Dukkipati, N. et al., "Proportional
Rate Reduction for TCP," Proc. of
ACM IMC '11, pp. 155-170, 2011.

Xinghao Li
Nitish Paradkar

Introduction - Web Latency

e Web latency is a key factor that determines the user
experience for web services.

e Sources of web latency:

Non speed-optimized content

Slow web servers, slow browsers and low bandwidth
Network protocols

Packet losses

0O O O O

Introduction - Statistics About Latency

2833 R o roxmit -] e Over 6% of HTTP responses from
hrovt s Google.com got losses that impact
jggg user experience.
| e Responses that experience losses
0 200 400 600 800 1000 have 7-10 times longer latency than
KT bucket sl those without packet loss.

TCP latency [ms]

1000
0

1 .
o0k e RTT range for responses with losses
= 06 / are 10 times larger than those without
a
© o4 loss.
0.2 ,’ Resp. w/ rexmit
Resp. w/o rexmit

0
0 20 40 60 80 100 120 140 160 180 200
round-trips

Introduction - TCP Loss Recovery Mechanisms

e Fast retransmit (cwnd will be adjusted accordingly)
o Perform retransmission after receiving a certain number of duplicate ACKs
o Accounts for 25% retransmissions in short flows from Google Web servers
o Accounts for 50% retransmissions in bulk video traffic

e Wait for retransmission timeout (RTO) before consider the data

was lost
o When fast retransmission is failed or when there are insufficient packets to

trigger it

Introduction - Algorithms to Adjust the cwnd

e RFC 3517
e Rate Halving (in Linux)
e Proportional rate reduction (PRR, discussed in this paper)

Contribution of this paper

e Introducing Proportional Rate Reduction (PRR)

e Introducing Early Retransmit (ER) to deal with losses in short
transfers

e Demonstrating retransmission statistics of Google Web Servers

Google TCP and HTTP Measurements

e Collected data from Google web servers for one week in 2011

TCP
Total connections Billions
Connections support SACK 96%
Connections support Timestamp 12%
HTTP/1.1 connections 94%
Average requests per connection 3.1
Average retransmissions rate 2.8%
HTTP
Average response size 7.5kB
Responses with TCP retransmissions 6.1%

Retransmission Statistics

e Examined loss recovery mechanisms in two data centers
o DC 1 serving users in South America and the east coast
o DC 2 serving YouTube videos in India

e DC 1 has short flows whereas DC 2 has long flows

e Average retransmission rates
o 2.5% forDC 1
o 5.6% for DC 2

Retransmission Statistics

Fast retransmit: packets sent

Fast Recovery Statistics

e DSACK measures wasted network resources by aggressive retransmits

DC1 | DC2 during fast recovery
Fast retransmits 24% | 54% Timeout retransmits: retransmit
Timeout retransmits 3% | 1% upon timeout. DC1 | DC2
Timeout in Open 30% 8% o DC 1 doesn’t get enough Tast tet Tts/FR 5 1 2.93
Timeout in Disorder 2% | 3% dupack’s to cause fast e r? ransmits/ ?1 & o
Timeout in Recovery 1% 2% recovery DSACKS/FR] 12% 1%
Timeout Exp. Backoff || 10% | 4% Slow start retransmits: sender is DSACKs/retransmit 3.8% | 1.4%
Slow start retransmits 17% | 29% operating in slow start phase Lost (fast) retransmits/FR 6% 9%
Failed retransmits 5% | 0% Failed retransmits: No TCP ACK’s Lost retransmits/retransmit || 1.9% | 3.1%
received, so connection aborted.
RFC 3517 Fast Recovery RFC 3517 Example
Algorithm 1: RFC 3517 fast recovery e Enter recovery on receiving dupthresh 30000
On entering recovery: dl_"pACKS_ (normally 3). .
e Pipe: Estimate of amount of data in
// cund used during and after recovery. network 20000
cwnd = ssthresh = FlightSize/2 e FlightSize: Amount of unACK'd data
// Retransmit first missing segment. when entering recovery 10000
fast_retransmit() all | | ‘ |
// Transmit more if cwnd allows. 0 - i =
Transmit MAX(0,cund ~ pipe) 200 ms 400 ms 600 ms

For every ACK during recovery:
updatescoreboard() pipe = (RFC 3517 pipe algorithm)
Transmit MAX (0, cwnd — pipe)

