
Mace, J. et al., "2DFQ: Two-Dimensional 
Fair Queuing for Multi-Tenant Cloud 

Services," Proc. of ACM SIGCOMM '16, 
46(4):144-159, Aug. 2016.

Allison McDonald 
Nitish Paradkar

1

Introduction
● Server has limited capacity
● Requests by clients are queued
● Crucial to provide resource isolation to ensure that a single tenant cannot get 

more than its fair share of resources

2

Differences From Traditional Queueing
● Resource concurrency: threads in shared process handle requests 

concurrently
● Large cost variance: request costs vary by at least 10000.
● Unknown and unpredictable resource costs: Unknown at schedule time and 

difficult to estimate
○ Wrong estimates are penalized heavily
○ Network schedulers rely on this information

3

Bursty Schedules from WFQ and WF2Q
● Both methods below observe long term fairness
● Goal is to achieve smoother schedules and achieve fairness in a smaller time 

scale

4



Key Insights
● Separate requests with different costs across different worker threads
● Use cost estimation to locate unpredictable requests and separate them from 

predictable requests
● 2D = across both time and different threads
● Desired traits

○ Work conserving
○ Achieve fairness over shorter time periods

5

High Request Cost Variability

● Costs can vary by 4 orders of magnitude
● Bursty scheduling adversely affects tenants with small requests

○ Get serviced in high throughput bursts than evenly paced over time
6

Unknown Request Costs

Request rates can be unpredictable and vary by around 1.5 orders of magnitude

7

Unknown Request Costs

● Each API has tenants using it in both stable and unpredictable ways
● Can use request cost estimations, but these fall apart for more unpredictable tenants

8



Unknown Request Costs
● Incorrect cost estimates can lead to bursty schedules
● Expensive request gets predicted as an inexpensive request

○ Blocks worker thread for longer than expected
○ Scheduler can incorrectly schedule up to N (number of threads) requests

● Insight: give good service to predictable tenants

9

WFQ

S(rf
j) = max{v(A(rf

j)), F(rf
j - 1)}

F(rf
j) = S(rf

j) + lf
j / Φf 

● A(rf
j) = walltime arrival time of packet

● F(rf
j) = virtual finish time

● lf
j = size of request

● Φf = weight of the flow

10

Worst Case Weighted Fair Queueing (WF2Q)
● WFQ might get ahead of GPS

W1 = 0.5
W2 = W3= … = W11 = 0.05

Each packet is of length 1

http://www.eng.tau.ac.il/~boaz/comnet/lec08.pdf 11

Worst Case Weighted Fair Queueing (WF2Q)
F1 = 2, 4, 6, 8, 10, …

F2= F3 = … = F11 = 20

http://www.eng.tau.ac.il/~boaz/comnet/lec08.pdf 12



Worst Case Weighted Fair Queueing (WF2Q)

http://www.eng.tau.ac.il/~boaz/comnet/lec08.pdf 13

Worst Case Weighted Fair Queueing (WF2Q)

Consider a request to be 
eligible only when it 
would have begun 
service in GPS

http://www.eng.tau.ac.il/~boaz/comnet/lec08.pdf 14

Two-Dimensional Fair Queueing (known costs)

15

Two-Dimensional Fair Queueing (known costs)
● WF2Q allows burstiness when multiple worker threads are free and only large requests 

are available.
● Small requests eligible for either all threads or no threads.
● New eligibility condition on thread i: S(rj) - (i / n)*lj where 0 ≤ i < n.
● Small requests become eligible on high-index threads first and tend to be serviced 

before low-indexed threads can service them.

16



Extended Two-Dimensional Fair Queuing (2DFQE)
Pessimistic Cost Estimation

● Safer to estimate a cheap request as inexpensive than an expensive request 
as cheap

● Treat unpredictable tenants as expensive
● Li

max = cost of largest request
● cr = true cost of just-completed request
● If cr > Li

max, set Li
max = cr

● Otherwise, set Li
max = αLi

max, where α < 1 (but close to 1)

17

Extended Two-Dimensional Fair Queuing (2DFQE)
Bookkeeping: Retroactive Charging

● lr is the estimated cost of a request
● cr is the actual cost of a request
● Upon completion of a request, cr - lr is incorporated into the virtual start and 

finish times of a tenant
● This ensures long-run fairness

18

Extended Two-Dimensional Fair Queuing (2DFQE)
Bookkeeping: Refresh Charging

● If a tenant transitions from many small requests to many expensive requests, 
Li

max will be underestimated at first
● If a request is especially expensive, up to N worker threads could begin 

processing expensive requests before the value of Li
max is updated

● Refresh Charging periodically checks long-running requests and updates Li
max 

while expensive request is still being processed
● Non-negligible overhead — optimal at 10ms

