
Arrakis: The Operating System is the Control Plane
Simon Peter et al.

Proc. of the 11th USENIX Symp. on OSDI, pp. 1-16, 2014.

Presented by Xintong Wang and Ming zhi Yu

Problem: Building an OS for the Data Center
● Server I/O performance matters:

○ Key-value stores
○ Web & file servers
○ Lock managers

● Can we build an OS that would allow applications deliver performance close
to that delivered by data center hardware technology?

The hardware can help!

Arrakis Design Goals
● Minimize kernel involvement & deliver I/O directly to applications

○ Reduce OS overhead

● Transparency to the application programmer
○ No requirements for modifications to applications

● Appropriate OS/hardware abstraction
○ Keep classical server OS features
○ I/O protocol flexibility
○ Process protection
○ Global naming

Arrakis Architecture

Traditional OS Architecture Arrakis Architecture

Source:https://www.youtube.com/watch?v=4NYpDad0f04

Skip the Kernel
● Kernel

○ API
○ Access Control
○ Copying
○ Global Naming
○ I/O Processing
○ I/O Scheduling
○ Multiplexing
○ Protection
○ Resource Limits

● Redis (Application)
● I/O Devices (Hardware)

Skip the Kernel
● Kernel

○ API
○ Access Control
○ Copying
○ Global Naming
○ I/O Processing
○ I/O Scheduling
○ Multiplexing
○ Protection
○ Resource Limits

● Redis (Application)
● I/O Devices (Hardware)

Kernel mediation is too heavyweight!

Skip the Kernel
Control Plane

● Kernel
○ Access Control
○ Global Naming
○ Resource Limits

Data Plane

● Application (Redis)
○ API
○ I/O Processing

● I/O Devices (Hardware)
○ I/O Scheduling
○ Multiplexing
○ Protection

○ Copying: A native interface that supports true zero-copy I/O

Skip the Kernel
Control Plane

● Kernel
○ Access Control
○ Global Naming
○ Resource Limits

Data Plane

● Redis (Application)
○ API
○ I/O Processing

 Data Path

● I/O Devices (Hardware)
○ I/O Scheduling
○ Multiplexing
○ Protection

Arrakis I/O Architecture

Arrakis I/O Architecture
Control Plane

● Kernel
○ Access Control
○ Global Naming
○ Resource Limits

Data Plane

● Redis (Application)
○ API
○ I/O Processing

 Data Path

● I/O Devices (Hardware)
○ I/O Scheduling
○ Multiplexing
○ Protection

Arrakis I/O Architecture

Arrakis Control Plane
● Access Control

○ Only do once when configuring the data plane
○ Enforced via NIC filters, logical disks

● Global Naming
○ Virtual file system still in kernel
○ Storage implementation in applications

● Resource Limits
○ Program hardware I/O schedulers

Global Naming

Control Plane

● Kernel
○ Access Control
○ Global Naming
○ Resource Limits

Data Plane

● Redis (Application)
○ API
○ I/O Processing

 Data Path

● I/O Devices (Hardware)
○ I/O Scheduling
○ Multiplexing
○ Protection

Arrakis I/O Architecture Storage Data Plane
● Persistent Data Structures

○ Examples: persistent log and queue data structures

● Benefits
○ Operations are immediately persistent.
○ The structure is robust versus crash failures.
○ Operations have minimal latency

● Drawbacks
○ A lack of backwards-compatibility to the POSIX API.

Control Plane

● Kernel
○ Access Control
○ Global Naming
○ Resource Limits

Data Plane

● Redis (Application)
○ API
○ I/O Processing

 Data Path

● I/O Devices (Hardware)
○ I/O Scheduling
○ Multiplexing
○ Protection

Arrakis I/O Architecture Hardware I/O Virtualization
● Standard on data center NIC, emerging on RAID
● I/O Scheduling

○ NIC rate limiter, packet schedulers

● Multiplexing
○ Single-Root I/O Virtualization (SR-IOV)

■ Support high-speed I/O for multiple virtual machines sharing a single physical machine.
■ Each virtual PCI device has its own register, queue etc.

● Protection
○ IOMMU

■ Restrict device access to only application virtual memory.
○ Packet filters, logical disks

■ Only allow eligible I/O.

Evaluation
● Arrakis was evaluated on four cloud application workloads

○ Read-heavy
○ Write-heavy
○ Http load balancer
○ IP-layer middlebox

● OS configurations used in the evaluation:
○ Ubuntu version 13.04 (kernel version 3.8)

■ Made some tunings and throughput performance improved by 10%
● Installed latest ixgbe device driver
● Disabled receive side scaling (RSS) when applications executed on one processor

○ Arrakis using the POSIX interface
○ Arrakis using its native interface

Server-side Packet Processing Performance
● UDP echo server

○ Other machines generated 1KB UDP packets at a fixed rate for 20 seconds in each
experiment

○ the rate at which echoes arrived was recorded and used to compute server-side overhead

○ Arrakis eliminates scheduling and kernel crossing because packets are delivered directly to
user space.

