
Game Programming with
DXFramework

Jonathan Voigt
voigtjr@gmail.com

University of Michigan

Fall 2006

2

The Big Picture

• DirectX is a general
hardware interface API

• Goal: Unified interface
for different hardware

• Much better than the
past
– Programs had to be
coded for specific
hardware

Hardware

DirectX

Application

3

DXFramework is a Simple
DirectX Game Engine

DXFramework goals:

• Simplicity

• 2D support

• Object oriented design

• Instruction by example

4

Types of Games to Create

Simple!

Fun!

Easy!

(2D!)

5

Iterative Development

Implementation

Evaluation

Design

Analysis

6

Student Games

Only the final projects are available on
the web (not the arcade games)

Fall 2004 (DXFramework 0.9.3):
http://ai.eecs.umich.edu/soar/Classes/494/showcase-

2004/Games.htm

Fall 2005 (DXFramework 0.9.6):
http://ai.eecs.umich.edu/soar/Classes/494/showcase-2005.htm

7

Arcade Game Demo

8

DXF Capabilities

• Genres: arcade, action, puzzle, role
playing, adventure, strategy

–Top down, side view, isometric

• Many other possibilities!

9

• Sounds & Music
– Midi background, sound
effects

– simple pan & volume
control

• Input
– Keyboard and mouse

– Joystick possible: use USB
joystick and be prepared
to turn it in with your
game!

DXF Capabilities

10

DXF and DXUT

• Microsoft’s DirectX utility library

– Included with DirectX SDK

• Included with DXFramework

– ‘dxut’ project

• See DirectX samples for more on
DXUT and DirectX

11

DXF Prerequisites

• Windows 2000/XP

• Microsoft Visual Studio 2005

• Latest DirectX SDK

• Windows SDK

• Python interpreter

• Creativity

12

Installation

• Refer to Getting Started guide:

–http://dxframework.org/wiki

• Generally speaking:

– Install Visual Studio & SDKs

–Configure Visual Studio

–Download and Extract package

13

DXFramework Concepts

14

A DXF Application is a graph of
Game States

• You create your game by defining game
states (extending a GameState class) and
the conditions for transitioning between
them

TitleKeyboard
(demo)

Mouse
(demo)

Joystick
(demo)

UI
(demo)

demo project

15

Tetris as a graph of states

Title Options Game
High
Score

Start

Select
Players

Type &
Music

High
Score

Quit

Entered Name

Not a high score

16

Global Data
(data shared across states)

• What about global data?

–High scores

–Option settings

• Store global data in the Registrar

–The registrar is part of your project
Registrar

(public dxf::RegistrarInterface)

Utility Functions
Global Data

RegisterStates()

17

Initialization

main

Registrar
(public dxf::RegistrarInterface)

Global Data

RegisterStates() dxf::Game
(DXFramework)

DirectXDXUT

“Title”
“Options”
“Game”

“High Score”

The first state
registered is used
as the initial state!

18

Execution

• The next thing main() does is call Run()
– This starts the main loop:
InputInputInputInput����UpdateUpdateUpdateUpdate����RenderRenderRenderRender

– Each iteration of this loop represents a frame

• This loop executes as fast as possible
– DXF uses variable discrete

– Faster hardware runs faster

– Time elapsed is available to Update()

• When Run() exits, so does the program

19

Key Points in the Game Loop

• Load()

• Update()

• Render2D()

• DXFChangeState()

• Unload()

Poll input

Update() current
state

Did update
request a state

transition?

Unload() previous
state

Update current
state pointer

Set up video
device for
rendering

Render everything
to back buffer

Present the back
buffer to the

screen

Load() new state

NoYes

Start

20

Creating States

• Extend dxf::GameState2D

– Implement the necessary functions

• Need a complex GUI?

–Extend dxf::GameStateGUI instead

• Need sub-states?

–Advanced topic

–Extend dxf::StateManager as well

21

Registering States

• Registrar

–RegisterStates()

–DXFRegisterState(string, state pointer)

const std::wstring Registrar::kTitle = L”Title”;

const std::wstring Registrar::kKeyboard = L”Keyboard”;

…

dxf::DXFRegisterState(kTitle, Title::Instance());

dxf::DXFRegisterState(kKeyboard, Keyboard::Instance());

…

dxf::DXFChangeState(Registrar::kKeyboard);

22

DXF Engine Architecture

dxf::Game

dxf::Model

dxf::Console dxf::Controller

dxf::View
states

debugging input devices

video device

top level container

23

Other DXF Components

• Sprites
– Almost everything on the screen

– Many acceptable formats (like .jpg, .png)

• Sounds

• Fonts

• Console

• All usually members of game states or
registrar

24

Sprites are Everywhere!

Width:
16 pixels

Height:
64 pixels

Paddle
Sprite

Zeros (text) are not sprites, they
are created by special Font object

Back buffer/screen:
800x600

Sprites

Position:
782, 462

Origin:
(0, 0)

+x

+y

25

The Back Buffer

• Sprite ‘cache’ or ‘canvas’

• Same size as screen when full-screen

• Size of window ‘client area’ when
windowed

26

Title::Load() {

DXFSetClear(true);

DXFSetClearColor(WHITE);

}

Pong::Render2D() {

center.Render2D();

scoreboard.Render2D();

font.Render2D(…);

font.Render2D(…);

left.Render2D();

right.Render2D();

…

ball.SetAnimation(1);

ball.SetColor(…);

ball.Render2D(…);

ball.SetColor(…);

ball.Render2D(…);

ball.SetColor(…);

ball.Render2D(…);

ball.SetColor(…);

…

ball.Render2D();

}

Drawing to the Back Buffer
(Render2D)

27

Button Input

BUTTON_PRESSED

BUTTON_DOWNBUTTON_RELEASED

BUTTON_UP

DXFCheckKeyboard()

DXFCheckMouse()

DXFCheckJoystick()

Button is DownButton is Up

28

Mouse Input

• DXFGetMousePosition()

–Returns X,Y position on back buffer

• Passing this to Sprite’s
CheckIntersection function is useful

–See Button in DXFramework-Demo

–Very recent bug fix, see discussion or
FAQ for details, or download a new copy
of the framework

29

Collision Detection

• Simple: Check bounding rectangles

No collision

Overlap in both dimensions

(Collision)

Overlap in y

Overlap in x

30

Collision Detection

• Simple: Check bounding circles
– Distance between center points

– Collision if distance between center points is
less than sum of radii

1 2

1 2

1 2

31

Fonts

• Use the font class to draw text to
screen

• Text is expensive

–Keep amount of text low

• Consider text rendered on sprites

32

Sounds

• Use sound class for sounds

• Wave files, Midi files, MP3, others

–Ogg? Not sure

• Usage similar to sprites

–Create using filename

– ‘Render’ using Play

33

The DXF Console

• Essential debugging tool
– No stdout available!

– A decent substitution

• ` key toggles

• Output using Console::output like you
would use cout:
– Console::output << “The number is: “ << x <<
std::endl;

• Output is flushed only when a newline is
encountered!

34

Creating and Registering
Custom Commands

• Registrar’s other function registers
custom console commands

• Define command in global scope with
correct function signature

• Pass pointer and string to
DXFRegisterCommand

35

Using the DXUT GUI with
DXFramework states

• Program by example

• See comments in UI Demo

36

Questions? Need help?

• I’m here to help

• Check the FAQ on the Wiki

– I’ll fill in content as I get it

• Post in the discussion forum

• Send me mail to schedule an
appointment

–voigtjr@gmail.com

–3828 CSE Building