19

Evaluation of 2DFQ
● Discrete event simulator with synthetic workloads and traces from Azure 

Storage
● Comparing 2DFQ, WFQ and WF2Q

○ SFQ, MSF2, and DRR were also used in evaluation but omitted because their improvements 
minimally influence fairness bounds

(With slides adapted from author’s SIGCOMM talk: 
http://conferences.sigcomm.org/sigcomm/2016/files/program/sigcomm/Session04-Paper01-2DFQ-Jonathan-Slides.pdf)

20



Evaluation Metrics
Service lag: difference between service a tenant should have received with GPU 
(Nr, where N = number of threads and r = processing rate) and actual work done

Service rate: work done per 100ms

Latency: time between request being enqueued and finishing processing

Gini index: instantaneous measure of scheduling fairness

21

Evaluation with known cost

Se
rv

ic
e 

R
at

e

Synthetic data
Costs known
16 threads
1000 units/second

22

Evaluation with known cost
Synthetic data
Costs known
16 threads
1000 units/second

23

Se
rv

ic
e 

R
at

e

Evaluation with known cost
Synthetic data
Costs known
16 threads
1000 units/second

24

Se
rv

ic
e 

R
at

e



Evaluation with known cost
● Using Azure production traces

○ 250 randomly chosen tenants from 
50 servers, plus T1...T12

● Evaluate the effects on T1, a 
tenant with low request costs 
and low unpredictability

25

Evaluation with known cost
250 Azure workloads
Costs known
32 threads
1 million units/second

26

Evaluation with known cost
250 Azure workloads
Costs known
32 threads
1 million units/second

27

Evaluation with known cost
250 Azure workloads
Costs known
32 threads
1 million units/second

28



Evaluation with known cost

29

Evaluation with known cost

Where t1...t7 are fixed-cost tenants submitting requests of size 28, 210, 212, …, 220

30

Evaluation with unknown costs
● Using 2DFQE with α = 0.99
● Added refresh and retroactive bookkeeping to WFQ and WF2Q to create 

WFQE and WF2QE

31

Evaluation with unknown costs
● 300 randomly selected tenants from Azure data
● Added unpredictability by sampling from all Azure data without regard for 

server or account

3 Experiments:

● 0% unpredictable: Only real tenant data
● 33% unpredictable: 33% arbitrary sampling
● 66% unpredictable: 66% arbitrary sampling

32



Evaluation with unknown costs

T1
33

Evaluation with unknown costs

T1
34

Evaluation with unknown costs

T1
35

Unknown
0% 

Unpredictable

33% 
Unpredictable

66% 
Unpredictable

36



Unknown
0% 

Unpredictable

33% 
Unpredictable

66% 
Unpredictable

37

Unknown
0% 

Unpredictable

33% 
Unpredictable

66% 
Unpredictable

38

Unknown
0% 

Unpredictable

33% 
Unpredictable

66% 
Unpredictable

39

Unknown
0% 

Unpredictable

33% 
Unpredictable

66% 
Unpredictable

40



Unknown
0% 

Unpredictable

33% 
Unpredictable

66% 
Unpredictable

2DFQE

41

Evaluation with unknown costs

Latencies of smaller tenants (T1...T4) are less impacted by 
unpredictable tenants

Latencies of largely unpredictable tenants (T10) are unaffected

42

Evaluation with unknown costs

Where t1...t7 are fixed-cost tenants submitting requests of size 28, 210, 212, …, 220

43

Evaluation with unknown costs

44



Evaluation with unknown cost: production workloads
● 150 experiments from Azure data
● Randomly vary several parameters:

○ Number of worker threads (2-64)
○ Number of tenants (0-400)
○ Replay speed (0.5-4x)
○ Number of backlogged tenants (0-100)
○ Number of artificially expensive tenants (0-100)
○ Number of unpredictable tenants (0-100)

45

Evaluation with unknown cost: production workloads
99th percentile latency speedups

For T1, median improvement over 
WFQE of 3.8x and 142x over 
WF2QE

T10 latencies were usually 
unimproved, but when they were 
it was by a large factor

46

Evaluation with unknown cost: production workloads

Where t1...t7 are fixed-cost tenants submitting requests of size 28, 210, 212, …, 220

47

Summary

48



Discussion
● Analyze the tradeoffs between how aggressively tenants with unpredictable 

costs and separated from predictable costs
● Can take a very long time to classify a previously expensive thread as a 

cheap one
○ Try changing alpha parameter to be dynamic

● Benefits of keeping system work-conserving
○ Always keep a set of threads dedicated to only serving inexpensive, predictable requests

49