First four segments dropped

Red shows retransmitted data

20kB sent at 0 ms, and 10kB sent at 500 ms
Green represents next segment that needs an ACK

Purple lines represent data that has arrived using SACK

Drawbacks of RFC 3517

e Half RTT silence

o Need to wait for at least half the cwnd before (cwnd - pipe) is positive

o Wastes opportunities for transmitting data
e Bursty retransmissions

o Pipe is only an estimate of the amount of data in the network

o Cwnd - pipe can be really large, and so a large burst of data can be sent

Linux Fast Recovery

e Triggers fast retransmit with the first SACK if it indicates more than dupthresh
segments have been lost
o Results in more aggressively entering fast recovery
e Uses rate halving algorithm
o When cwnd is reduced, send data for every 2nd ACK received
o As opposed to waiting for cwnd/2 dupACKs to pass by before retransmitting

e Reduces cwnd to pipe + 1 for every ACK that reduces pipe
o Can lead to extremely small cwnd at the end of fast recovery

Linux Fast Recovery Example

-
gl |

30000

20000

10000

0

200 ms 400 ms 600 ms

20kB sent at 0 ms, and 10kB sent at 500 ms
First four segments are dropped

Green represents latest uynACK’d segment
Red shows retransmitted data

Purple lines represent data that has arrived

800 ms

Drawbacks of Linux Fast Recovery

e Slow start after recovery
o Can exit recovery with a very small cwnd
o Goal of fast recovery is to end recovery without having to slow start
e Conservative retransmissions
o Rate halving uses received ACK’s to send more data into the network
o Lost ACKs can result in less data being sent

Proportional Rate Reduction (PRR)

e Goals
o Speedy and smooth recovery from losses
o End recovery with cwnd close to ssthresh
e Proportional part
o Active when pipe > ssthresh
o Similar to rate halving, but uses fraction appropriate for congestion control algorithm
o CUBIC has 30% window reduction, so send 7 segments for every 10 ACKs
e Slow start
o Active when pipe < ssthresh
o Perform slow start to build pipe back up the ssthresh

PRR Example

30000 i

20000

il |
.\I”” |
I',, i B .4”!.

0

200 ms 400 ms 600 ms

20kB sent at 0 ms, and 10kB sent at 500 ms
Green represents latest unACK’d segment
Red shows retransmitted data

Purple lines represent data that has arrived

PRR Heavy Losses

i
10000 l B
Al | 1]
P r Tl

100 ms 200 ms 300 ms 400 ms 500 ms

30000
it
T t 5
20000 | | (N 1 T W 1]

0

e Segments 1-4 and 11-16 dropped
e After second series of losses, pipe < ssthresh and it is in slow start mode

PRR Pseudo Code

“Algorithm 2: Proportional Rate Reduction (PRR)

Tuitialization on entering recovery:

e e e prr_delivered: number of unique bytes delivered to
ssthresh = CongCtrlAlg

1/ Total bytes delivered during recevery. receiver))

proelivered =0 e prr_out: total bytes transmitted during recover

// Total bytes sent during recovery. prr_out =0 R FS: flight si t th tart of

1/ Flignssize st the stact of recovery. i ecoverrS: flight size at the start of recovery
eSS = e N, e DeliveredData: number of new bytes received from
On every ACK during recovery compute: ACK

e e et e DeliveredData makes algorithm less vulnerable to
delivered to the raceiver.

DeliveredDeto = defta(ondona) + delia(S ACKd) lost ACKs

prrdelivered+ = DeliveredData
pipe = (RFC 3517 pipe algorithm)
if pipe > ssthresh then
/ Proportional Rate Reduction
sndent = CEIL(prrdelivered «
ssthresh/RecoverFS) — prr_out
else

