IX: A Protected Dataplane Operating
System for High Throughput and Low
Latency

Adam Belay et al. Proc. of the 11th USENIX Symp.

on OSDI, pp. 49-65, 2014.

Presented by Han Zhang & Zaina Hamid

Challenges

Datacenter applications raise the following
challenges in OS:

e Low tail latency

o

o

o

One user request involves hundreds of servers.

Tail latency aggregates to the overall performance.

OS plays an important role in exacerbating tail
latency.
Need tight bounds on 99th percentile latency.

Note: all are in mi
Who | What Unl | CtxSw | Loaded | L3int
RX 09 08 1 1
TCP/IP 47 44 4 4
EPoll 39 3.1 2,778 | 3,780
Server | libevent 24 23 3,074 | 4545
Read 25 21 5 7
memcached | 2.5 20 2 L
Writex 4.6 39 4 5
Total 21.5 18.7 5872 | 8349

[Client | End-toend | 498 | 470 | 6011 | 8460 |

Table 1. Latency breakdown of an average request when
the server process is unloaded (Unl), when it is context-
switching with another process (Ctx Sw), when it is fully
loaded (Loaded), and when it is subjected to heavy L3 cache
interference while fully loaded (L3 int). All measurements
are in microseconds. “End-to-end” is the time reported by
‘mutilate on the clients. «For brevity, we include TCP/IP and
TX time in Write.

Table: J. Leverich and C. Kozyrakis. Reconciling High Server Utilization and Sub-Millisecond Quality-of-Service. In

Proceedings of the 9th EuroSys Conference (Eurosys '14), page 4, 2014.

Challenges

e Low tail latency

e High packet rates
o Facebook: Short requests (key: 50 bytes, values: 500 bytes).
o Millions of requests per second (RPS) per node.
o Impractical to use TCP for all connections.
o Leverage UDP and aggregation proxy.

Challenges

e Low tail latency
e High packet rates
e Robust protection

o

o

o

o

o

Multiple services nodes share servers.

Network stack isolations provided by kernel or hypervisor.
e Resource efficiency
Allocate minimal resources to service nodes to meet requirements.

To mitigate diurnal patterns and spikes in traffic,

Allocate extras on demand, otherwise save the power.

Bottleneck in Network

e Hardware is FAST!
o 10 GbE NIC is prevalent.
o We are marching towards 40GbE, and 100 GbE.
o Multi-core CPUs and high-speed channels to storage.

Bottleneck in Network

e Hardware is FAST!

e Operating systems have different(wrong) hardware assumptions.
o Multiple applications share a single core.

o Packet inter-arrival time > interrupts and system calls latency

o Scheduling >> latency and throughput
o Overheads in buffering and synchronization hurts CPU and memory system.

Alternative Attempts - To Save OS

e Kernel bypass
o Using user-space networking stacks
Example: mTCP
Feature: Dedicated threads for TCP stack
Issues:
m Switching overheads --, latency ++

o o

o

m Horrible security protection. Only count on NIC supports.

Alternative Attempts

e Replace TCP
o Example: RDMA, UDP (as mentioned in Facebook)
o Issues:
m RDMA: Specialized hardware.
m UDP: applications need to handle congestion control and reliability check.
e Replace POSIX API
o Lightweight sockets
o Still suffer from drawbacks of using kernel-based networking stacks.
e “Repair” OS
o New socket options, new polling drivers.
o Only receive incremental benefits.

Outline

Motivation

IX Design Approach
IX Implementation
Evaluation
Discussion

Adopting Dataplane

e Middleboxes also require microsecond-level latency and high packet rates.

e Middleboxes use dataplane.
e Why not using dataplane?

e Before jumping to dataplane, let's point out several differences.

Difference against Middleboxes

e Middleboxes are different than DC OSes in that:

o

MBs run each packet to completion.

m New packet -> Protocol processing -> Application processing -> Next packet
OS kernels decouple protocol processing from application.

m Interleave between those two.

m ACK a packet even though application hasn’t process it yet.

MB dataplanes are optimized for synchronization-free operations.
m This method scales well.
OS kernels rely on coherence traffic and synchronization locks.

