
IX: A Protected Dataplane Operating
System for High Throughput and Low

Latency
Adam Belay et al. Proc. of the 11th USENIX Symp.

on OSDI, pp. 49-65, 2014.

Presented by Han Zhang & Zaina Hamid

Challenges
Datacenter applications raise the following
challenges in OS:

● Low tail latency
○ One user request involves hundreds of servers.
○ Tail latency aggregates to the overall performance.

○ OS plays an important role in exacerbating tail
latency.

○ Need tight bounds on 99th percentile latency.

Table: J. Leverich and C. Kozyrakis. Reconciling High Server Utilization and Sub-Millisecond Quality-of-Service. In
Proceedings of the 9th EuroSys Conference (Eurosys ’14), page 4, 2014.

Challenges
● Low tail latency
● High packet rates

○ Facebook: Short requests (key: 50 bytes, values: 500 bytes).
○ Millions of requests per second (RPS) per node.
○ Impractical to use TCP for all connections.
○ Leverage UDP and aggregation proxy.

Challenges
● Low tail latency
● High packet rates
● Robust protection

○ Multiple services nodes share servers.
○ Network stack isolations provided by kernel or hypervisor.

● Resource efficiency
○ Allocate minimal resources to service nodes to meet requirements.
○ To mitigate diurnal patterns and spikes in traffic,
○ Allocate extras on demand, otherwise save the power.

Bottleneck in Network
● Hardware is FAST!

○ 10 GbE NIC is prevalent.
○ We are marching towards 40GbE, and 100 GbE.
○ Multi-core CPUs and high-speed channels to storage.

Bottleneck in Network
● Hardware is FAST!
● Operating systems have different(wrong) hardware assumptions.

○ Multiple applications share a single core.

○ Packet inter-arrival time > interrupts and system calls latency

○ Scheduling >> latency and throughput
○ Overheads in buffering and synchronization hurts CPU and memory system.

Alternative Attempts - To Save OS
● Kernel bypass

○ Using user-space networking stacks
○ Example: mTCP
○ Feature: Dedicated threads for TCP stack
○ Issues:

■ Switching overheads --, latency ++
■ Horrible security protection. Only count on NIC supports.

Alternative Attempts
● Replace TCP

○ Example: RDMA, UDP (as mentioned in Facebook)
○ Issues:

■ RDMA: Specialized hardware.
■ UDP: applications need to handle congestion control and reliability check.

● Replace POSIX API
○ Lightweight sockets
○ Still suffer from drawbacks of using kernel-based networking stacks.

● “Repair” OS
○ New socket options, new polling drivers.
○ Only receive incremental benefits.

Outline
● Motivation
● IX Design Approach
● IX Implementation
● Evaluation
● Discussion

Adopting Dataplane
● Middleboxes also require microsecond-level latency and high packet rates.
● Middleboxes use dataplane.
● Why not using dataplane?

● Before jumping to dataplane, let’s point out several differences.

Difference against Middleboxes
● Middleboxes are different than DC OSes in that:

○ MBs run each packet to completion.
■ New packet -> Protocol processing -> Application processing -> Next packet

○ OS kernels decouple protocol processing from application.
■ Interleave between those two.

■ ACK a packet even though application hasn’t process it yet.

○ MB dataplanes are optimized for synchronization-free operations.
■ This method scales well.

○ OS kernels rely on coherence traffic and synchronization locks.

IX Design Peek

Control Plane

Data Plane - Kernel

Data Plane - App

CPU NIC Mem.

OS

HW

Design Principles - I
● Separation of control and data plane

○ Control plane:
■ Resource configuration, provisioning, management (Coarse grained).

■ Elastically allocate entire cores, large page memory, and NIC queues to dataplanes.

○ Dataplane:
■ A single application in a single address space.
■ Similar to guest OSes in virtualized systems.

■ Direct pass-through access to NIC queues.

○ Three-way virtualized via Dune (control plane, dataplane, untrusted code).

Design Principles - II
● Run to completion with adaptive batching

○ Run through all stages needed to transmit a packet without interrupts.

○ Interleave between protocol processing (kernel mode) and application processing (user mode)
at well-defined transition points.

