ACxDC TCP

Virtual Congestion Control Enforcement for
Datacenter Networks

Keqgiang He, Eric Rozner, Kanak Agarwal, Yu (Jason) Gu, Wes Felter,
John Carter, and Aditya Akella

Presented by: Allison McDonald and Andrew Quinn

TCP Congestion Control in Public Datacenters

e Datacenter has no control over TCP/IP stack on VMs

e Dozens of different TCP Congestion Control algorithms exist and can interact
with each other

e Ensuring that all VMs use up-to-date or uniform TCP/IP stacks is impossible

10

llinois ——
CUBIC —6—

Tput (Gbps)
o N & o ®
Tput (Gbps)

ok N w & wu

12345678 910 12 3 456 7 8 910
Tests Tests
(a) 5 different CCs. (b) All CUBIC.
Figure 1: Different congestion controls lead to unfairness.

TCP Congestion Control in Public Datacenters

CUBIC ——— DCTCP CUBIC ——— DCTCP
10— o 1, Jr— —
;2 8 :; 8
8 T
5 4 5 4
22 22
0 1 l 0 1 L
027 6 & %eslglsley 0276 & &eslglsley
Time (seconds) Time (seconds)
(a) Default. (b) AC#DC.

Figure 15: (a) CUBIC gets little throughput when competing
with DCTCP. (b) With AC/DC, CUBIC and DCTCP flows
get fair share.

Administrator Control over Datacenter (AC/DC) TCP

e Implement congestion control in
vSwitch! Virtual Machines
o No changes to the VMs
o Uniform congestion control
across datacenter

; | Controlplane |
o Per-flow congestion control ERIERE

<
E
=
Data path (AC/DC) ‘g

Server

AC/DC
(sender)

Uniform per-flow CC
Per-flow CC feedback

algorithm selection possible
o Easy to move to vSwitch —

congestion control is

lightweight & portable

AC/DC
Datacenter Network (receiver)

Figure 3: AC#DC high-level architecture.

Bandwidth Allocation

e Transport layer schemes cannot enforce per-tenant bandwidth allocation
e But bandwidth allocation schemes cannot prevent congestion
o Aggressive TCP/IP stacks can still flood switches “fairly”
e AC/DC aims to cooperate with or complement bandwidth allocation schemes

DCTCP

e Datacenter TCP (DCTCP) adjusts the sender’s rate based on the fraction of
packets experiencing congestion

e Explicit Congestion Notification (ECN) bit set when switch queue length
exceeds a congestion threshold

DCTCP Algorithm
. K
Switch: ECN=1 1 ECN=0
e Set ECN bit when Queue Length > K l:\:l_
Sender: !

e Maintain fraction of marked packets (a)
For each RTT:
_ #of marked ACKs

Total # of ACKs a—(1-gla+gF

e Adaptive decrease a
Cwnd « (1 — E)Cwnd

AC/DC Design and Implementation

e Obtain congestion control state information for each flow
e |mplement DCTCP at the vSwitch
e Enforce Congestion Control

e Implemented in Open vSwitch (OVS)
e Flows hashed on 5-tuple (dport, daddr, sport, saddr, VLAN)
e Each flow is tracked at receiver and sender

Congestion Control State

At vSwitch:
e cwnd is maintained; starts at 10

e Can see all traffic, so:
o Loss: if ack_seq <= snd_una, then dupack is incremented
o Timeouts: when snd_una < snd_nxt and inactivity timer fires

snd_una snd_nxt

s -

sequence numbers —»

Figure 4: Variables for TCP sequence number space.

Implementing DCTCP

e Add and remove ECN bits when packets go through the vSwitch
e Receiver module monitors congestion and reports it to sender using ACK
packets
o Piggy-back ACK (PACK): add data to ACK’s skb headroom
o Fake ACK (FACK) when PACK creates larger MTU than allowed
o IP header checksum, IP packet length, and TCP data offset are recalculated; TCP checksum
calculated by NIC

Implementing DCTCP

Incoming ACK

Extract CCinfo if it is PACK or FACK;
Drop FACK;
Update connection tracking variables;
Update a once every RTT;

No

e At sender, cwnd calculated

e If no congestion was encountered,
tcp_cong_avoid() expands cwnd
based on TCP’s New Reno
algorithm

Cutwnd in this
window before?.

wnd=wnd*(1 - o/2);

AC/DC enforces CC on the flow;
Send ACK to VM;

tcp_cong_avoid();

Figure 5: DCTCP congestion control in ACDC.

