
Roy, A., et al., ”Inside the Social Network’s 
(Datacenter) Network” Proc. of ACM SIGCOMM ‘15, 
45(4):123-137, Oct. 2015

Advanced
Computer Networks

Microsoft Datacenter Traffic
Previous Microsoft studies found datacenter 
traffic to be:
• 50-80% rack local
• frequently concentrated and bursty
• bimodal in packet sizes (ACK/MTU)
• on/off
• mostly in small flows, <5 concurrent large flows

Facebook Datacenter Traffic
Characteristics of Facebook datacenter traffic: 
• neither rack local nor all pairs
• demand is wide-spread, uniform, and stable due to load 

balancing
• small packets, continuous arrivals, not on/off
• many concurrent flows due to connection pooling
• rapidly changing, internally bursty heavy hitters, 

reducing the efficacy of traffic engineering
• only Hadoop’s MapReduce-style traffic agrees with 

Microsoft’s characterization

Implications
Datacenter network designs assume:
• worst-case, all-pair traffic matrix, with equal frequency 

and intensity ⇒maximize bisection bandwidth

• hot-spots, due to oversubscription, to be alleviated with 
bypass, secondary connectivities (wireless, optical)

• which requires traffic demand to be predictable and 
stable to be feasible

• stylized traffic allows for specialized switch design (buffer 
sizing, port count, etc.)



Datacenter Topology
Similar to Google’s first gen network:
• multiple sites connected by a backbone
• each site contains one or more buildings (datacenters)
• each datacenter contains

multiple clusters

• each cluster employs
a 3-tier, 4-post topology

• 10-Gbps servers Server
Rack 1

Server
Rack n

Cluster
Unit of deployment
May be of a single function, e.g., cache cluster
Or multi-function: front-end cluster comprising 
web/front-end servers, load balancers, and cache servers

Inter-cluster, intra-datacenter connected by FC switches
Similar to Google,
• inter-datacenter,

intra-site connected by
aggregation switch

• inter-site connected by
datacenter router

Server
Each server has precisely one role:
• web/front-end server
• mysql (db) server
• cache leader
• cache follower
• multifeed server to assemble news feed and serve ads
• Hadoop server for offline analysis and data mining

A small number of servers can be dynamically 
repurposed

No virtual machines (same as Microsoft)

Each rack contains only servers of the same role

Services

Layer-4 software 
load balancer

stateless, 
no user data

fetch 
data

cache 
miss

news feed 
and ads

offline analysis and data 
mining, not involved with 
serving end-user requests

outbound traffic intensity (%)

src \dst



Data Collection
Cannot collect every packet, instead use:
1. Fbflow: sample packet headers (1:30K sampling 

rate) across entire global network

running at 
collection node

+ host name, 
timestamp

+ rack, 
cluster, 
ASN

realtime
data 
analytics 

long-term 
store

Data Collection
Cannot collect every packet, instead use:
2. Port mirroring: collect all packet headers of 

a single machine or rack for a few minutes
• by mirroring a ToR port to a collection host on the 

same rack
• placement opportunistic, depending on space availability

• a kernel module sitting atop the Ethernet driver 
extracts headers and spools it to remote storage
• no loss
• deployed at 5 different (type of) racks to monitor:
• a rack of web servers
• a Hadoop node
• a cache leader node
• a cache follower node
• a multifeed node

Traffic Characterization
Characterize traffic across 3 different types of cluster: 
Hadoop, Web/front-end, and cache clusters

Utilization:
• server to ToR links: < 1%,

even in heaviest utilized Hadoop cluster, it’s < 5%
• ToR to CSW links: median: 10-20%,

with the busiest 5% reaching 23-46%
• CSW to FC links: higher

Locality

Relative proportions of the locality are 
stable despite diurnal traffic pattern 

Hadoop

Cache follower Cache leader

Web server



Implications of Locality
Traffic matrix:

Homogenous topology will lead to over-/under-
provisioning in different parts of the datacenter

Stability of traffic patterns means no need for rapid 
reconfigurability

heavy intra-rack, but significant 
(80%) inter-rack too

heavy inter-rack between 
web servers and caches

mostly intra-cluster

Outbound Flow Characteristics
Most Hadoop flows are short and small, but 
varies across servers

< 10 secs < 10 KB

grouped by 
destination

grouped by 
destination

Outbound Flow Characteristics
Non-Hadoop flows are more uniform across servers due 
to load balancing and last longer due to connection 
pooling, but traffic per flow is bursty [surely on/off?]

only 30% lasts < 100 secs

grouped by 
destination

grouped by 
destination

Outbound Flow Characteristics
Cache flow sizes reflect load balancing over time

tightly distributed around 1 MB

grouped by 
destination

grouped by 
destination

widely distributed

individual connection sizes per-destination host flow sizes



Impact of Load Balancing
Load balancing smooths out traffic, 
reducing effectiveness of traffic 
engineering

cache rate per-
destination 
rack is similar 
across racks 

Hadoop rate 
is widely 
distributed

cache rate per-
destination 
rack is further 
similar over 
time

Impact of Load Balancing
Load is monitored⇒ large increases in load would be 
actively mitigated

Hot objects are temporarily cached at the web servers

Persistently popular objects are replicated across caches

Top-50 most popular objects are evenly spread across 
all caches

No heavy hitters (set of flows responsible for 50% of 
traffic volume) due to load balancing and caching

Switch Design
Low traffic volume (in bytes),
but high packet rate: even at 10%
utilization, median packet size of 
175 bytes means 85% of link 
packet forwarding capacity
[no Nagle?]

Packet arrivals from a single 
source host are not ON/OFF,
but arrivals for a single 
destination host are ON/OFF

Buffers overflow, especially for 
web servers [LRD traffic after all?]

Discussion
Traffic observed reflects the design
and implementation of a single service,
is it the best design and implementation?

Traffic characteristics change as:
• service changes, e.g., more videos
• implementation or design changes, e.g., is having a cache 

cluster the best design?
• or would it be better to spread cache servers across clusters?

Can all datacenter traffic be so regularized?

If so, are remaining datacenter hard problems
(research issues) above the network layer?


