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Introduction
● Server has limited capacity
● Requests by clients are queued
● Crucial to provide resource isolation to ensure that a single tenant cannot get 

more than its fair share of resources
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Differences From Traditional Queueing
● Resource concurrency: threads in shared process handle requests 

concurrently
● Large cost variance: request costs vary by at least 10000.
● Unknown and unpredictable resource costs: Unknown at schedule time and 

difficult to estimate
○ Wrong estimates are penalized heavily
○ Network schedulers rely on this information
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Bursty Schedules from WFQ and WF2Q
● Both methods below observe long term fairness
● Goal is to achieve smoother schedules and achieve fairness in a smaller time 

scale
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Key Insights
● Separate requests with different costs across different worker threads
● Use cost estimation to locate unpredictable requests and separate them from 

predictable requests
● 2D = across both time and different threads
● Desired traits

○ Work conserving
○ Achieve fairness over shorter time periods
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High Request Cost Variability

● Costs can vary by 4 orders of magnitude
● Bursty scheduling adversely affects tenants with small requests

○ Get serviced in high throughput bursts than evenly paced over time
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Unknown Request Costs

Request rates can be unpredictable and vary by around 1.5 orders of magnitude
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Unknown Request Costs

● Each API has tenants using it in both stable and unpredictable ways
● Can use request cost estimations, but these fall apart for more unpredictable tenants
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Unknown Request Costs
● Incorrect cost estimates can lead to bursty schedules
● Expensive request gets predicted as an inexpensive request

○ Blocks worker thread for longer than expected
○ Scheduler can incorrectly schedule up to N (number of threads) requests

● Insight: give good service to predictable tenants
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WFQ

S(rf
j) = max{v(A(rf

j)), F(rf
j - 1)}

F(rf
j) = S(rf

j) + lf
j / Φf 

● A(rf
j) = walltime arrival time of packet

● F(rf
j) = virtual finish time

● lf
j = size of request

● Φf = weight of the flow
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Worst Case Weighted Fair Queueing (WF2Q)
● WFQ might get ahead of GPS

W1 = 0.5
W2 = W3= … = W11 = 0.05

Each packet is of length 1

http://www.eng.tau.ac.il/~boaz/comnet/lec08.pdf 11

Worst Case Weighted Fair Queueing (WF2Q)
F1 = 2, 4, 6, 8, 10, …

F2= F3 = … = F11 = 20

http://www.eng.tau.ac.il/~boaz/comnet/lec08.pdf 12



Worst Case Weighted Fair Queueing (WF2Q)

http://www.eng.tau.ac.il/~boaz/comnet/lec08.pdf 13

Worst Case Weighted Fair Queueing (WF2Q)

Consider a request to be 
eligible only when it 
would have begun 
service in GPS

http://www.eng.tau.ac.il/~boaz/comnet/lec08.pdf 14

Two-Dimensional Fair Queueing (known costs)
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Two-Dimensional Fair Queueing (known costs)
● WF2Q allows burstiness when multiple worker threads are free and only large requests 

are available.
● Small requests eligible for either all threads or no threads.
● New eligibility condition on thread i: S(rj) - (i / n)*lj where 0 ≤ i < n.
● Small requests become eligible on high-index threads first and tend to be serviced 

before low-indexed threads can service them.
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Extended Two-Dimensional Fair Queuing (2DFQE)
Pessimistic Cost Estimation

● Safer to estimate a cheap request as inexpensive than an expensive request 
as cheap

● Treat unpredictable tenants as expensive
● Li

max = cost of largest request
● cr = true cost of just-completed request
● If cr > Li

max, set Li
max = cr

● Otherwise, set Li
max = αLi

max, where α < 1 (but close to 1)
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Extended Two-Dimensional Fair Queuing (2DFQE)
Bookkeeping: Retroactive Charging