○ No need for intermediate buffering mechanism.

○ Batching packets throughout the network stack processing.

○ Start batching only under congestion. Set max # packets to be batched.

○ Queues only build up at NIC edge, before packets reaching to dataplane.
○ NIC ACK’s parameters (speed, window size) are a reflection of dataplane processing power.

Design Principles - III
● Zero-copy API with explicit flow control

○ Step 1: Get rid of POSIX API.

○ Step 2: Use memory to communicate.

○ Dataplane has two components (non-root kernel and application).
○ Messages between those two are stored in memory prior to transition.
○ Incoming and outgoing packets are kept immutable in memory.
○ Dataplane kernel is in charge of flow control and trim transmission if necessary.
○ Application controls buffers.

Design Principles - IV
● Flow-consistent, synchronization-free processing

○ Flow-consistent hashing, with receive-side scaling, of incoming traffic to NICs’ queues.
○ Each hardware thread serves a single queue per NIC.

○ Eliminates needs for synchronization and coherence traffic between cores.

○ Memory also organized in distinct pools for each hardware thread.

○ Sounds more like incorporating existing methods into new system design.

Outline
● Motivation
● IX Design Approach
● IX Implementation
● Evaluation
● Discussion

VMX Rings

By Hertzsprung at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8950144

IX Overview

Control plane Data plane 1 Data plane 2

Control Plane
● Consist of Linux kernel and IXCP

○ Kernel: Initialization devices and basic resource allocation; System calls and
services.

○ IXCP: Monitor dataplanes and enforce resource allocation policies.

● Allocate resources at coarse-level

● Linux and Dune in root ring 0
○ Similar to hypervisor.

● IXCP is at user-mode

Data Plane
● A single, multithreaded application
● Direct access to hardware features

○ IX ←→ NIC

● Internal memory management
● Own virtual address translations

○ Large page size (2MB) to reduce translation overhead

● Hierarchical timing wheel for network timeouts
● Implemented with DPDK, lwIP (lightweight IP), and Dune

App

Data Plane - Threads
● Support two types of threads

○ Elastic threads (will talk more later)
■ Interact with IX for network I/O
■ Provide high performance with good latency

○ Background threads
■ Can issue blocking system calls
■ Timeshare an allocated hardware thread

○ Both can issue POSIX system calls

● Upon changes in hardware threads from CP:
○ Adjust # of elastic threads & background threads

App

Dataplane API

● Elastic threads interact with IX through:
○ Batched systems calls
○ Event conditions generated by dataplane
○ Direct, restricted memory access to incoming payloads

Dataplane API
● Sys. calls and events conditions are passed through shared memory
● Expose flow control to application

○ Notify application about bytes sent
○ Current OSes embed flow control in kernel

● libix provides simple interface to application developer
● Coalescing in libix improves locality and flow control performance

Dataplane API

Pull to NIC as incoming
packets.

Process packets
through TCP/IP stack

- Switch to user-space
- Consume event
conditions
- App process requests
- Issue sys. calls

Process batched
system calls. Generate
outgoing traffic.Timer kicks in for

compliant TCP behavior.

Send to transmit
descriptor ring

Rx/Tx
Rings

Rx/Tx
Rings

Scalability and Security
● Elastic threads are (almost) synchronization and coherence free.

○ Commutative IX APIs - Each elastic thread has unique identifier namespace.
○ Optimized API - No concurrent execution, without synchronization primitives.

○ Disjoint subset of TCP flows per thread - Due to flow-consistent hashing.

○ Still need synchronization for shared structures and when CP reallocates resources.
○ But not a scaling bottleneck in system and protocol processing code.

● Better protection than user-level stacks.
○ Application in user-mode, dataplane in protected ring 0.
○ Dataplane can implement firewalls and ACLs.
○ Secure virtual memory protection between dataplane and application.
○ Timeout mechanism to interrupt non-responsive elastic threads. Hand over to CP.

