
AI for Animation and Combat

Based in part on material developed by
John McCloskey

Jeffrey Miller
Amish Prasad
Lars Linden

Van der Sterren, W.
Reed, C. and Geisler, B.

and Orkin, J.
(AI Game Programming Wisdom vols. 1 & 2)

AI Components: Animation

•• NPC NPC modelsmodels built by artists built by artists
•• Use tools such as Use tools such as ““3D Studio Max3D Studio Max”” or or ““MayaMaya””

•• Models are are constructed from bonesModels are are constructed from bones

•• Bones are connected by articulated jointsBones are connected by articulated joints

•• The skeletal system is covered by a mesh ofThe skeletal system is covered by a mesh of
textured polygonstextured polygons

AI Components: Animation

•• Example:Example:

AI Components: Animation

•• Animation sequences are generated byAnimation sequences are generated by
defining how joints should articulate throughdefining how joints should articulate through
timetime

•• Walking sequence:Walking sequence:

AI Components: Animation

Animation sequences for a model are either:Animation sequences for a model are either:

•• Hand generated by a computer animatorHand generated by a computer animator

•• Recorded from real human (or animal)Recorded from real human (or animal)
movements and applied to a skeletal systemmovements and applied to a skeletal system
((““motion capturemotion capture””))

AI Components: Animation

•• Motion Capture:Motion Capture:

Tom Molet (EGCAS ’96)

AI Components: Animation

Animation sequences tend to be:Animation sequences tend to be:

•• Motion primitives: Motion primitives:
•• Run, Walk, Jump, Side-step, ClimbRun, Walk, Jump, Side-step, Climb

•• TransitionsTransitions
•• Start_Walk, Run_To_Jump, Jump_LandStart_Walk, Run_To_Jump, Jump_Land

AI Components: Animation

Some animation sequences only take controlSome animation sequences only take control
of part of the body:of part of the body:
•• wave_hellowave_hello
•• hand_signal_stophand_signal_stop
•• swing_ice_axeswing_ice_axe

AI Components: Animation

•• First step in A.I. is to select whichFirst step in A.I. is to select which
animation sequence or sequences shouldanimation sequence or sequences should
be applied to a modelbe applied to a model

•• Many influences:Many influences:
•• Desired behavior chosen by decision systemDesired behavior chosen by decision system
•• What animation is currently playingWhat animation is currently playing
•• The current velocity and direction of the NPCThe current velocity and direction of the NPC
•• The terrain the NPC is standing onThe terrain the NPC is standing on

AI Components: Animation

•• Second step is to parameterize animationsSecond step is to parameterize animations
•• Speed up or slow down animationSpeed up or slow down animation

•• Slow walk, fast walkSlow walk, fast walk
•• Accelerate / decelerate stop and start of runAccelerate / decelerate stop and start of run
•• Slow run as approach sharp turnSlow run as approach sharp turn

•• Blend between animationsBlend between animations
•• walk-to-runwalk-to-run
•• 70% normal walk + 30% limp70% normal walk + 30% limp

•• Layer animationsLayer animations
•• Mix hand_wave on top of walk animationMix hand_wave on top of walk animation

AI Components: Animation

•• Next might add selected Joint ControlNext might add selected Joint Control
•• Take control of particular jointsTake control of particular joints

•• Either:Either:
 Ignore joint motion in pre-generated animationIgnore joint motion in pre-generated animation
 Blend with pre-generated joint motionBlend with pre-generated joint motion

•• Used for:Used for:
•• Head TurningHead Turning

 Looking at a particular object or locationLooking at a particular object or location

•• Arm aimingArm aiming
 Point gun at a locationPoint gun at a location

AI Components: Animation

•• And finally, add inverse kinematicsAnd finally, add inverse kinematics
•• Algorithmically determine the jointAlgorithmically determine the joint

configuration required for an end-effecterconfiguration required for an end-effecter
(hand or foot) to reach a particular location(hand or foot) to reach a particular location

•• Used for:Used for:
•• Keeping the feet on the ground on uneven terrain orKeeping the feet on the ground on uneven terrain or

when walking up stairswhen walking up stairs
•• Reaching hand out to open a door, pick up andReaching hand out to open a door, pick up and

objectobject

Combat: Most Challenging

• Assessing the situation intelligently
• Spatial reasoning

• Selecting and executing appropriate tactics
• Camp, Joust, Circle of Death, Ambush, Flee

and Ambush

• Perceptual modeling
• Weapons Combat

Combat: Spatial Reasoning

• 3D map geometry is difficult to parse
• Solution: Custom databases

• Place hints throughout the world
• Can be error-prone and inefficient
• Do not handle dynamic obstacles

