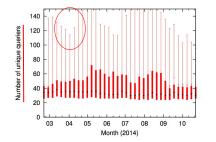


Figure 8: Box plot of originator footprint (queriers per scanner) over time; whiskers: 10%ile/90%ile. (Dataset: M-sampled.)

Very large scanners come and go.

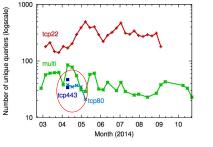


Figure 9: Three example originators with application class *scan.* (Dataset: M-sampled with darknet.)

Results - Trends of Network-wide Activities

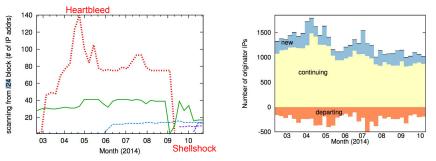


Figure 10: Five example blocks originating scanning activ Figure 11: Week-by-week churn for originators of class *scan*. (Dataset: M-sampled.)

Contributions

- Identify DNS backscatter as a new source of information about benign and malicious network-wide activity;
- Keep in mind of privacy and address any potential related issues in paper;
- Collect trainable dataset with ground truth label;
- Understand the type and trend of network-wide activity based on classifications;

Discussions

- Adoption of botnets to circumvent the system
 Intentionally camouflage network traffic at each originator
- The possibility of other prominent features
- The possibility of other classifiers
- Limited training data
 - \circ $\;$ The number of data points in some application classes is too small