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TCP Congestion Control in Public Datacenters

e Datacenter has no control over TCP/IP stack on VMs

e Dozens of different TCP Congestion Control algorithms exist and can interact
with each other

e Ensuring that all VMs use up-to-date or uniform TCP/IP stacks is impossible
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Figure 1: Different congestion controls lead to unfairness.
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Figure 15: (a) CUBIC gets little throughput when competing
with DCTCP. (b) With AC/DC, CUBIC and DCTCP flows
get fair share.

Administrator Control over Datacenter (AC/DC) TCP

e Implement congestion control in
vSwitch! Virtual Machines
o No changes to the VMs
o Uniform congestion control
across datacenter
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Figure 3: AC#DC high-level architecture.




Bandwidth Allocation

e Transport layer schemes cannot enforce per-tenant bandwidth allocation
e But bandwidth allocation schemes cannot prevent congestion
o Aggressive TCP/IP stacks can still flood switches “fairly”
e AC/DC aims to cooperate with or complement bandwidth allocation schemes

DCTCP

e Datacenter TCP (DCTCP) adjusts the sender’s rate based on the fraction of
packets experiencing congestion

e Explicit Congestion Notification (ECN) bit set when switch queue length
exceeds a congestion threshold

DCTCP Algorithm
. K
Switch: ECN=1 1 ECN=0
e Set ECN bit when Queue Length > K l:\:l_
Sender: !

e Maintain fraction of marked packets (a)
For each RTT:
_ #of marked ACKs

Total # of ACKs a—(1-gla+gF

e Adaptive decrease a
Cwnd « (1 — E)Cwnd

AC/DC Design and Implementation

e Obtain congestion control state information for each flow
e |mplement DCTCP at the vSwitch
e Enforce Congestion Control

e Implemented in Open vSwitch (OVS)
e Flows hashed on 5-tuple (dport, daddr, sport, saddr, VLAN)
e Each flow is tracked at receiver and sender




Congestion Control State

At vSwitch:
e cwnd is maintained; starts at 10

e Can see all traffic, so:
o Loss: if ack_seq <= snd_una, then dupack is incremented
o Timeouts: when snd_una < snd_nxt and inactivity timer fires

snd_una snd_nxt
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Figure 4: Variables for TCP sequence number space.

Implementing DCTCP

e Add and remove ECN bits when packets go through the vSwitch
e Receiver module monitors congestion and reports it to sender using ACK
packets
o  Piggy-back ACK (PACK): add data to ACK’s skb headroom
o Fake ACK (FACK) when PACK creates larger MTU than allowed
o IP header checksum, IP packet length, and TCP data offset are recalculated; TCP checksum
calculated by NIC

Implementing DCTCP

Incoming ACK

Extract CCinfo if it is PACK or FACK;
Drop FACK;
Update connection tracking variables;
Update a once every RTT;

No

e At sender, cwnd calculated

e If no congestion was encountered,
tcp_cong_avoid() expands cwnd
based on TCP’s New Reno
algorithm

Cutwnd in this
window before?.

wnd=wnd*(1 - o/2);

AC/DC enforces CC on the flow;
Send ACK to VM;

tcp_cong_avoid();

Figure 5: DCTCP congestion control in ACDC.

Enforcing Congestion Control

e vSwitch commandeers sender’s advertised rwnd to push its cwnd to receiver
o Only overwritten when AC/DC cwnd < sender’s rwnd
e Well-behaved TCP stacks will follow the standard and adhere to rwnd
e vSwitch can identify misbehaving TCP stacks (sending more than rwnd) and
drop excess packets
e Because VM-level ECN feedback is removed, AC/DC’s cwnd is the limiting
factor, allowing more data to be sent (allegedly)




Potential Extensions: Per-Flow Congestion Control

e Per-flow bandwidth allocation easy by capping cwnd
e Congestion control algorithm can be chosen based on flow
o For example, CUBIC for flows to the WAN, DCTCP for internal flows
e Priority possible for service classes
Bel01] op
rwnd = rwnd(1 — (o — —))

Performance Evaluation

e Is AC/DC underneath regular Linux TCP comparable to DCTCP

performance?
o TCP throughput
o Lossrate
Jain’s fairness index
o Flow completion time

e Across microbenchmarks and macrobenchmarks?

Microbenchmarks

Each sender starts long lived flow: Senders

e DCTCP and AC/DC have .03 (1%)
lower throughput than standard
TCP, and .05 (5%) better fairmess (T—

e RTT for 50th and 99th: eceiven
o JAC/DC: 124us & 279us
o locTep: 136us & 301us (b) Multi-hop, multi-bottleneck (parking lot) topology.

o CUBIC33ms&3oms Figure 7: Experiment topologies.

Why is AC/DC better?
- More on this later
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AC/DC flexibility

CC Variants 507 p ile RTT (us) | 99% p ile RTT (us) Avg Tput (Gbps) Fairness Index
mtu=1.5KB | miu=" 9KB mtu=1.5KB | mtu=9KB | mtu=1.5KB | mu=9KB | mtu=1.5KB | mu=0KB

CUBIC* 3232 3641 3865 1.89 1.98 0.85 0.98
DCTCP* 128 142 232 259 1.89 1.98 0.99 0.99
CUBIC 128 142 231 252 1.89 1.98 0.99 0.99
Reno 120 149 235 248 1.89 1.97 0.99 0.99
DCTCP 9 149 232 266 1.88 1.98 0.99 0.99
Tilinois 215 262 1.89 1.97 0.99 0.99
HighSpeed 7 224 252 1.88 1.97 0.99 0.99
Vegas 6 143 216 251 1.89 1.97 0.99 0.99

Table 1: AC#DC works with many congestion control variants. Legend: CUBIC*: CUBIC + standard OVS, switch
WRED/ECN marking off. DCTCP*: DCTCP + standard OVS, switch WRED/ECN marking on. Others: different CCs +
AC#DC, switch WRED/ECN marking on.

AC/DC flexibility
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Macrobenchmarks (Incast)
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Figure 19: Many to one incast: RTT and packet drop rate. AC#DC can reduce DCTCP’s RTT by limiting window sizes.

Why is AC/DC better?
- DCTCP has a lower bound on CWND, which
is too high when under extreme congestion
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Figure 20: TCP RTT when almost all ports are congested.
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Figure 21: CDF of mice and background FCTs in concurrent stride workload.

Note: Shuffle Not Shown (check out the paper)

Trace-Driven workload
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Figure 23: CDF of mice (flows < 10KB) FCT in web-search and data-mining workloads.




Summary

Operators need control of their networks to improve data center performance,
despite diverse tenants running arbitrary networking stacks

AC/DC allows operators to control the TCP congestion control algorithm of
arbitrary tenants by implementing congestion control at the vSwitch

AC/DC has the performance of specialized transport layer protocols like
DCTCP without requiring tenant adoption, new networking hardware or
software

Discussion

e What about distributed vSwitches?
e “cannot force an application to send more data than the VM’s CWND allows”
o AC/DC increases traffic b/c TCP only reduces CWND on loss or ECN feedback
o In other words, CWND of sender is always less than AC/DC’s RWND
o Will this type of approach work on other protocols? (UDP) Does it need to?
e Operating on Datapath... didn’t we just learn that kernel is bottleneck on
datapath!?

o whatis AC/DC overhead beneath an optimized networking stacks (Arrakis, 1X)?