Perceptual Modeling

• Visual subsystem: seeing target
• Distance to visual stimulus
• Angle of stimulus relative to field of view
• Line of sight calculations

• Auditory subsystem
• Ensure that the AI can hear objects in the world
• AI must interpret and prioritize sounds

• Tactile subsystem
• Handles anything the AI can feel
• Damage notifications and collision notifications

Weapon Combat

• Successful Attack Probability
• Calculate value to represent the chance to hit,

generate random number
• If number is above to-hit value, try to miss target

• Factors:
• AI skill, Range, Size, Relative Target Velocity,

Visibility and Coverage

• Shoot and Miss
• Pick a target coordinate outside the body
• Place shot inside target’s field of view

Tactical Analysis

• Level designers place waypoints in the
environment for navigation

• Node graph contains information of
connectivity between nodes for a map

• Waypoints can also be evaluated for their
visibility

• Information can be used to make tactical
decisions

Waypoint Analysis

A World With 6 Nodes and 2 Enemies

Waypoint Analysis

• Limited CPU time
• Decisions must be made quickly (as few

CPU cycles as possible)
• Data must stored efficiently
• Store visibility data in a “bit-string” class

 = visibility from node “a”a
V

Waypoint Analysis

Visibility Matrix

Waypoint Analysis

• Danger Nodes
• Determined by “OR”ing the visibility of all

enemy’s (k) nearest nodes

• Safe Nodes
• Is its inverse

U
kj

j
jVV

=

=

=
0

V

=

=

=

Waypoint Analysis

Safe and Dangerous Nodes

Finding a Safe Attack Position

• While attacking a selected enemy, an NPC
shouldn’t expose itself to its other enemies

• A good attack position will:
• Provide line-of-site (LOS) to the selected

enemy
• Provide cover from all other enemies

Finding a Safe Attack Position

• To find such locations, first find all nodes
which have LOS to the selected enemy

• Call selected enemy “a”

a
V

Finding a Safe Attack Position

Nodes are visible to selectedselected enemy

Finding a Safe Attack Position

• Next determine the set of nodes that are
visible to all other enemies

aj,VV

kj

0j
ja !=

=

=

U
=

=

= ≠

Finding a Safe Attack Position

Nodes are visible to otherother enemies

Finding a Safe Attack Position

• The set of good attack positions is the set
of nodes with LOS to the enemy
intersected with the inverse of the set of
nodes with LOS to all other enemies

I aaa
VVV =' =

Finding a Safe Attack Position

Safe nodes to shoot from

Ambush Points

• Unless cheating is employed, NPCs don’t
have full knowledge of the world

• May not know where all their enemies are
located

So:
• Find a good location to wait in, for attack
• Not all positions are created equal

Static Waypoint Evaluation

• To find a good set up position:
• Establish the exposure of all waypoints in a map

• Process can be done off line, before game is
even started

Static Waypoint Evaluation

Static Waypoint Evaluation

• A good location is one which:
• Has high exposure (visibility)

• Easy to locate enemies
• Easy to establish LOS to attack an enemy

• Has areas of low exposure nearby
• Can hide easily
• Can run for cover easily

Static Waypoint Evaluation

Pinch Points

• Observation of human players reveals that
experienced players anticipate the actions
of their opponents
• For example, if an enemy enters a room with

only a single exit an experienced player will
wait just outside the exit setting up an ambush

• Such “pinch points” can be pre-calculated
by analyzing the node graph

Pinch Points

To find pinch points:

For each node, N in the node graph with only two
neighbors:
• Temporarily eliminate node, N, from the graph, call its neighbors as

A & B
• If both A & B are connected to large regions, N is not a pinch

point, try another N
• Else attempt to find a path between A& B
• If path exists, N is not a pinch point, try another N
• Else call the node connected to the larger region, O (for outside)
• And the node connected to the smaller region, I (for inside)

Let’s do that again step-by-step:

Pinch Points

• For each node, N in the node graph with only two
neighbors:

Pinch Points

• Temporarily eliminate node, N, from the graph, call its
neighbors A & B

Pinch Points

• If both A & B are connected to large regions, N is not a
pinch point, try another N

Pinch Points

• Else attempt to find a path between A& B, if
exists try another N

Pinch Points

• El;se call the node connected to the larger region, O
(for outside)