Enforcing Congestion Control

e vSwitch commandeers sender’s advertised rwnd to push its cwnd to receiver
o Only overwritten when AC/DC cwnd < sender’s rwnd
e Well-behaved TCP stacks will follow the standard and adhere to rwnd
e vSwitch can identify misbehaving TCP stacks (sending more than rwnd) and
drop excess packets
e Because VM-level ECN feedback is removed, AC/DC’s cwnd is the limiting
factor, allowing more data to be sent (allegedly)

Potential Extensions: Per-Flow Congestion Control

e Per-flow bandwidth allocation easy by capping cwnd
e Congestion control algorithm can be chosen based on flow
o For example, CUBIC for flows to the WAN, DCTCP for internal flows
e Priority possible for service classes
Bel01] op
rwnd = rwnd(1 — (o — —))

Performance Evaluation

e Is AC/DC underneath regular Linux TCP comparable to DCTCP

performance?
o TCP throughput
o Lossrate
Jain’s fairness index
o Flow completion time

e Across microbenchmarks and macrobenchmarks?

Microbenchmarks

Each sender starts long lived flow: Senders

e DCTCP and AC/DC have .03 (1%)
lower throughput than standard
TCP, and .05 (5%) better fairmess (T—

e RTT for 50th and 99th: eceiven
o JAC/DC: 124us & 279us
o locTep: 136us & 301us (b) Multi-hop, multi-bottleneck (parking lot) topology.

o CUBIC33ms&3oms Figure 7: Experiment topologies.

Why is AC/DC better?
- More on this later

Microbenchmarks

flows fromeach s _itor_i

(a) Dumbbell topology.

RTT of different schemes CWND
30 - 1 30
@25 k pcTCp 725 - bCTCP
=20 AC/DC =20 - AC/DC
015 _ a1s %
=10 - ; \ ‘ 210 -
< 5 L £ g |
CUBIC (Default) —&— & 2 : ; Tl : .
DCTCP —©—
AC/DC 0 0.02 0.04 0.06 0.08 0.1 Q 1 2 3 4 5
& ! ! L ! Seconds Seconds
0 1 2 3 4 5 6 7 8 9 10
TCP Round Trip Time (milliseconds) (a) First 100 ms of a flow. (b) MOVlng average.
Who limits TCP throughput? AC/DC CPU overhead
30 30
@25 CUBIC @25 CUBIC S R 0 ™ Baseline ===
a! 1
o . AC/DC €50 AC/DC Bl TR e 251 AC/DC mmmm
345 - 8
gs! g2
€5 €5 2% g
o | | S g ; i : 220 - 210
0 0.02 0.04 0.06 0.08 0.1 2 202 204 206 208 21 Uig [© 5
Seconds Seconds A 0
100 500 1K 5K 10K 100 500 1K 5K 10K

(a) Starting from 0 sec. (b) Starting from 2 sec.

Number of concurrent TCP connections

Number of concurrent TCP connections

Sender Receiver

AC/DC flexibility

CC Variants 507 p ile RTT (us) | 99% p ile RTT (us) Avg Tput (Gbps) Fairness Index
mtu=1.5KB | miu=" 9KB mtu=1.5KB | mtu=9KB | mtu=1.5KB | mu=9KB | mtu=1.5KB | mu=0KB

CUBIC* 3232 3641 3865 1.89 1.98 0.85 0.98
DCTCP* 128 142 232 259 1.89 1.98 0.99 0.99
CUBIC 128 142 231 252 1.89 1.98 0.99 0.99
Reno 120 149 235 248 1.89 1.97 0.99 0.99
DCTCP 9 149 232 266 1.88 1.98 0.99 0.99
Tilinois 215 262 1.89 1.97 0.99 0.99
HighSpeed 7 224 252 1.88 1.97 0.99 0.99
Vegas 6 143 216 251 1.89 1.97 0.99 0.99

Table 1: AC#DC works with many congestion control variants. Legend: CUBIC*: CUBIC + standard OVS, switch
WRED/ECN marking off. DCTCP*: DCTCP + standard OVS, switch WRED/ECN marking on. Others: different CCs +
AC#DC, switch WRED/ECN marking on.

