
Guo, C., et al., ”Pingmesh: A Large-Scale System for 

Data Center Network Latency Measurement and 

Analysis” Proc. of ACM SIGCOMM ‘15, 45(4):139-152, 

Oct. 2015

Advanced
Computer Networks

Microsoft’s Datacenter Latency 

Diagnosis Tool

Goal: to “know” the latency between any 

two servers in a datacenter at any time

Purposes:
1. to diagnose whether any observed service 

degradation is caused by network performance

2. to track whether network performance meets 

service level agreement (SLA) with clients

3. to automate network troubleshooting

Constraints

Must scale to 105’s to

millions of servers,

105’s of switches, and

millions of connections

in a datacenter

Design decisions:
1. always-on or on-demand? it needs to be always on

2. all servers or only between certain pairs? use of ECMP 

load-balancing means the exact path of a connection 

is not known ⇒ we don’t know which pairs to track to 

diagnose a given switch

/Cluster

Pingmesh Architecture

≈ Hadoop

Server

periodic pull 
of pinglist Server Data analysis

every 10 mins or ! bytes

virtual IP: load balanced

ev
er

y 
5

m
in

s

same protocols 
as application

perfcounter: drop 
rate, 50- and 99-
%tile latencies

every 10 mins, hourly, daily

“near real-time” is 
20 mins delayed



pinglist
Centrally computed, lists a pingmesh agent’s 

probe targets, based on network topology

• a probe yields a RTT measure from TCP SYN/SYNACK

• each probe is a new TCP/HTTP connection with a new

source port

• about 2K-5K targets per server

Scalability obtained by hierarchical probing:
1. per rack: all-pairs probing

� complete graph of servers

2. intra-DC: 1-1 (i-to-i) probing across racks

� complete graph of racks

3. inter-DC: several (unspecified) servers selected per cluster

� complete graph of datacenters

Pingmesh Agent

Safety features:
1. CPU and memory usage capped

2. 10 seconds minimum probe interval,

with maximum probe payload of 64 KB

3. stop probing after 3 tries or if no pinglist

4. if data upload fail after several tries, discard in-

memory data; local logging of data is also size-capped

5. watchdogs to watch over every components

Pingmesh Agent

Overhead:
1. memory footprint < 45 MB [> MS DOS 640 KB RAM]

2. average CPU usage is 0.26% of Intel Xeon E5-2450
3. probe traffic averages 10’s Kbps

4. total data upload: 24 TB/day or 2 Gbps

5. written in C++ not C# or Java to avoid runtime library 

and virtual machine overhead

Datacenter Latency

DC1: distributed storage and MapReduce,

servers are throughput intensive:
• transmit and receive 100’s Mbps

• 90% average CPU utilization

DC2: interactive search service, latency sensitive, 

servers have:
• high fan-in/fan-out, with low but bursty network traffic

• average CPU utilization moderate

Some results:
• inter-rack latencies higher than rack-internal latencies

• probes carrying payload have higher latencies than 

probes without payload, due to extra transmission delays



Datacenter Latency

Latencies below 90%-

tile not that different 

between the two 

datacenters

Transient long queues 

due to bursty traffic:
at 99.9%-tile:

•DC1: 23.35 ms

•DC2: 11.07 ms

at 99.99%-tile:
•DC1: 1.397 secs 

•DC2: 105.84 ms

Packet Drop Rate

Estimated from TCP SYN/SYNACK probe failure:
##$%&'()*+,-./0 + ##$%&'(2*+,-./03

##$%&'(_(566'((758
where: 

• #probes1failure: # SYN packets dropped with one retry

• #probes2failures: # SYN packets dropped with two retries,

but counted only once

• #probes_successful: successful probe, including after retries

• in short, (total number dropped)/(total number that got through)

Packet drop rate on the order of 10-5, with inter-rack 

drop rate 2-6× higher than rack-internal drop rate

Network Troubleshooting

Problem: silent packet drop:

• specific source-destination pair gets dropped � due to 

flow table hardware (TCAM) corruption

• specific source-destination-transport tuple gets 

dropped ⇒ perhaps related to ECMP hashing

• both can be fixed by rebooting the switch

How to detect faulty switch?

Network Troubleshooting
How to detect faulty switch?

• if many servers under a ToR switch experience silent 

drop, the ToR switch is flagged

• if a small number of ToR switches in a cluster is flagged, 

they are probably faulty and are rebooted

• if a large number is flagged, a higher-level switch could 

be faulty ⇒ requires manual pinpointing, e.g., by using 

traceroute

Pingmesh alone doesn’t

pinpoint faulty switch

#ToR switches silent 

dropping packets

How does detection 

reduce occurrence?



Fault Visualization

intra-rack ok

Cluster down Cluster failure