• And the node connected to the smaller region, I (for
inside

Pinch Points

Once a pinch point has been located a good
ambush location is one which:

• Has a line of sight to the waypoint outside the
pinch location “O”

• Can’t be seen from the pinch location “N”

Pinch Points

• Nodes that have a line of sight to pinch
location “O”

• Can’t be seen from the pinch location “N”

• Good ambush locations is their intersection:

O
V

N
V

I NOP
VVV ==

Pinch Points

I = Inside Node

N = Pinch Point

0 = Outside Node

Pinch Points

Another Example:

Pinch Points

Result:

Pinch Points
Slightly altered version to find pinch points at the

end of hallways:

 For each node, N in the node graph with only two neighbors:
• Temporarily eliminate node, N, from the graph, call its neighbors as A & B
• If both A & B are connected to large regions, N is not a pinch point, try another N
• Attempt to find a path between A& B
• If path exists, N is not a pinch point, try another N
• Call the node connected to the larger region, O (for outside)
• Call the node connected to the smaller region, I (for inside)
• If O has only one other neighbor in addition to N

• Move N to O
• Move O to the other neighbor of the old O
• Repeat until O has more than one neighbors

Pinch Points

• If O only has one other neighbor in addition to N

Pinch Points

• Move N to O, Move O to other neighbor of old O
• Repeat till O has more than one neighbors

Pinch Points

• Move N to O, move O to other neighbor of old O
• Repeat till O has only one neighbors

Pinch Points

• Calculate good ambush locations:

I NOP
VVV ==

Pinch Points

I = Inside Node

N = Pinch Point

0 = Outside Node

Pinch Points

Final Example:

Pinch Points

• For each node, N in the node graph with only two
neighbors

Pinch Points

• Attempt to find a path between A& B
• If path exists, N is not a pinch point, try another N

Pinch Points
If NPCs organize into squads regions with multiple

pinch points can be employed:

 For each node, N1 in the node graph with only two neighbors:
• Temporarily eliminate node, N1, from the graph, call its neighbors as A & B
• If A & B are connected to large regions, N1 is not a pinch point, try another N
• Attempt to find a path between A&B
• While generating the path if a node with only two neighbors is found,

• Temporarily eliminate it and call it N2.
• Attempt to find a path between A&B
• If path exists, not a pinch point, try another N1

• Call the nodes connected to the smaller regions, I1 and I2 (for inside)
• Call the nodes connected to the larger regions, O1 and O2 (for outside)

Pinch Points

• While generating the path if a node with only two neighbors
is found

• Temporarily eliminate it and call it N2

Pinch Points

• Attempt to find a path between A & B
• If path exists N1 is not a pinch point, try another N1

Pinch Points

• Call the nodes connected to the smaller regions, I1 and I2 (for
inside)

• Call the nodes connected to the larger regions, O1 and O2 (for
outside)

Pinch Points

• Calculate good ambush locations:

II
2111
NNOP
VVVV =

II
2122
NNOP
VVVV =

Pinch Points

I = Inside Node

N = Pinch Point

0 = Outside Node

Tactical Analysis: Review

• Using the node graph to evaluate map
locations:
• Finding safe and dangerous locations
• Fining places from which to attack
• Finding location to set up sniper positions
• Finding pinch points

Embedded Environment
Information

• The world looks boring when NPCs are just standing around doing
nothing until engaged by the player

• No One Lives Forever 2 uses embedded environment information to
keep the NPCs busy (pioneered by The Sims?)

• Embedded environment information: objects tell NPCs how to
interact with them, NPCs react to objects as they get close

• Problem: unconstraint behavior resulted in unfavorable ones, e.g.,
an NPC wandering all over the level looking for something to do,
tasks are done out of order, etc.

Constraining NPC Behavior

Added constraints:
• ownership: an NPC owns a set of objects. NPCs do not

try to acquire and interact with objects own by others.
• dependency between objects: cannon must be loaded

before they can be fired.
• responsibility: objects tagged with class of NPC, NPCs

tethered to regions
• prioritization: aggressive behavior over investigative

behavior, over relaxed behavior; specific over general
behavior.