// Slow start
ssdimit =

MAX (prr_dclivercd — prr_out, DeliveredData) + 1
sndent = MIN (ssthresh — pipe, ss_limit)

sndent = MAX (sndent, 0) // positive

cwnd = pipe + sndent

On any data transmission or retransmission:
prr_out+ = data_sent

At the end of recovery:

cwnd = ssthresh

PRR Example Properties of PRR

ackk X 1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19
cwnd: 20 20 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 e ‘N'is new data send, ‘R’ is

ipe: 19 19 18 18 17 16 15 14 13 12 11 10 10 10 10 10 10 10 10 . [] i i i
pips: 1913 18 5130 10 10 30 10 10 20 retransmitted data Maintains ACK clocking
e Packet 0 is dropped o Not true for RFC 3517
Rate-talving (Linuws) ¢ Assume ssthresh is 12 e Convergence to ssthresh
ack# X 1 2 3 4 5 68 7 8 91011 1213141516 17 18 19 . .
cwnd: 20 20 19 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11 o In proportional mode reduces pipe to reach ssthresh
P st RGP e LSRR AEERES B2 B & 2 Ack# |pr_ |snd_ |pm_ o Tries to maintain pipe at ssthresh in slow start part
delive | cnt out e Banks sending opportunities
. W D5 5 4 S e 5§ SO A% A 8 05 red o When application doesn’t have data to send, prr_out falls behind prr_delivered
PiRRY An i ARSLATTEe e DO Ab T Soas B2 B2 L 40 3 1 1 1 o This is taken care of in the slow start stage
RB: s s o ss_limit = MAX(prr_delivered - prr_out, DeliveredData) + 1
2 0 1

snd_cnt = CEIL(prr_delivered * ssthresh / RecoverFS) - prr_out
prr_out is updated on every transmission 5 3 1 2
prr_delivered updated on every ACK received

Source: https://tools.ietf.org/pdf/rfc6937.pdf

PRR Banking Properties of PRR

e DeliveredData allows sender to get a better idea of how much data received

30000 ? e Only uses pipe to determine which mode to send in
w8 vt o RFC 3517 uses pipe to determine how much to send
20000 1 o PRR uses DeliveredData
e DelieveredData determines how many packets to send based on transmitted
10000 Segments

o Rate halving in Linux relies on number of ACKs received
e Data transmitted during recovery is in proportion to that delivered
o prr_out <=2 * prr_delivered

.‘1|||||H

100 ms 150 ms 200 ms 250 ms 300 ms 350 ms

Application gets more data at to send at around 275 ms

Environment Setup Experiment Results - PRR in practice

Teatures RFC | Linux Default pipe < ssthresh [slow start]
; : ftial cw 339 ing =—:ssthies
e Performed in a production S e—— e ¢ PRRaccounts for 45% of the fast s malnes IERE]
SACK 2018 + on e €S
datacenter (DC1) D-SACK 3708 |+ on recovery events pipe — ssthresh
: : ; mack oS b atvays on e The cwnd in PRR converges to Min
e Running on Linux 2.6 with FACK [16] . + on g 1%
imited-transmit 3042 |+ always on ssthresh in about 90% of its fast &
. . . Dy ic dupthresh + always (o] 509
settings (in table at right) RO T s088 | p mine300ms -
F-RTO 5682 | on recovery events. 99%
. ry
e ECN disabled Cwnd undo (Eifel) 3522 | p always on Max
TCP segmentation offload + determined by NIC
e TCP load balancing + indicates the feature is fully implemented. Quantiles for cwnd — ssthresh (segment
e N Way experiments p indicates a partially foature. Q\}l)?}ttllﬁ H ; I 1;) I 2[; I 000 I 7[;3 1 %0 I 9
°

1 million samples per day

Experiment Results - PRR vs RFC 3517 vs Linux Experiment Results - PRR vs RFC 3517 vs Linux

e PRR has the shortest recovery time e R ;;2 Retransmissions measured in 1000’s of segments.
o Since PRR has less recovery timeouts (see later) £ :m Linux 2 Retransmission type || Linux baseline | RFC 3517 diff. [%] [PRR diff [%]
.) e g Total Retransmission 85016 +3119 [+3.7%] +2147 [+2.5%)]
e PRR has similar final cwnd distribution than 3 1000 —
R Fast Retransmission 18976 +3193 [+17%] +2456 [+13%]
RFC 3517 5 o0 TimeoutOnRecovery 649 -16 [-2.5%) -32 [-5.0%)
o It sets cwnd = ssthresh on exiting S 000 o Lost Retransmission 393 +777 [+198%] +439 [+117%]
e Final cwnd values for PRR are a bit larger & 20| _ .. zes $i=
ge? 22 i
than that of RFC 3517 O % o e PRR has 2.5% lower number of timeout on recovery compare to RFC
o PRR has less recovery timeouts Quantile [%] 3517 and 5% lower compare to Linux
e Linux algorithm has the lowest cwnd after i e PRR has lower number of retransmissions compare to RFC 3517
Quantiles for cwnd after recovery (segments).
recovery Quantile: || 10 | 25 50 | 75] 90 | 95 | 99 | o PRR smoothes the retransmission bursts and thus reduces the additional losses
- . ; PRR: 2 [369 [15][21]3
o It sets cwnd be at most pipe + 1 in recovery RrowEm e T35 s T ot
Linux: T2 [3[5]9 [12][19

