Mace, J. *et al.*, "2DFQ: Two-Dimensional Fair Queuing for Multi-Tenant Cloud Services," *Proc. of ACM SIGCOMM '16*, 46(4):144-159, Aug. 2016.

> Allison McDonald Nitish Paradkar

Introduction

- Server has limited capacity
- Requests by clients are queued
- Crucial to provide resource isolation to ensure that a single tenant cannot get more than its fair share of resources

2

Differences From Traditional Queueing

- Resource concurrency: threads in shared process handle requests concurrently
- Large cost variance: request costs vary by at least 10000.
- Unknown and unpredictable resource costs: Unknown at schedule time and difficult to estimate
 - Wrong estimates are penalized heavily
 - Network schedulers rely on this information

Bursty Schedules from WFQ and WF²Q

- Both methods below observe long term fairness
- Goal is to achieve smoother schedules and achieve fairness in a smaller time scale

Key Insights

- Separate requests with different costs across different worker threads
- Use cost estimation to locate unpredictable requests and separate them from predictable requests
- 2D = across both time and different threads
- Desired traits .
 - Work conserving
 - Achieve fairness over shorter time periods

High Request Cost Variability

٠

5

7

Costs can vary by 4 orders of magnitude Bursty scheduling adversely affects tenants with small requests • Get serviced in high throughput bursts than evenly paced over time

Unknown Request Costs

Request rates can be unpredictable and vary by around 1.5 orders of magnitude

Unknown Request Costs

- •
- Each API has tenants using it in both stable and unpredictable ways Can use request cost estimations, but these fall apart for more unpredictable tenants •

Unknown Request Costs

- Incorrect cost estimates can lead to bursty schedules
- Expensive request gets predicted as an inexpensive request
 - Blocks worker thread for longer than expected
 - Scheduler can incorrectly schedule up to N (number of threads) requests
- Insight: give good service to predictable tenants

WFQ

9

11

$$S(r_{f}^{j}) = max\{v(A(r_{f}^{j})), F(r_{f}^{j-1})\}$$

 $F(r_f^j) = S(r_f^j) + I_f^j / \Phi_f$

- A(r_f^j) = walltime arrival time of packet
- $F(r_f^j)$ = virtual finish time
- I^j_f = size of request
- Φ_f = weight of the flow

Worst Case Weighted Fair Queueing (WF²Q)

• WFQ might get ahead of GPS

Worst Case Weighted Fair Queueing (WF²Q)

http://www.eng.tau.ac.il/~boaz/comnet/lec08.pdf

http://www.eng.tau.ac.il/~boaz/comnet/lec08.pdf

Worst Case Weighted Fair Queueing (WF²Q)

Worst Case Weighted Fair Queueing (WF²Q)

http://www.eng.tau.ac.il/~boaz/comnet/lec08.pdf

13

15

Two-Dimensional Fair Queueing (known costs)

$W_1 \begin{bmatrix} a_1 & b_1 \\ W_0 \end{bmatrix}$	a 2 c 1	<i>b</i> ₂	<i>a</i> 3	b3	a 4 1 1	b,	a 5	bs c	a 6 2	<i>b</i> 6	a 7	b,	a ₈	b _s	a9 c	
(a) Ideal request schedule over time on two threads																
Request Start Time Finish Time	<i>a</i> ₁ 0 1	a2 1 2	<i>a</i> 3 2 3	a4 3 4	<i>a</i> 5	a ₆ 5 6	a7 6 7	a ₈ 7 8	<i>a</i> 9 8 9		S' Fir	Req tart 1 hish 1	uest Time Time	0 4	$c_2 c$ 4 4 8 1	3 3 2
Request Start Time Finish Time	<i>b</i> ₁ 0 1	b2 1 2	<i>b</i> ₃ 2 3	<i>b</i> ₄ 3 4	<i>b</i> ₃ 4 5	<i>b</i> ₆ 5 6	<i>b</i> ₂ 6 7	<i>b</i> ₈ 7 8	<i>b</i> ₉ 8 9		Request d ₁ Start Time 0 Finish Time 4				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$W_1 \begin{array}{c} b_1 \\ b_2 \\ W_0 \\ a_1 \\ a_1 \\ a_2 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_1 \\ a_5 \\ a_1 \\ a_2 \\ a_1 \\ a_2 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_1 \\ a_2 \\ a_2 \\ a_1 \\ a_2 \\ a_2 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_5 \\ a_1 \\ a_2 \\ a_5 \\ a_1 \\ a_2 \\ a_2 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a$	b) Request s $\frac{b_3}{b_4}$			$\frac{d_i}{c_i}$			b_s a_s	b_6	b ₇	b_8 a_8	d_2			b, a,		
		(c) R	lequ	est	sche	dule	e pro	oduc	ced	und	er V	VFC	2			
$ \begin{array}{ccc} W_1 & b_1 \\ W_0 & a_1 \end{array} $	<i>d</i> ₁ <i>c</i> ₁			b_2 a_2	b 3 a 3	b₄ a₄	b 5 a 5	$\begin{array}{c c} b_{5} & d_{2} \\ a_{5} & c_{2} \end{array}$				b 6 a 6	b 7 a 7	b_s a_8	b9 a9	
	(d) R	equ	est s	che	dule	pro	duc	ed u	inde	er W	$/F^2$	2			

Two-Dimensional Fair Queueing (known costs)

- WF²Q allows burstiness when multiple worker threads are free and only large requests are available.
- Small requests eligible for either all threads or no threads.
- New eligibility condition on thread i: $S(r_i) (i / n)^* l_i$ where $0 \le i < n$.
- Small requests become eligible on high-index threads first and tend to be serviced before low-indexed threads can service them.