Server-side Packet Processing Performance
● Experiment repeated with delay added before echoing each UDP packet to

simulate application-level processing time
● A minimal echo server was embedded directly into the NIC device driver to

see how close to the maximum possible throughput Arrakis is able to achieve

Read-heavy load
● Memcached: is a general-purpose distributed memory caching system. It is

often used to speed up dynamic database-driven websites by caching data
and objects in RAM to reduce the number of times an external data source
(such as a database or API) must be read[1].

● Setup:
○ Requests were sent at a constant rate via its binary UDP protocol
○ Workload pattern: 90% fetch and 10% store requests

○ Number of Memcached processes were varied to measure network stack scalability for
multiple cores

[1] Memcached. [online] Available: https://en.wikipedia.org/wiki/Memcached

Write-heavy load
● Redis: provides in-memory data structure stores, optionally persists each

write via an operational log
○ AOF persistence logs every write operation received by the server
○ RDB persistence performs point-in-time snapshots of dataset at specified intervals [1]

● Log records were exchanged between Redis and Caladan
● Setup:

○ Benchmark tool distributed with Redis
○ Execute GET and SET requests in two separate benchmarks
○ Also ported Caladan to run on Linux
○ Simulated storage hardware with low write latency through a write-delaying RAM disk

● Results:
○ Write latency improves by 63%
○ Write throughput improves by 9X on Arrakis
○ Write throughput improves by 5X on Linux (w/ Caladan)

[1] Redis Persistence. [online] Available: http://redis.io/topics/persistence

Http Load Balancer
● Haproxy: high availability proxy, a popular

open source software TCP/HTTP load
balancer and proxying solution[1]

● Setup:
○ Deployed a static web page of 1024 bytes at five

web server, which also served as workload
generators

○ Distributed load in a round-robin fashion

○ Experiment was done with and without “speculative
epoll” (SEPOLL) within the Linux kernel.

■ SEPOLL: uses knowledge about typical

socket operation flows within Linux kernel to

avoid calls to the epoll interface and optimize
performance

■ Not implemented in Arrakis[1] An Introduction to HAProxy and Load Balancing Concepts. [online] Available:
https://www.digitalocean.com/community/tutorials/an-introduction-to-haproxy-and-load-balancing-concepts

● Haproxy inserts cookies into
HTTP stream to remember
connection assignments to web
servers under client
reconnections

IP-layer Middlebox
● IP-layer middleboxes: perform tasks

such as firewalling, intrusion
detection, network address
translation, and load balancing.

● Setup:
○ Implemented a simple user-level load

balancing middlebox using raw IP sockets.

It simply rewrites source and destination IP
addresses and TCP port numbers.

○ A hash table was used to remember
existing connection assignment

○ Responses from back-end servers were

intercepted and forwarded back to
corresponding clients

Results and analysis:
● Load balancing middle box running either

Linux or Arrakis experienced a higher
throughput compared to Haproxy because of
the simpler nature of the middlebox

● Linux implementation does not scale well
because raw sockets carry no connection
information → each middlebox instance has to
look at each incoming packet to determine if it
should handle it

Performance Isolation
● Wanted to know if it is possible to provide

the same kind of QoS enforcement (rate
limiting) in Arrakis as in Linux.

● Setup:
○ Simulated a simple multi-tenant scenario with 5

Memcached instances
○ Limit one tenant’s sending rate to 100Mb/s

○ Used rate specifiers in Arrakis and queuing
disciplines on Linux to limit the rate

○ Memcached experiment was repeated

● Conclusion
○ Arrakis is able to provide the same kind of rate

limiting QoS enforcement as in Linux

Discussions

Some applications of Arrakis:

● Make Arrakis as a virtualized guest
○ Moving the control plane into the virtual machine monitor (VMM)
○ Applications allocate virtual interfaces cards directly from VMM

● Virtualized Interprocessor Interrupts
○ Interprocessor signaling is inefficient because of kernel’s involvement even though the

sending and receiving threads are two threads of the same application

○ Kernel could be configure to allow an interrupt to be delivered to another processor given that
the same application is running on that processor

○ Achieve similar cost as a cache miss

Improvements and Extension
● Throughput of Arrakis does not scale well beyond 4 cores based on the

Memcached experiment
○ Reduce overhead caused by contention with Barrelfish system management processes

● Limited filtering support of the 82599 NIC (implementation)
○ Introduce software overhead: different MAC address for each VNIC