● lr is the estimated cost of a request
● cr is the actual cost of a request
● Upon completion of a request, cr - lr is incorporated into the virtual start and 

finish times of a tenant
● This ensures long-run fairness
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Extended Two-Dimensional Fair Queuing (2DFQE)
Bookkeeping: Refresh Charging

● If a tenant transitions from many small requests to many expensive requests, 
Li

max will be underestimated at first
● If a request is especially expensive, up to N worker threads could begin 

processing expensive requests before the value of Li
max is updated

● Refresh Charging periodically checks long-running requests and updates Li
max 

while expensive request is still being processed
● Non-negligible overhead — optimal at 10ms
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Evaluation of 2DFQ
● Discrete event simulator with synthetic workloads and traces from Azure 

Storage
● Comparing 2DFQ, WFQ and WF2Q

○ SFQ, MSF2, and DRR were also used in evaluation but omitted because their improvements 
minimally influence fairness bounds

(With slides adapted from author’s SIGCOMM talk: 
http://conferences.sigcomm.org/sigcomm/2016/files/program/sigcomm/Session04-Paper01-2DFQ-Jonathan-Slides.pdf)
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Evaluation Metrics
Service lag: difference between service a tenant should have received with GPU 
(Nr, where N = number of threads and r = processing rate) and actual work done

Service rate: work done per 100ms

Latency: time between request being enqueued and finishing processing

Gini index: instantaneous measure of scheduling fairness
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Evaluation with known cost
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Evaluation with known cost
● Using Azure production traces

○ 250 randomly chosen tenants from 
50 servers, plus T1...T12

● Evaluate the effects on T1, a 
tenant with low request costs 
and low unpredictability

25

Evaluation with known cost
250 Azure workloads
Costs known
32 threads
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Evaluation with known cost
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Evaluation with known cost

Where t1...t7 are fixed-cost tenants submitting requests of size 28, 210, 212, …, 220
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Evaluation with unknown costs
● Using 2DFQE with α = 0.99
● Added refresh and retroactive bookkeeping to WFQ and WF2Q to create 

WFQE and WF2QE
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Evaluation with unknown costs
● 300 randomly selected tenants from Azure data
● Added unpredictability by sampling from all Azure data without regard for 

server or account

3 Experiments:

● 0% unpredictable: Only real tenant data
● 33% unpredictable: 33% arbitrary sampling
● 66% unpredictable: 66% arbitrary sampling
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Evaluation with unknown costs

T1
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Evaluation with unknown costs

T1
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Evaluation with unknown costs
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Evaluation with unknown costs

Latencies of smaller tenants (T1...T4) are less impacted by 
unpredictable tenants

Latencies of largely unpredictable tenants (T10) are unaffected
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Evaluation with unknown costs

Where t1...t7 are fixed-cost tenants submitting requests of size 28, 210, 212, …, 220
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Evaluation with unknown costs
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Evaluation with unknown cost: production workloads
● 150 experiments from Azure data
● Randomly vary several parameters:

○ Number of worker threads (2-64)
○ Number of tenants (0-400)
○ Replay speed (0.5-4x)
○ Number of backlogged tenants (0-100)
○ Number of artificially expensive tenants (0-100)
○ Number of unpredictable tenants (0-100)
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Evaluation with unknown cost: production workloads
99th percentile latency speedups

For T1, median improvement over 
WFQE of 3.8x and 142x over 
WF2QE

T10 latencies were usually 
unimproved, but when they were 
it was by a large factor
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Evaluation with unknown cost: production workloads

Where t1...t7 are fixed-cost tenants submitting requests of size 28, 210, 212, …, 220
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Summary
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Discussion
● Analyze the tradeoffs between how aggressively tenants with unpredictable 

costs and separated from predictable costs
● Can take a very long time to classify a previously expensive thread as a 

cheap one
○ Try changing alpha parameter to be dynamic

● Benefits of keeping system work-conserving
○ Always keep a set of threads dedicated to only serving inexpensive, predictable requests
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