Experiment Results - PRR vs RFC 3517 vs Linux

Google Search Page Ads
Quantile || Linux RFC 3517 PRR Linux | RFC 3517 PRR
25 187 -39 [8%) 34 [7%)] 464 | 34 [7.3%] | -24 [-5.2%)]
50 852 -50 [-5.8%)] -48 [-5.6%)] 1059 | -83 [-7.8%] -100 [-9.4%
90 4338 | -108 [-2.4%] -88 [-2%)] 4956 | -461 [-9.3%] | -481 [-9.7%
99 31581 | -1644 [-5.2%] | -1775 [-5.6%)] || 24640 | -2544 [-10%)] | 2887 [-11.7%]
Mean 2410 -89 [-3.7%)] -85 [-3.5%) 2441 -220 [-9%] -239 [-9.8%]

e Both PRR and RFC 3517 reduce the mean latency by about 4% in Google
Search and about 10% in Page Ads.

Experiment Results - YouTube in India

Linux baseline | RFC 3517 | PRR

Network Transmit Time (s) 87.4 83.3 84.8

% Time in Loss Recovery 42.7% 46.3% 44.9%
Retransmission Rate % 5.0% 6.6% 5.6%
% Sent in FR. % 12% 10%

% Fas ansmit Lost 2.4% 16.4% 4.8%
Slow-start after FR 56% 1% 0%

RFC 3517 spends longer time (46.3%) in loss recovery, but it transfers more
data (12%).

PRR and RFC 3517 set cwnd close to ssthresh at the end of recovery, thus
they do not need to perform slow-start.

RFC 3517 does best job but has highest fast-retransmit loss rate because of
larger retransmission bursts.

Early Retransmit (ER)

e Used to avoid waiting for timeout if:
o Aloss occurs at the end of a stream
o There are insufficient duplicate ACKs to trigger the fast
retransmission

e Solution: Lower the dupthresh (number of duplicate ACKs to trigger
the fast retransmission) to 1 (or 2) when outstanding data drops to 2
(or 3)

o Butit may be falsely triggered by reordered packets

Early Retransmit (ER) - Mitigation Algorithms

1.

Disabling early retransmit if the connection has detected past
reordering

o Detects reordering using SACK/DSACK

Adding a small delay to early retransmit so it might be canceled
if the missing segment arrives slightly late

o Using RTO timer to delay the early retransmission
Throttling the total early retransmission rate

o Not implemented in this paper

Early Retransmit (ER) - Experiment Setting

e Testin 4-Way experiment for 72 hours

o 4*5% connections served by 4 experimental servers
o 80% connections served by original servers

e Compare:

o Original kernel (baseline)

o ER without mitigation

o ER with first mitigation

o ER with first and second mitigations

Early Retransmit (ER) - Results

e ER without mitigation

o Increases 31% fast retransmits
o Reduces 2% of timeouts
o 27% undo events

e ER with first mitigation

o Not effective because most HTTP | Quantile || Linux ER
connections are short 5 282 258 -8~5§>
. i . 10 319 301 [-5.6%
e ER with both mitigations =5 082 997 (807
o Reduces 34% of the timeouts in 90 1223 | 4084 [3.3%)
disorder state 99 26027 | 25861 [-0.6%)

o Reduces latency by up to 8.5%

Conclusions

PRR reduces the latency of short Web transfers by 3-10%
compared to Linux recovery algorithm.

PRR is a smoother recovery for video traffic compared to RFC
3517.

PRR was accepted to be the default fast recovery algorithm in
mainline Linux, and is proposed as an experimental RFC in the
IETF.

Discussions

Default Linux fast recovery algorithm in Linux 3.x

Doesn’t make a strong enough case for using PRR over RFC 3517

6% of HTTP responses experience losses that impact user experience
o This latency could also be correlated with bad network infrastructure

Trying out different delays to add to ER (for cancellation)

More explanation on prr_delivered and prr_out relationship

