
Dukkipati, N. et al., "Proportional
Rate Reduction for TCP," Proc. of
ACM IMC '11, pp. 155-170, 2011.

Xinghao Li
Nitish Paradkar

Introduction - Web Latency

● Web latency is a key factor that determines the user
experience for web services.

● Sources of web latency:
○ Non speed-optimized content
○ Slow web servers, slow browsers and low bandwidth
○ Network protocols
○ Packet losses

Introduction - Statistics About Latency
● Over 6% of HTTP responses from

Google.com got losses that impact
user experience.

● Responses that experience losses
have 7-10 times longer latency than
those without packet loss.

● RTT range for responses with losses
are 10 times larger than those without
loss.

Introduction - TCP Loss Recovery Mechanisms

● Fast retransmit (cwnd will be adjusted accordingly)
○ Perform retransmission after receiving a certain number of duplicate ACKs
○ Accounts for 25% retransmissions in short flows from Google Web servers
○ Accounts for 50% retransmissions in bulk video traffic

● Wait for retransmission timeout (RTO) before consider the data
was lost
○ When fast retransmission is failed or when there are insufficient packets to

trigger it

Introduction - Algorithms to Adjust the cwnd

● RFC 3517
● Rate Halving (in Linux)
● Proportional rate reduction (PRR, discussed in this paper)

Contribution of this paper

● Introducing Proportional Rate Reduction (PRR)

● Introducing Early Retransmit (ER) to deal with losses in short
transfers

● Demonstrating retransmission statistics of Google Web Servers

Google TCP and HTTP Measurements
● Collected data from Google web servers for one week in 2011

Retransmission Statistics
● Examined loss recovery mechanisms in two data centers

○ DC 1 serving users in South America and the east coast
○ DC 2 serving YouTube videos in India

● DC 1 has short flows whereas DC 2 has long flows
● Average retransmission rates

○ 2.5% for DC 1
○ 5.6% for DC 2

Retransmission Statistics
● Fast retransmit: packets sent

during fast recovery
● Timeout retransmits: retransmit

upon timeout.
○ DC 1 doesn’t get enough

dupack’s to cause fast
recovery

● Slow start retransmits: sender is
operating in slow start phase

● Failed retransmits: No TCP ACK’s
received, so connection aborted.

Fast Recovery Statistics
● DSACK measures wasted network resources by aggressive retransmits

RFC 3517 Fast Recovery
● Enter recovery on receiving dupthresh

dupACKs (normally 3).
● Pipe: Estimate of amount of data in

network
● FlightSize: Amount of unACK’d data

when entering recovery

RFC 3517 Example

● 20kB sent at 0 ms, and 10kB sent at 500 ms
● First four segments dropped
● Green represents next segment that needs an ACK
● Red shows retransmitted data
● Purple lines represent data that has arrived using SACK

Drawbacks of RFC 3517
● Half RTT silence

○ Need to wait for at least half the cwnd before (cwnd - pipe) is positive
○ Wastes opportunities for transmitting data

● Bursty retransmissions
○ Pipe is only an estimate of the amount of data in the network
○ Cwnd - pipe can be really large, and so a large burst of data can be sent

Linux Fast Recovery
● Triggers fast retransmit with the first SACK if it indicates more than dupthresh

segments have been lost
○ Results in more aggressively entering fast recovery

● Uses rate halving algorithm
○ When cwnd is reduced, send data for every 2nd ACK received
○ As opposed to waiting for cwnd/2 dupACKs to pass by before retransmitting

● Reduces cwnd to pipe + 1 for every ACK that reduces pipe
○ Can lead to extremely small cwnd at the end of fast recovery

Linux Fast Recovery Example

● 20kB sent at 0 ms, and 10kB sent at 500 ms
● First four segments are dropped
● Green represents latest unACK’d segment
● Red shows retransmitted data
● Purple lines represent data that has arrived

Drawbacks of Linux Fast Recovery
● Slow start after recovery

○ Can exit recovery with a very small cwnd
○ Goal of fast recovery is to end recovery without having to slow start

● Conservative retransmissions
○ Rate halving uses received ACK’s to send more data into the network
○ Lost ACKs can result in less data being sent

Proportional Rate Reduction (PRR)
● Goals

○ Speedy and smooth recovery from losses
○ End recovery with cwnd close to ssthresh

● Proportional part
○ Active when pipe > ssthresh
○ Similar to rate halving, but uses fraction appropriate for congestion control algorithm
○ CUBIC has 30% window reduction, so send 7 segments for every 10 ACKs

● Slow start
○ Active when pipe < ssthresh
○ Perform slow start to build pipe back up the ssthresh

PRR Example

● 20kB sent at 0 ms, and 10kB sent at 500 ms
● Green represents latest unACK’d segment
● Red shows retransmitted data
● Purple lines represent data that has arrived

PRR Heavy Losses

● Segments 1-4 and 11-16 dropped
● After second series of losses, pipe < ssthresh and it is in slow start mode

PRR Pseudo Code

● prr_delivered: number of unique bytes delivered to
receiver

● prr_out: total bytes transmitted during recover
● RecoverFS: flight size at the start of recovery
● DeliveredData: number of new bytes received from