IX Design Peek

HW

0S |-

Data Plane - App

Data Plane - Kernel

Design Principles - |

e Separation of control and data plane
o Control plane:
m Resource configuration, provisioning, management (Coarse grained).

m Elastically allocate entire cores, large page memory, and NIC queues to dataplanes.

o Dataplane:
m Asingle application in a single address space.
= Similar to guest OSes in virtualized systems.

m Direct pass-through access to NIC queues.

o Three-way virtualized via Dune (control plane, dataplane, untrusted code).

Design Principles - Il

e Run to completion with adaptive batching
o Run through all stages needed to transmit a packet without interrupts.
o Interleave between protocol processing (kernel mode) and application processing (user mode)
at well-defined transition points.

o No need for intermediate buffering mechanism.

o Batching packets throughout the network stack processing.
o Start batching only under congestion. Set max # packets to be batched.

o Queues only build up at NIC edge, before packets reaching to dataplane.
o NIC ACK’s parameters (speed, window size) are a reflection of dataplane processing power.

Design Principles - llI

e Zero-copy API with explicit flow control
o Step 1: Get rid of POSIX API.

o Step 2: Use memory to communicate.

o Dataplane has two components (non-root kernel and application).
o Messages between those two are stored in memory prior to transition.
Incoming and outgoing packets are kept immutable in memory.

o o

o

Application controls buffers.

Dataplane kernel is in charge of flow control and trim transmission if necessary.

Design Principles - IV

e Flow-consistent, synchronization-free processing
o Flow-consistent hashing, with receive-side scaling, of incoming traffic to NICs’ queues.
o Each hardware thread serves a single queue per NIC.
o Eliminates needs for synchronization and coherence traffic between cores.

o Memory also organized in distinct pools for each hardware thread.

o Sounds more like incorporating existing methods into new system design.

Outline VMX Rings

Least privileged
e [X Implementation

e Evaluation
e Discussion

> 8 Most privileged
Device drivers

Device drivers

Applications

By Hertzsprung at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8950144

IX Overview Control Plane
| |
n ! (httpd) ' Gemcaehe@ e Consist of Linux kernel and IXCP ,,
o {2}
£ : = : -~ o Kernel: Initialization devices and basic resource allocation; System calls and €
_:‘ | libix ‘ : _|_ _|IEIX_ _ ‘_ | services.
“% "7 | o IXCP: Monitor dataplanes and enforce resource allocation policies. iy e
28 | IX ! 1X 3
g £ i) e Allocate resources at coarse-level g £
c I I c
________ mmm e — = —— ——— ===
5 | | Li . X 5
° .@ | | e Linux and Dune in root ring 0 ° .@
2 E Linux__ |1 | o Similarto h i 2 E Linux
£ g i) ypervisor. £E
> 1 i |
: 1 e [XCP is at user-mode
| |
]]
1 |
M | L
Control plane Data plane 1 Data plane 2

Data Plane Data Plane - Threads
e A single, multithreaded application o e Support two types of threads ®
. (=) . N j=
e Direct access to hardware features £ o Elastic threads (will talk more later) s
o IX «— NIC = Interact with IX for network I/O
) m Provide high performance with good latency i
e Internal memory management o8 o8
K X =43 o Background threads o &
e Own virtual address translations £5 = Can issue blocking system calls £5
o Large page size (2MB) to reduce translation overhead ity m Timeshare an allocated hardware thread -=
e Hierarchical timing wheel for network timeouts o8 o Both can issue POSIX system calls o8
. . . o & . {2200
e Implemented with DPDK, IwIP (lightweight IP), and Dune £E e Upon changes in hardware threads from CP: £E
= o Adjust # of elastic threads & background threads =
ANy T
Dataplane API
Dataplane API
e Elastic threads interact with IX through:
o Batched systems calls e Sys. calls and events conditions are passed through shared memory
o Event conditions generated by dataplane e Expose flow control to application
o Direct, restricted memory access to incoming payloads o Notify application about bytes sent
o Current OSes embed flow control in kernel
System Calls (batched)
Type) Par;_me;elrjm i gescﬂvﬁon ; e 1libix provides simple interface to application developer
connect | cookie, dst IP, dst_por pens a connection RO i
accept | handle, cookic Accepts a connection e Coalescing in 1ibix improves locality and flow control performance
sendv handle, scatter_gather_array Transmits a scatter-gather array of data
recv_done | handle, bytes_acked Advances the receive window and frees memory buffers
close handle Closes or rejects a connection
Event C
Type Parameters Description
knock handle, src TP, src_port A remotely initiated connection was opened
connected | cookie, outcome A locally initiated connection finished opening
Tecv cookie, mbuf_ptr, mbuf_len A message buffer was received
sent cookie, bytes_sent, window size | A send completed and/or the window size changed
dead cookie, reason A connection was terminated
Table 1: The 1X dataplane system call and event condition API.