AC/DC flexibility

Fl ey F2 B2 F3 mEmmm F4 = =1 F5 2 A1

10

Tput (Gbps)

‘[22 [22 [22 [32 [33 f
22'2]/41 '1]/4 '1]/4 '11/42’2 11’/4 Yo “Olq

Experiments (with different B combinations)

AC/DC Fairness

Tput (Gbps)
Tput (Gbps)
Tput (Gbps)

| L L L
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (seconds) Time (seconds) Time (seconds)

(a) CUBIC convergence test. (b) DCTCP convergence test. (c) AC#DC convergence test.

Fairness across ECN support

5 | 5
Max —&— Max —6—
A4 Min —— | sl Min —6—
a2 Mean —¢— e Mean —¢—
& Median —— & Median —d—
a3 | o 3r |
&, o
e e e
(=5 T (=}
= -
Lt 1
[J 1 1 1 1 1 1 1 oL 1 1 1 1 |
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Tests Tests
(a) All DCTCP. (b) 5 different CCs (AC#DC).

Macrobenchmarks (Incast)

cusic cuBIC CUBIC
DCTCP DCTCP

g.
=i o
:
5
2
3

)
& AC/DC —— 16 - AC/DC fos AC/IDC ——
2 Z £
§ 35 f §14 I @
i3 g12 206
E| = s
E 25 Elo r E
t 2} t 8 204
13 | o 2
a 15 a 6+ o
5] 3] o
B g FoaL £o2
05 2- &
0 0 ! 0 B
5 30 35 40 45 0 15 20 25 30 35 40 45 50 15 20 25 30 35 40 45 50
Number of\Senders Number of Senders Number of Senders
(a) 50™ percentileRTT. (b) 99.9" percentile RTT. (c) Packet drop rate.

Figure 19: Many to one incast: RTT and packet drop rate. AC#DC can reduce DCTCP’s RTT by limiting window sizes.

Why is AC/DC better?
- DCTCP has a lower bound on CWND, which
is too high when under extreme congestion

Macrobenchmarks (Incast)

100

CUBIC =3
DCTCP ===
AC/DC

=
(=]

=
T

TCP RTT (milliseconds)

o
=

50th 95th 99th 99.9th
Percentiles

Figure 20: TCP RTT when almost all ports are congested.

Macrobenchmarks (Stride)

1 1
0.9 0.9
0.8 0.8
0.7 0.7
. 0.6 . 06
005 005
0.4 0.4
0.3 0.3
CUBIC —6— CUBIC —&—
0.2 DCTCP —6— 02 DCTCP —6—
01 AC/DC —%— 01 AC/DC —%—
o | | ! | o | | 7
0 2 4 6 8 10 12 14 05 1 15 2 25 3 35 4
Mice FCT (milliseconds) Background FCT (seconds)

(a) Mice flow completion times. (b) Background flow completion times.
Figure 21: CDF of mice and background FCTs in concurrent stride workload.

Note: Shuffle Not Shown (check out the paper)

Trace-Driven workload

L 1

09 09
08 08
07 07
L 06 L 06
§os §os
04 04

CUBIC —o— o CUBIC —o—

02 DCTCP —6— 0% DCTCP —6—
0-(1) AC/DC —>%— 0-(1’ | AC/DC —x%—
0.1 1 10 100 0.1 1 10 100

Flow Completion Time (milliseconds) Flow Completion Time (milliseconds)

(a) Web-search workload. (b) Data-mining workload.
Figure 23: CDF of mice (flows < 10KB) FCT in web-search and data-mining workloads.

Summary

Operators need control of their networks to improve data center performance,
despite diverse tenants running arbitrary networking stacks

AC/DC allows operators to control the TCP congestion control algorithm of
arbitrary tenants by implementing congestion control at the vSwitch

AC/DC has the performance of specialized transport layer protocols like
DCTCP without requiring tenant adoption, new networking hardware or
software

Discussion

e What about distributed vSwitches?
e “cannot force an application to send more data than the VM’s CWND allows”
o AC/DC increases traffic b/c TCP only reduces CWND on loss or ECN feedback
o In other words, CWND of sender is always less than AC/DC’s RWND
o Will this type of approach work on other protocols? (UDP) Does it need to?
e Operating on Datapath... didn’t we just learn that kernel is bottleneck on
datapath!?

o whatis AC/DC overhead beneath an optimized networking stacks (Arrakis, 1X)?

