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Summary 

This work explores the problem of inter-coflow scheduling with the dual objectives of 

minimizing average Coflow Completion Time (CCT) and meeting temporal deadlines for each 

coflow. Efficient coflow scheduling is challenging in large part due to the significant variations 

that exist in the characteristics (length, width, size, skew) of real-world coflows. The authors 

propose an ordering heuristic (SEBF) that schedules a coflow based on the completion time of its 

bottleneck as well as an algorithm (MADD) that allocates rates to individual flows, minimizing 

overall bandwidth usage of the coflow. They incorporate these elements into a fully operational 

coflow scheduling system (Varys). In experiments driven by traffic traces from large-scale 

datacenters, this work shows an up to 3.16 times reduction in CCT while allowing 2 times more 

coflows to meet their deadlines, comparing against the performance of per-flow mechanisms.  

 

Novelty/Contribution 

1. Demonstrating the necessity of study with real world data 

The authors continually motivate the utility of their proposed methods, laying out through their 

exposition a strong case for why existing schedulers are not well-suited for inter-coflow 

scheduling. More significant than the arguments they make for this, though, are the data 

presented on the subject in Section 4. In this section, the authors use actual data to back up their 

claim of inter-coflow scheduling being challenging due to the widely varying characteristics of 

production coflows. For example, the data shows that wide coflows (>1 million flows) coexist 

with a significant number of narrow coflows (60 percent have at most 50 flows). We believe that 

this is a very important part of this work as it helps demonstrate the difficulty of the problem of 
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scheduling such heterogeneous coflows. Furthermore, it convinces the reader of the value of the 

proposed method if it can provide an effective solution. 

 

2. Categorization of Coflows into Bins 

During the performance evaluation, the authors categorize coflow traces into 4 bins based on 

their characteristics. As mentioned above, coflows vary significantly in dimensions due to their 

different traffic patterns and application cases. In Section 7 the authors run performance analysis 

with respect to different bins and discover that Varys has divergent performances for each bin. It 

could have been the case that jumping directly to the conclusion that Varys improves the coflow 

scheduling based on the overall performance without looking into the performance measurement 

across different coflows. However, categorizing coflows into different bins and analyzing each 

separately help revealing the hidden values of Varys to each individual groups and it is 

interesting to find out that different bins could benefit variously. 

 

3. “One Big Switch” Abstraction of Datacenter Networks 

The paper leverages the abstraction of entire datacenter fabric as a big switch to simplify the 

network model. The elegance of this simplification immediately impressed us the first time we 

read these lines. As the paper has pointed out, this abstraction earns its practicality because of 

recent advances in datacenter networks development. It is noteworthy to point out, as the authors 

have already addressed in the context, that this abstraction is not too much of a novelty but rather 

an existing and reasonable approximation. We could definitely make use of the “one big switch” 

or similar useful abstraction in future research to simplify our modeling processes, as long as we 

could justify our argument with sufficient real world measurements and facts. 

 

Possible Improvement or Extensions 

1. Relaxation of Constraints 

In Section 5, the authors make a rather curious argument about the desirable properties of a 

scheduler. They state that in addition to satisfying its primary objective (presumably this is 
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minimizing CCT), the scheduler should prevent starvation and minimize usage of available 

resources. Intuitively, these properties do seem to correlate with an ideal scheduler. However, the 

authors describe these properties as constraints that should be satisfied, which we see as a 

mischaracterization. Absent any additional information about the inherent value of satisfying 

these properties in particular, these properties seem more like probable ​byproducts ​ or ​effects​  of 

an ideal scheduler, rather than constraints. For example, unless there is an explicit cost incurred 

for using resources, minimizing resource utilization is likely only useful insofar as it helps 

reduce the primary objective of the scheduler, namely reducing CCT. In other words, it is 

possible that two schedulers with the same level of resource utilization could yield different CCT 

performance. If such cases do exist, it seems far better to focus optimization on reducing CCT 

rather than incorporating a constraint on resource utilization. It should be noted that the authors 

later make an additional vague statement that “letting resources idle . . . can hurt performance in 

the online case” of rate allocation, but they provide no further argument to back up this claim. 

 

2. “Procrastination” of Scheduler 

The authors argue that when seeking to guarantee coflow completion with a deadline, 

“completing . . . bottlenecks as fast as possible has no benefits.” While this assumption is 

important in the presented rate allocation algorithm (MADD), we question whether there can 

truly be “no benefits” to scheduling early completion of bottlenecks. Allocating the minimum 

rate needed to meet a deadline is certainly optimal in a deterministic setting, but what happens if 

there is some uncertainty in the system? Such optimal scheduling would not be robust in an 

uncertain or stochastic environment because it would leave no margin for error. In that case, 

scheduling so as to complete bottlenecks ahead of their deadline might have some benefit. The 

experimentation in this paper seems to support this idea, since a quarter of admitted coflows in 

the EC2 experiment fail to meet their deadlines. The authors actually cite uncertainties in 

estimating utilizations as a reason for these failures. All of this points to there being some 

possible benefits of early bottleneck completion, contrary to the statement of the authors. 
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3. Heterogeneous Coflow Scheduling 

The authors explicitly state that they “do not use Varys for coflows with bottlenecks smaller than 

25 MB” because the batching of control messages in large time intervals and coordination 

overheads impairs the performance of small coflows. In the performance evaluation the authors 

have shown that per-flow fairness outperforms Varys in “tiny, subsecond coflows.” This fact, 

along with the CDF of coflow sizes, raises a question in Varys’ methodology. According to the 

study, about 20% of total coflows are indeed less than 1 MB in size, which might benefit more 

from a per-flow fairness algorithm. 

The authors justify their results by emphasizing volume-wise metrics, where large coflows 

dominate over 99% of all bytes communicated due to the heavy-tailed nature of coflow traffic. 

Although this argument stands on its own merits, we find it slightly concerning whether it’s a 

good call to sacrifice a significant number of coflows despite their relatively small traffic 

volume. It may sound a little bit philosophical when we try to argue about fairness here. 

Nevertheless we believe it would be a promising future work to design a heterogeneous coflow 

scheduling system such that it could leverage different scheduling algorithms depending on the 

coflow dimensions. For example, it could maintain a per-flow fairness for smaller coflows while 

enforcing Varys’ MADD for the majority large coflows. 

 

4. Optimal Number for ​T​  and 𝜹 

During EC2 deployment the authors set the algorithm parameters T = 2 seconds and 𝜹 = 200 

milliseconds. They explain a little rationale behind these magic numbers in Section 6.2, where 

they discuss the drawbacks of setting 𝜹 too small. In order to avoid erratic behavior of transport 

protocol, they “suggest” choosing 𝜹 to be O(100) milliseconds and T to be O(1) seconds. 

We believe that it might be worth showing the tuning process of the parameters and justifying 

the selection of final values on a factual basis. The current process of choosing values for 

experiment setups seems to be an arbitrary decision to us. As a matter of fact, these parameters 

actually play an important role in deciding the performance of algorithms. A change in the 
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parameters will likely affect the performance in all bins in similar or disparate ways. Therefore, 

we find it will be a promising future work to explore more in tuning these parameters and find 

out the correlation between different values and Varys’ performances. In that case we can have 

facts about the ideal range of parameter values, and perhaps some optimal values. 
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