ACK
● DeliveredData makes algorithm less vulnerable to

lost ACKs

PRR Example

snd_cnt = CEIL(prr_delivered * ssthresh / RecoverFS) - prr_out
prr_out is updated on every transmission
prr_delivered updated on every ACK received

Source: https://tools.ietf.org/pdf/rfc6937.pdf

● ‘N’ is new data send, ‘R’ is
retransmitted data

● Packet 0 is dropped
● Assume ssthresh is 12

Ack # prr_
delive
red

snd_
cnt

prr_
out

3 1 1 1

4 2 0 1

5 3 1 2

Properties of PRR
● Maintains ACK clocking

○ Not true for RFC 3517

● Convergence to ssthresh
○ In proportional mode reduces pipe to reach ssthresh
○ Tries to maintain pipe at ssthresh in slow start part

● Banks sending opportunities
○ When application doesn’t have data to send, prr_out falls behind prr_delivered
○ This is taken care of in the slow start stage
○ ss_limit = MAX(prr_delivered - prr_out, DeliveredData) + 1

PRR Banking

Application gets more data at to send at around 275 ms

Properties of PRR
● DeliveredData allows sender to get a better idea of how much data received
● Only uses pipe to determine which mode to send in

○ RFC 3517 uses pipe to determine how much to send
○ PRR uses DeliveredData

● DelieveredData determines how many packets to send based on transmitted
segments

○ Rate halving in Linux relies on number of ACKs received

● Data transmitted during recovery is in proportion to that delivered
○ prr_out <= 2 * prr_delivered

Environment Setup

● Performed in a production
datacenter (DC1)

● Running on Linux 2.6 with
settings (in table at right)

● ECN disabled
● TCP load balancing
● N-Way experiments
● 1 million samples per day

Experiment Results - PRR in practice
● PRR accounts for 45% of the fast

recovery events
● The cwnd in PRR converges to

ssthresh in about 90% of its fast
recovery events.

Experiment Results - PRR vs RFC 3517 vs Linux
● PRR has the shortest recovery time

○ Since PRR has less recovery timeouts (see later)

● PRR has similar final cwnd distribution than
RFC 3517

○ It sets cwnd = ssthresh on exiting

● Final cwnd values for PRR are a bit larger
than that of RFC 3517

○ PRR has less recovery timeouts

● Linux algorithm has the lowest cwnd after
recovery

○ It sets cwnd be at most pipe + 1 in recovery

Experiment Results - PRR vs RFC 3517 vs Linux

● PRR has 2.5% lower number of timeout on recovery compare to RFC
3517 and 5% lower compare to Linux

● PRR has lower number of retransmissions compare to RFC 3517
○ PRR smoothes the retransmission bursts and thus reduces the additional losses

Experiment Results - PRR vs RFC 3517 vs Linux

● Both PRR and RFC 3517 reduce the mean latency by about 4% in Google
Search and about 10% in Page Ads.

Experiment Results - YouTube in India

● RFC 3517 spends longer time (46.3%) in loss recovery, but it transfers more
data (12%).

● PRR and RFC 3517 set cwnd close to ssthresh at the end of recovery, thus
they do not need to perform slow-start.

● RFC 3517 does best job but has highest fast-retransmit loss rate because of
larger retransmission bursts.

Early Retransmit (ER)

● Used to avoid waiting for timeout if:
○ A loss occurs at the end of a stream
○ There are insufficient duplicate ACKs to trigger the fast

retransmission

● Solution: Lower the dupthresh (number of duplicate ACKs to trigger
the fast retransmission) to 1 (or 2) when outstanding data drops to 2
(or 3)

○ But it may be falsely triggered by reordered packets

Early Retransmit (ER) - Mitigation Algorithms

1. Disabling early retransmit if the connection has detected past
reordering
○ Detects reordering using SACK/DSACK

2. Adding a small delay to early retransmit so it might be canceled
if the missing segment arrives slightly late
○ Using RTO timer to delay the early retransmission

3. Throttling the total early retransmission rate
○ Not implemented in this paper

Early Retransmit (ER) - Experiment Setting

● Test in 4-Way experiment for 72 hours
○ 4*5% connections served by 4 experimental servers
○ 80% connections served by original servers

● Compare:
○ Original kernel (baseline)
○ ER without mitigation
○ ER with first mitigation
○ ER with first and second mitigations

Early Retransmit (ER) - Results

● ER without mitigation
○ Increases 31% fast retransmits
○ Reduces 2% of timeouts
○ 27% undo events

● ER with first mitigation
○ Not effective because most HTTP

connections are short
● ER with both mitigations

○ Reduces 34% of the timeouts in
disorder state

○ Reduces latency by up to 8.5%

Conclusions

● PRR reduces the latency of short Web transfers by 3-10%
compared to Linux recovery algorithm.

● PRR is a smoother recovery for video traffic compared to RFC
3517.

● PRR was accepted to be the default fast recovery algorithm in
mainline Linux, and is proposed as an experimental RFC in the
IETF.

Discussions

● Default Linux fast recovery algorithm in Linux 3.x
● Doesn’t make a strong enough case for using PRR over RFC 3517
● 6% of HTTP responses experience losses that impact user experience

○ This latency could also be correlated with bad network infrastructure
● Trying out different delays to add to ER (for cancellation)
● More explanation on prr_delivered and prr_out relationship

