
Vivaldi: A Decentralized Coordinate System
Frank Dabek, Russ Cox, Frans Kaashoek and Robert Morris

ACM SIGCOMM Computer Communication Review. Vol. 34. No. 4. ACM, 2004.

Presenter: Andrew and Yibo

Peer-to-Peer systems

1

5
4

2

3

?
? ?

?

●  There are many nodes to communicate
with, you want to choose to talk to the
node that is closest (lowest RTT)

●  One approach is to calculate RTT with
each node, and talk to closest node

○  For small clusters or large transfers,
this works great!

○  But what about large content
distribution systems (i.e. KaZaA,
BitTorrent)

○  What about systems with small
messages (i.e. DNS)

Peer-to-Peer systems

●  You want to put nodes on a coordinate
system

○  If your coordinate system
approximates RTT well, use it
instead of probes!

1

5
4

2

3

Coordinate System Requirements

1.  Accuracy -- embed Internet with little error

2.  Scale to many hosts -- p2p scale

3.  Decentralized algorithm -- p2p applications

4.  Very little ‘probe’ traffic -- reduce burden on system

5.  Adapt to network conditions -- not a static representation

Outline

1. Introdude need for coordinate systems

2. Design of Vivaldi

3. Evaluation of Vivaldi

Vivaldi Network Model

i j
Treat the RTT between two nodes as a
spring

●  If distance in coordinates is equal
to RTT, no tension in spring

●  If distance in coordinates is not
equal to RTT, tension in spring

Li,j

i j

Li,j

X
i

X
j

X
j

X
i

Vivaldi Network Model

Measure error of a
particular node (xi) as the
energy in all springs for the
node
Σj(Li,j - || xi - xj ||)2

1

5
4

2

3

Vivaldi Network Model

Measure error of whole system as the energy in all springs

Goal is to choose coordiantes x that minimize E

E = ΣiΣj(Li,j - || xi - xj ||)2

Vivaldi Centralized Algorithm

Big idea: for each node i,

1. figure out the total force of the
springs between i and all nodes j

2. Move i by that force

1

5
4

2

3

Vivaldi Centralized Algorithm
While error(L,x) > tolerance

For each node i:
F = 0
For each node j:

 //error of the spring between i and j
 e = Lij - ||xi - xj ||

//add error to force vector of this spring

 F = F + e x u(xi - xj)

//move node i by a small step in the direction of the force
xi = xi + t x F

Vivaldi centralized algorithm
While error(L,x) > tolerance

For each node i:
F = 0
For each node j:

 //error of the spring between i and j
 e = Lij - ||xi - xj ||

//add error to force vector of this spring

 F = F + e x u(xi - xj)

//move node i by a small step in the direction of the force
xi = xi + t x F

We’re assuming we know all
RTTs for all pairs of nodes…

 These RTTs are what we’re
trying to approximate!

Vivaldi centralized algorithm
While error(L,x) > tolerance

For each node i:
F = 0
For each node j:

 //error of the spring between i and j
 e = Lij - ||xi - xj ||

//add error to force vector of this spring

 F = F + e x u(xi - xj)

//move node i by a small step in the direction of the force
xi = xi + t x F

We’re assuming we know all
RTTs for all pairs of nodes…

 These RTTs are what we’re
trying to approximate!

Two changes to make:

1.  We need to calculate the coordinates of system using only
a few RTTs

2.  We need to do this using a distributed algorithm

Vivaldi Distributed algorithm

●  Each node stores its own
coordinate

●  When it communicates with
another node it measures RTT

1

5
4

2

3

x1

x3

x4

x5

x2

Vivaldi Distributed algorithm

●  Each node stores its own
coordiante

●  When it communicates with
another node it measures RTT

●  Moves itself proportional to the
force within the spring

1

5
4

2

3

x1

x3

x4

x5

x2

xi = xi + ! (rtt - || xi - xj ||) u(xi - xj)

Vivaldi Distributed algorithm

●  Each node stores its own
coordiante

●  When it communicates with
another node it measures RTT

●  Moves itself proportional to the
force within the spring

1

5
4

2

3

x1

x3

x4

x5

x2

xi = xi + ! (rtt - || xi - xj ||) u(xi - xj)

