Basic Game Physics

John E. Laird and Sugih Jamin

Based on The Physics of the Game, Chapter 13 of Teach
Yourself Game Programming in 21 Days,

pp. 681-715




Why Physics?
Some games don’t need any physics

Games based on the real world should look realistic,

meaning realistic action and reaction

* More complex games need more physics:
* sliding through a turn in a racecar, sports games, flight simulation, etc.

* Running and jumping off the edge of a cliff

Two types of physics:
 Elastic, rigid-body physics, ' = ma, e€.g., pong
* Non-e¢lastic, physics with deformation: clothes, pony tails, a
whip, chain, hair, volcanoes, liquid, boomerang

Elastic physics 1s easier to get right




Game Physics

Approximate real-world physics
We don’t want just the equations

We want efficient ways to compute physical values
* Assume fixed discrete simulation — constant time step
* Must account for actual time passed for variable simulation

Assumptions:
« 2D physics, usually easy to generalize to 3D (add z)
* Rigid bodies (no deformation)

» Will just worry about center of mass
» Not accurate for all physical effects

* Constant time step




Position and Velocity

Modeling the movement of objects with velocity
* Where 1s an object at any time #?
* Assume distance unit 1s 1n pixels

Position at time 7 for an object moving at velocity
v, from starting position x,:

* X(1) =x,t+ v t

* V1) =y, t vt
Incremental computation per frame, assuming

constant time step and no acceleration:
* v _and v,, constants, pre-compute

*XTEV, YTV,

v: velocity




Acceleration

* Acceleration (a): change in velocity per unit time

A

\

Velocity

Approximate




Acceleration //(

» Constant acceleration: v, +=a,, v, +=a, /

* Variable acceleration:
use table lookup based on other factors:
acceleration = acceleration value(gear, speed, pedal pressure)

» Cheat a bit: acceleration = acceleration_value(gear, speed) * pedal pressure

_ % .
a, = cos (v) * acceleration

_ . * .
a, = sin (v) * acceleration

* Piece-wise linear approximation to continuous functions

Zah




Gravity

« Gravity 1s a force between two objects:

* Force F =G (m;m,)/ D’
e G=6.67x 10" Nm?kg~?
 m;: the mass of the two objects
» D = distance between the two objects

* So both objects have same force applied to them
 F=ma -->a=F/m

* On earth, assume mass of earth 1s so large it doesn’t

move, and D 1S constant
 Assume uniform acceleration

 Position of falling object at time #:
© X(1) =x,
* y(t) =y, +1/2*9.8m/s> * ¢
* Incrementally, y += gravity (normalized to frame rate)




Space Game Physics

Gravity
* Influences both bodies
* Can have two bodies orbit each other
* Only significant for large mass objects
* Consider N-body problem

What happens after you apply a force to an object?

What happens when you shoot a missile from a
moving object?

What types of controls do you expect to have on a
space ship?

What about a flying game?




WERR

Objects represented by their center of mass, not
accurate for all physical effects

Center of mass (x_, y.) for a polygon with n vertices:
e Attach a mass to each vertex
c x,=2xm/Zm,i=0.n
c y.=2ym/2Zm,i=0.n

For sprites, put center of mass where pixels are densest

For arcade games, model gravity in sprite frames:




Friction

« Conversion of kinetic energy into heat

* Frictional force F, ., =m g u
 m=mass, g=9.8 m/s’,
* U = frictional coefficient = amount of force to maintain a constant speed

riction

F F
> <f

m*g u

F actual — push ~ F friction .
 Careful that friction doesn’t cause your object to move backward!

* Consider inclined plane

e Usually two frictional forces

 Static friction when at rest (velocity = 0). No movement unless overcome.
 Kinetic friction when moving (u, < u,)




Race Game Physics

Non-linear acceleration

Resting friction > rolling friction
Rolling friction < sliding friction
Centripetal force?

What controls do you expect to have for a racing game?
e Turning requires forward motion!

What about other types of racing games
* Boat?
« Hovercraft?




Projectile Motion

e Forces

—

v, = 1nitial velocity

W: wind /
W . wind resistance

l g gravity

2
= m: mass of projectile

S 0: angle of inclination

v, =V, cos(6)

v, =V, sin(6)

ty
Reaches apex at t = v, sin(0)/g,
hits ground atx = v, * vl.y/g

With wind:
xXt=v, + W
X
yt= Vi,
With wind resistance and gravity:
Vix L W’” X

s += Wry + g, g normalized




Particle System Explosions

Start with lots of point objects (1-4 pixels)

Initialize with random velocities based on velocity of
object exploding

Apply gravity
Transform color intensity as a function of time

Destroy objects upon collision or after fixed time

Can add vapor trail (different color, lifetime, wind)




Advanced Physics

Modeling liquid (Shrek,
Finding Nemo)

Movement of clothing

Movement of hair
(Monster Inc.)

Fire/Explosion effects

Reverse Kinematics




Physics Engines
 Havok, AGEIA PhysX, Tokamak, etc.