Dataplane API

- Consume event

em - Switch to user-space
{_libix__)

g Event -
2 Conditions conditions
= - App process requests
¥ Issue sys. calls
Process packets >‘ 5 Process batched
through TCP/IP ctark system calls. Generate
9 tcp/ 5 o
Timer kicks in for ou going traffic.
compliant TCP behavior. ®—\
Pull to NIC as incoming timer I/ @
packets. A Send to transmit
L descriptor ring d
' [Rax adaptive batch L\%T'J R
Rings Rings

(b) Interleaving of protocol processing and application execution.

Scalability and Security

e Elastic threads are (almost) synchronization and coherence free.
o Commutative IX APIs - Each elastic thread has unique identifier namespace.
o Optimized APl - No concurrent execution, without synchronization primitives.

o Disjoint subset of TCP flows per thread - Due to flow-consistent hashing.

o Still need synchronization for shared structures and when CP reallocates resources.
o But not a scaling bottleneck in system and protocol processing code.
e Better protection than user-level stacks.
o Application in user-mode, dataplane in protected ring 0.
o Dataplane can implement firewalls and ACLs.
o Secure virtual memory protection between dataplane and application.
o Timeout mechanism to interrupt non-responsive elastic threads. Hand over to CP.

Outline

Motivation

IX Design Approach
IX Implementation
Evaluation
Discussion

Setup

e X compared against Linux Kernel and mTCP
e TCP = networking protocol used throughout
e Methodology

o 24:1 (clients:server)

o Each socket has 8 cores, and 16 hyperthreads
o Intel x520 10GbE NICs

o Power management features are disabled

o Scheduling jitter & background tasks - Avoided
o IX max batch size = 64 packets per iteration

Latency & Single-flow b/w

Goodput achieved for different message
sizes
2 IX servers

o Latency : 5us / 64B message

o Goodput 5Gbps / 20KB message
2 Linux servers

o Latency : 24ps

o Goodput 5Gbps / 385 KB message

Goodput (Gbps)

XIX —8—
Linux-Linux —e—
mTCP-mTCP —4&—
(U 4 T T T T T

0 100 200 300 400 500
Message Size (KB)

Figure 2: NetPIPE performance for varying message sizes
and system software configurations.

IX’s dataplane model polls queues & processes packets to completion
Linux - Interrupt model that wakes up blocked processes
mTCP - aggressive batching to offset cost of context switching

Throughput & Scalability

e 18 clients connect to a single server,
listening on a single port, send a
remote request of size s, and wait
for an echo

e [X scales more aggressively in all the
3 cases

Core scalability

Messages/sec (x 10°)

Number of CPU cores
(a) Multi-core scalability (n=1, s=64B)

Linux 10Gbps —&— IX 10Gbps —&— mTCP 10Gbps —=—
Linux 40Gbps —— _ IX 40Gbps —#—

e X only uses 3 cores to saturate the 10GbE link

e mTCP requires all 8

e |Xlinearly scales & delivers 3.8 M TCP connections per s on 4x10GbE

Message count scalability

IX delivers 8.8 mil messages /s =

1.9 x the throughput of mTCP &

8.8 x the throughput of Linux.

Also scales in a 4x10 GbE configuration
Speedup of 2.3x with n=1 and

1.3x with n=1024 over 10 GbE IX

Messages/sec (x 10°)
o
A

4]

2 &

0 + T T T T T T T d
0 1 2 8 32 64 128 256 512 1K

Number of Messages per Connection

(b) n round-trips per connection. (s=64B)

Linux 10Gbps —=—
Linux 40Gbps —e—

X 10Gbps —&— mTCP 10Gbps —+—
IX 40Gbps —=—

Message size scalability

e |X can deliver 8KB messages with a
Goodput of 34.5 Gbps

Overall IX can scale protected TCP/IP
beyond 10GbE even with a single socket
multi-core server

Goodput (Gbps)