Extended Two-Dimensional Fair Queuing (2DFQ^E)

Pessimistic Cost Estimation

- Safer to estimate a cheap request as inexpensive than an expensive request as cheap
- Treat unpredictable tenants as expensive
- Lⁱ_{max} = cost of largest request
- c_r = true cost of just-completed request
- If $c_r > L^i_{max}$, set $L^i_{max} = c_r$
- Otherwise, set $L_{max}^{i} = \alpha L_{max}^{i}$, where $\alpha < 1$ (but close to 1)

Extended Two-Dimensional Fair Queuing (2DFQ^E)

Bookkeeping: Retroactive Charging

- I_r is the estimated cost of a request
- c_r is the actual cost of a request
- Upon completion of a request, c_r I_r is incorporated into the virtual start and finish times of a tenant

18

20

• This ensures long-run fairness

17

Extended Two-Dimensional Fair Queuing (2DFQ^E)

Bookkeeping: Refresh Charging

- If a tenant transitions from many small requests to many expensive requests, Lⁱ_{max} will be underestimated at first
- If a request is especially expensive, up to N worker threads could begin processing expensive requests before the value of Lⁱ_{max} is updated
- Refresh Charging periodically checks long-running requests and updates Lⁱ_{max} while expensive request is still being processed
- Non-negligible overhead optimal at 10ms

Evaluation of 2DFQ

- Discrete event simulator with synthetic workloads and traces from Azure Storage
- Comparing 2DFQ, WFQ and WF²Q
 - $\circ~$ SFQ, MSF², and DRR were also used in evaluation but omitted because their improvements minimally influence fairness bounds

⁽With slides adapted from author's SIGCOMM talk:

Evaluation Metrics

Service lag: difference between service a tenant should have received with GPU (Nr, where N = number of threads and r = processing rate) and actual work done

Service rate: work done per 100ms

Latency: time between request being enqueued and finishing processing

Gini index: instantaneous measure of scheduling fairness

Evaluation with known cost

Synthetic data Costs known 16 threads 1000 units/second

Synthetic data Costs known 16 threads 1000 units/second 21

Synthetic data Costs known 16 threads 1000 units/second

23

24

Evaluation with known cost

- Using Azure production traces
 - 250 randomly chosen tenants from 50 servers, plus T₁...T₁₂
- Evaluate the effects on T₁, a tenant with low request costs and low unpredictability

Evaluation with known cost

Evaluation with known cost

Evaluation with known cost

Evaluation with known cost

29

Evaluation with known cost

30

Evaluation with unknown costs

- Using 2DFQ^E with $\alpha = 0.99$
- Added refresh and retroactive bookkeeping to WFQ and WF²Q to create WFQ^E and WF²Q^E

Evaluation with unknown costs

- 300 randomly selected tenants from Azure data
- Added unpredictability by sampling from all Azure data without regard for server or account

3 Experiments:

- 0% unpredictable: Only real tenant data
- 33% unpredictable: 33% arbitrary sampling
- 66% unpredictable: 66% arbitrary sampling

Evaluation with unknown costs

Evaluation with unknown costs

Evaluation with unknown costs

43

Evaluation with unknown costs

Where $t_1...t_7$ are fixed-cost tenants submitting requests of size 2^8 , 2^{10} , 2^{12} , ..., 2^{20}

Evaluation with unknown costs

Evaluation with unknown cost: production workloads

- 150 experiments from Azure data
- Randomly vary several parameters:
 - Number of worker threads (2-64)
 - Number of tenants (0-400)
 - Replay speed (0.5-4x)
 - Number of backlogged tenants (0-100)
 - Number of artificially expensive tenants (0-100)
 - Number of unpredictable tenants (0-100)

Evaluation with unknown cost: production workloads

99th percentile latency speedups

For T₁, median improvement over WFQ^E of 3.8x and 142x over WF²Q^E

T₁₀ latencies were usually unimproved, but when they were it was by a large factor

0.1 1 10 100 2DFQ^E 99% Latency (s) 46

Evaluation with unknown cost: production workloads

Where $t_1...t_7$ are fixed-cost tenants submitting requests of size 2⁸, 2¹⁰, 2¹², ..., 2²⁰

Summary

45

Discussion

- Analyze the tradeoffs between how aggressively tenants with unpredictable costs and separated from predictable costs
- Can take a very long time to classify a previously expensive thread as a cheap one
 - Try changing alpha parameter to be dynamic
- Benefits of keeping system work-conserving
 - Always keep a set of threads dedicated to only serving inexpensive, predictable requests