 Strengths
* Do all of the physics for you as a package

 Weaknesses
e Can be slow when there are many objects (use PPU?)
« May have trouble with small vs. big object interactions
« Have trouble with boundary cases

4
v

Source: AGEIA




Back to Collisions

« Steps of analysis for different types of collisions
» Circle/sphere against a fixed, flat object
« Two circles/spheres
* Rigid bodies
* Deformable

« Model the simplest - don’t build a general engine

| I +$_"Q




Collisions: Steps of Analysis

Detect that a collision has occurred

Determine the time of the collision
* So can back up to point of collision

Determine where the objects were at time of collision
Determine the collision angle off the collision normal

Determine the velocity vectors after collision

Determine changes in rotation




Circles and Lines

* Simplest case
* Good step for your games - pinball
« Assume circle hitting an immovable barrier

* Detect that a collision occurred
o [f the distance from the circle to the line < circle radius
« Reformulate as a point about to hit a bigger wall
 If vertical and horizontal walls, simple test of x, y

‘\>




Circles and Angled Lines

 What if more complex background: pinball?

* For complex surfaces, pre-compute and fill an array with
collision points (and surface normals)




Circle on Wall Collision Response

Xy

* Determine the time of collision (¢,):
* 1 =4 (X )/(xmx ) ¥A Y

* ¢, = 1nitial time
* At = time increment e

« Determine where the objects are when they touch
* Ve =V vy T (tt)/A

* Determine the collision angle against collision normal
* Collision normal is the surface normal of the wall 1n this case
« Compute angle of line using (x,-x,) and (y,-y,)




Circle on Wall Collision Response

Determine the velocity vectors after collision

* Angle of reflectant = angle of incidence; reflect object at an
angle equal and opposite off the surface normal

e If surface 1s co-linear with the x- or y-axes: N\ Z
» Vertical - change sign of x velocity >|
Compute new position

» Horizontal - change sign of y velocity
» Corner - change sign of both
* Use Af - ¢, to calculate new position from collision point

Determine changes in rotation
* None!

Is this worth 1t? Depends on speed of simulation, ...




Circle-circle Collision

* Another important special case
* Good step for your games

* Many techniques developed here can
be used for other object types

 Assume elastic collisions:
 Conservation of momentum
* Conservation of kinetic energy

 Non-elastic collision converts
kinetic energy into heat and/or
mechanical deformations




Detect that a collision occurred

e [fthe distance between two circles is less than the sum of

their radii

« Trick: avoid square root in computing distance!
* Instead of checking (7,+r,) > D, where D = sqrt((x,-x,)*> + (v;~y,)?)
» Check (r; +r)* > ((x,;-x,)° + (v;-y,)?)

 Unfortunately, this is still O(N?) comparisons, N number of
objects




Detect that a collision occurred

* With non-circles, gets more complex and more
expensive for each pair-wise comparison

« Use bounding circles/spheres and check for overlap
 Pretty cheap
* Not great for thin objects




Avoiding Collision Detection

* General approach:

 (Observations: collisions are rare
* Most of the time, objects are not colliding

« Use various filters to remove as many objects as possible
from the comparison set




Area of Interest

e Avoid most of the calculations by using a grid:
* Size of cell = diameter of biggest object

« Test objects 1n cells adjacent to object’s center

* Can be computed using mod’s of objects coordinates:
* bin sort

* Linear in number of objects




Detect that a collision occurred

« Alternative if many different sizes
e (Cell size can be arbitrary
« E.g., twice size of average object

« Test objects 1n cells touched by object
* Must determine all the cells the object touches
 Works for non-circles also




Circle-circle Collision Response

 Determine the time of the collision

 Interpolate based on old and new
positions of objects

e Determine where objects are when

they touch
« Backup positions to point of collision

e Determine the collision normal

* Bisects the centers of the two circles
through the colliding intersection

collision normal

collision “surface”




Circle-circle Collision Response

Determine the velocity: assume elastic, no
friction, head on collision

Conservation of Momentum (mass * velocity):
© My, myv, =mpy +myy,

Conservation of Energy (Kinetic Energy):

* m]v/ + m2v22 — m;v ’12 T m,v ’22

Final Velocities
* V= (Cmyvy + v (mp-my))/(mtmy)
* VL= Cmpy vy(mp-my))/(mtmy)
» What if equal mass, m, = m,
* What if m, is infinite mass?




Circle-circle Collision Response

For non-head on collision, but still no friction:

e Velocity change:
e Maintain conservation of momentum
* Change of velocity reflect against the collision normal

collision “surface”




Must be caretul

e Round-off error 1n floating point arithmetic can throw

off computation
e Careful with divides

* Especially with objects of very different masses




Avoiding Physics 1n Collisions

* For simple collisions, don’t do the math
* Two 1dentical balls swap velocities

* For collisions between dissimilar objects
* Create a collision matrix

O

ball O

paddle =

brick 1

side |

bottom —