Outline
● Motivation
● IX Design Approach
● IX Implementation
● Evaluation
● Discussion

Setup
● IX compared against Linux Kernel and mTCP
● TCP = networking protocol used throughout
● Methodology

○ 24:1 (clients:server)
○ Each socket has 8 cores, and 16 hyperthreads
○ Intel x520 10GbE NICs
○ Power management features are disabled
○ Scheduling jitter & background tasks - Avoided
○ IX max batch size = 64 packets per iteration

Latency & Single-flow b/w
● Goodput achieved for different message

sizes
● 2 IX servers

○ Latency : 5µs / 64B message
○ Goodput 5Gbps / 20KB message

● 2 Linux servers
○ Latency : 24µs
○ Goodput 5Gbps / 385 KB message

● IX’s dataplane model polls queues & processes packets to completion
● Linux - Interrupt model that wakes up blocked processes
● mTCP - aggressive batching to offset cost of context switching

Throughput & Scalability
● 18 clients connect to a single server,

listening on a single port, send a
remote request of size s, and wait
for an echo

● IX scales more aggressively in all the
3 cases

Core scalability

● IX only uses 3 cores to saturate the 10GbE link
● mTCP requires all 8
● IX linearly scales & delivers 3.8 M TCP connections per s on 4x10GbE

Message count scalability

● IX delivers 8.8 mil messages / s =
1.9 x the throughput of mTCP &
8.8 x the throughput of Linux.

● Also scales in a 4x10 GbE configuration
● Speedup of 2.3x with n=1 and

1.3x with n=1024 over 10 GbE IX

Message size scalability

● IX can deliver 8KB messages with a
Goodput of 34.5 Gbps

Overall IX can scale protected TCP/IP
beyond 10GbE even with a single socket
multi-core server

Connection Scalability
● At its peak, IX performs 10x better

than Linux

● With all 250k connections @ 4x10GbE
IX delivers 47% its own peak

● Drop in throughput is attributed to
Performance of memory subsystem &
Not an increase in IC.

Memcached Performance
Background on Memcached
-memcached deployed on top of the libevent framework
-high throughput, low latency caching tier in front of persistent database servers
-network bound application, with 75% of execution time in kernel mode for n/w processing

● ’mutilate’ generates load in terms of RPS & measures latency
● 23 client m/cs & 1476 connections
● 2 Representative workloads

○ ETC : 20B - 70B keys, 1B - 1KB values, 75% GET requests
○ USR : <20B keys, 2B values, 99% GET requests (minimum sized TCP packets)

■ Pipeline 4 requests per connections

● 8 cores with linux & only 6 cores with IX
(lock contention)

● IX latencies are reduced to ~half as
compared to Linux (Linux is running on clients)

Outline
● Motivation
● IX Design Approach
● IX Implementation
● Evaluation
● Discussion

What makes IX fast?

● Tight coupling of dataplace architecture that uses minimal amount of batching
● Lack of intermediate buffers
● Zero copy approach
● Tuned for multi-core scalability
● Can also be implemented at the user-level networking stack in general

Adaptive Batching

● Different upper bounds of B = batch size
● At low load B does not impact tail latency
● Larger values of B improve throughput - 29%

B ≥ 16 maximizes throughput

Another observation

● For high packet rates with smaller batch sizes, high rate of

PCIe writes reqd. To post fresh descriptors at every iteration => performance degradation with
core scalability

● Coalesced PCIe writes on the receive path to atleast replenish 32 descriptor entries at
a time

Current Limitations:

● No exploitation of IOMMUs or VT-d : instead maps descriptor rings to IX memory using
Linux pagemap to determine physical addresses

● No advantage of NIC’s SR-IOV capabilities
● Add support for interrupts to IX dataplane

Future Work:

● Explore control plane issues
● Dynamic runtime that rebalances network flows between available elastic threads
● Synergies between IX & networking protocols
● Can also be applied to other network protocols
● Library support for alternative API on top of the low level interface

Further Discussion
What we like:

● Security isolation at NIC queue level
● While measuring memcached performance Linux was being run on clients :

Good & bad

Room for improvement:

● Run to completion with adaptive batching - not ideal for small loads
○ Though only starts batching upon congestion.

● How often is resource reallocation?
○ Impact performance due to synchronization at control plane.