Vivaldi Distributed algorithm

! = .0001 ! = 1

Vivaldi Distributed algorithm

! = .0001 ! = 1

Adapt !. Converge quickly with a large !; as we become
more certain of our location, make ! smaller

Vivaldi distributed algorithm
//Given a sample rtt with node j, which has coordinate xj, error ej
vivaldi(rtt, xj, ej)

//sample weight balances both local and remote errors
w = ei / (ei + ej)

//calculate wieghted moving average of error of our samples
ei = weighted_moving_average(ei, w, xi, xj, rtt)

//Update local coordinates
x_i = x_i + w (rtt - || xi - xj) u(xi - xj)

Evaluation methodology

Latency data: two datasets

1) Latency matrix for 192 hosts on PlanetLab network

a)  All pairs ping trace

2) Lacency matrix for 1740 DNS nameservers

a)  Use King to collect latency

b)  Handling multiple authorative nameservers?

i)  Only use domains where authorative nameservers are on the same subnet

How to define latency?

Latency ?= minimum RTT

Not for King, since King can report a RTT less than true value

Use median to filter out transient congestion and packet loss

large delay due to high load at nameserver A >> delay btw A and B

Using the data

Using RTT matrices as inputs to a packet-level network simulator

Each nodes run the decentralized Vivaldi algorithm

Limitation of the simulator: RTTs do not vary over time, no queueing delays

Why not simulating queueing delay?

Because this needs modeling underlying network infrastructure (model a model!)

Just stick to real data

Evaluation

1. Effectiveness of the adaptive time-step !

2. How well Vivaldi handle high-error nodes

3. Vivaldi’s sensitivity to communication patterns

4. Vivaldi’s repsonsiveness to network changes

5. Vivaldi’s accuracy compared to that of global network positioning (GNP)

landmark1

landmark2

landmark3

(x1, y1)

(x2, y2)

(x3, y3)

ordinary
host

rtt3
rtt1

rtt2

(x4, y4)

Effectiveness of the adaptive time-step !

fixed !

adaptive ! =
c*local error/(local error + remote error)

xi = xi + ! (rtt - || xi - xj ||) u(xi - xj)

local error = abs(predicted rtt - actual rtt)/actual rtt

Network error: median of all nodes errors

How well Vivaldi handle high-error nodes

 Evolution of a stalbe 200-node network after 200 new nodes join

How well Vivaldi handle high-error nodes

 Median link errors: median of all link errors

Vivaldi’s sensitivity to communication patterns

 Pattern 1: communicate with four neighbors
Pattern 2: communicate with both neigbhors & long-distance hosts

 (get a global sense of their place in the network)

How much long-distance comm. is necessary?
A grid of 400 nodes. Each node is assigned 4 neighbors and 4 faraway random nodes.

At each step, each nodes chooses a faraway node with probability p among these 8 nodes.

Adapting to network changes

Use ITM tool to generate a ‘transit-stub’ topology of 100 hosts

transit-stub links become much longer
back to the previous topology

25ms

Accuracy
Compared with GNP best (Lowest median error)

PlanetLab

King

Accuracy vs. the number of neighbors

Suitability for embedding?

Triangluar inequaltiy violation

In Euclidean space, triangular inequality holds.
In network context, not necessary.

5ms

10ms

50ms

A

B

C poorly provisioned link

lowest indirect path / direct path = (5+10)/50 Conclusion: suitable

Euclidean space

PlanetLab

King

Spherical coordinates

To model the shape of Earth

Euclidean space with heights

Euclidean space assumption: latency propotional to gegraphic distance

Access link could be slow in the case of cable modems and telephone modems

A height dimension for the access link

Accuracy Graphical comparison

Dataset: King

2-D Vivaldi
w/o heights

3-D Vivaldi
w/o heights

3-D Vivaldi w/
heights projected
to 2-D

Heights

Discussion
Strengths:

Very elegently designed solution

Evaluation shows the strenght of the solution

Weaknesses:

Is the need still there?

How many p2p systems still out there?

Heterogenious distributed systems?