35

30

25

20

0 64 256 1024 4096 8192

Message Size

(c) Different message sizes s (n=1)

Linux 10Gbps ——
Linux 40Gbps —-

IX 10Gbps —=— mTCP 10Gbps —=—
IX 40Gbps —=—

1 IX-40Gbps —=—
12 4. IX-10Gbps —&—
. . il 24N
Connection Scalability €0 7. Memcached Performance
g s L\
. % M
e Atits peak, IX performs 10x better g o Background on Memcached
than Linux = 4 / -memcached deployed on top of the libevent framework
2 - -high throughput, low latency caching tier in front of persistent database servers
- Ht@ﬂfefm
. . T T T T -| i i i 9 i i i i
e With all 250k connections @ 4x10GbE 0 = g = pi i network bound application, with 75% of execution time in kernel mode for n/w processing
IX delivers 47% its own peak (Cormection Count (Iog sEale) o il ate?)
Figure 4: Comnection. scalability for the 10GbE and . mutl!ate generates load in terms of RPS & measures latency
4x10GbE configurations. e 23 client m/cs & 1476 connections
e Drop in throughput is attributed to e 2 Representative workloads
Performance of memory subsystem & o [ETC:20B-70B keys, 1B - 1KB values, 75% GET requests
. . o USR: <20B keys, 2B values, 99% GET requests (minimum sized TCP packets)
Not an increase in IC.
m Pipeline 4 requests per connections
Configuration | Minimum latency RPS for SLA:
e 8 cores with linux & only 6 cores with IX _ @%thpet | <500ys @5th pet
ETC-Linux 94ps 550K
lock contention ETC-IX 45us 1550K i
() !) USR-Linux 85us 500K OUtIIne
e [Xlatencies are reduced to ~half as USR-IX 32us 1800K
i P i i i Table 2: Unloaded latency and maximum RPS for a . .
compared to Linux (Linux is running on clients) oo i e e Motivation
loadsTe/and USR: e [X Design Approach
e X Implementation
[Tinux ave) Linux (997 pet) —— X (avg) o IX (997 pet) —o— e Evaluation
750 T 750 4 . .
e Discussion
o 500 | A . 500 B LA
3 f 2]
;f ‘\‘ E [
= 250 / i = 250 J‘
S .,-“. - ”“"/{'
o sttt . T e U
500 750 1000 1250 1500 1750 2000

T T T T T T T |

0 25 500 750 1000 1250 1500 1750 2000 0 250
ETC: Throughput (RPS x 10°)

Figure 5: Average and 99th percentile latency as a function of throughput for two memcached workloads.

USR: Throughput (RPS x 10%)

What makes IX fast?

Tight coupling of dataplace architecture that uses minimal amount of batching
Lack of intermediate buffers

Zero copy approach

Tuned for multi-core scalability

Can also be implemented at the user-level networking stack in general

Adaptive Batching

Lateney fus)

Different upper bounds of B = batch size
At low load B does not impact tail latency
Larger values of B improve throughput - 29%

o T T T

B = 16 maximizes throughput Um0 N0 T 000 IS0 100 17 200
USE: Thoaghput (RPS x 10%)

Another observation

the batch bound B.
® For high packet rates with smaller batch sizes, high rate of

PCle writes reqd. To post fresh descriptors at every iteration => performance degradation with
core scalability

e Coalesced PCle writes on the receive path to atleast replenish 32 descriptor entries at
atime

Current Limitations:

e No exploitation of IOMMUs or VT-d : instead maps descriptor rings to IX memory using
Linux pagemap to determine physical addresses

e No advantage of NIC’s SR-IOV capabilities

e Add support for interrupts to IX dataplane

Future Work:

Explore control plane issues

Dynamic runtime that rebalances network flows between available elastic threads
Synergies between IX & networking protocols

Can also be applied to other network protocols

Library support for alternative API on top of the low level interface

Further Discussion

What we like:

e Security isolation at NIC queue level
e While measuring memcached performance Linux was being run on clients :
Good & bad

Room for improvement:

e Run to completion with adaptive batching - not ideal for small loads
o Though only starts batching upon congestion.

e How often is resource reallocation?
o Impact performance due to synchronization at control plane.

Figure 6: 99th percentile latency as a function of through-
put for USR workload from Fig. 5, for different values of