Embedded Info, Animation,
Sound

Embedded info can be used in path finding:
• Node graph is an example embedded environment

information
• embed in path how to jump over crevices or how to

open door (Soldiers of Fortune 2)
• illusion of coordination by “reserving” a path

Embedded Info, Animation,
Sound

Team AI behavior can be used with animation and sound to
add realism:

• request for cover or order split up
• choose a different posture or animation from team

members
• jumping, vaulting, rapelling based on embedded info

Embedding Animation

Emergent Behavior and
Squad AI

• Emergent behavior:
• behavior not hard-coded as FSM or decision tree
• global behavior emerges from interaction of elements

with simple local behavior
• more than the sum of individual behavior

• Pros: more scalable, less predictable, not scripted
• Cons: unintended behavior, local rules hard to

define

• Example: flocking

Squad/Team AI
Centralized:

• leader receives info, issues order
• complex maneuvers can be planned and coordinated
• cannot easily accommodate the strengths and needs of individual

members

Distributed:
• squad maneuvers as emergent behavior
• simple extensions to individual AI
• robust against members being “taken out”
• weak at maneuvers requiring tight coordination
• examples: Half-Life, No One Lives Forever 2

Distributed Squad AI

Each member publishes:
• state: conscious, unconscious
• intention: “I'm moving to position (x, y, z)”
• observation: “hostile at (x, y, z)”

Action selection by:
• situation of team mates
• threats to team
• own states

Fire&Move: Solo vs. Squad

Example: Squad Assault
Local behavior: fire&move FSM, considering:
• Avoidance: prevent blocking other team member's line-of-fire
• Cohesion: maintain team cohesion, stay within audible range,

maintain line-of-sight to other members
• Separation: spread-out, prevent becoming a bunched-up target
• stay close to cover
• stay away from enemy's line-of-fire
• take weapon capabilities into account
• fire&move FSM

Squad Assault
Each member knows its own:
• state
• position
• claimed destination position
• line-of-fire

and enemy's:
• last known position and state
• predicted position and state
• line-of-fire
• weapon damage radius
• squad members engaging this hostile
• squad members able to observe this hostile

Squad Assault

Individualizing behavior:
• riflemen move quick and often, to close in on the hostile
• machine gunners are slowed by load, deliver support

fire from a rather static position and need cover
• snipers engage enemy from a distance, need clear line-

of-fire and good cover
• wounded or reloading members need cover

Problems with Emergent
Behavior

Conflicts in path and position selections, members bumping
into each other

Solution: prioritize member based on
• time to destination (shorter first)
• urgency (need for cover)
• strength of weapon (blast away)

No good position within range of search
Solution: randomly increase range of search, added

benefits: flanking behavior, more varied behavior

Problems with Emergent
Behavior

It's not always obvious what local behavior is needed to
achieve certain global behavior, e.g., how to design
squad ambush or covering pull-back?

Corollary: there could be some unfavorable, unintended
behavior

Centralized Squad Attack
Different styles:
• authoritarian: orders must be obeyed

• pro: allows for individual suicide mission for “the greater good”
• con: local details could be overlooked by squad leader

• coaching: each member assigned tasks that they execute to their
best ability (or not)
• squad member may not have the larger picture to know what's best for

the squad

• mixed:
• authoritarian with early negative feedback
• annotate coaching tasks with value
• rule-of-engagement: switches between the two based on situation

AI in First-Person Shooter
Games

Quake III Arena

• Released in 1999 by id Software
• Designed to be a multiplayer only game
• The player battles computer-controlled

opponents, or bots
• Bots developed by Jan Paul van

Waveren

Quake III Bot AI

• FSM based – Uses a stack for short-term goals
• Use Fuzzy Logic for some decision making

• Collecting weapons and armor
• Choosing a weapon for combat

• Fuzzy Relations were selected using Genetic
Algorithms

• Each bot has a data file containing weapon
preferences and behavior-controlling variables

Bot Network

Quake III Bot Navigation

• AAS (Area Awareness System)
• Level is subdivided into convex hulls that contain

no obstacles
• Connections between areas are formed

Bot Chatting

• Deathmatch
• Not much more than a fun extra

• Team-Play
• Bots can follow orders to defend, attack, escort
• Bots will take ‘Team Leader’ position if player

doesn’t
• Team Leader delegates tasks to bots and players

Bot Input

• Bots simulate human input
• 90 degree FOV
• fog and the invisibility powerup impact vision

• Bots use sound to detect enemies

Half-Life

• Released by Valve Software in 1998
• Built using the Quake/Quake 2 engines
• AI uses a “schedule driven state machine”

Story-Based Game

• Half-Life is a plot-driven game, so the AI must
further the story

• NPC’s aid player throughout game, but are rarely
essential

• Scripted sequences immerse the player in the
story and create sense of importance

Scripting

• Scenes are built inside levels using triggers
and movement nodes

• Examples
• Security guards or scientists give player

information about his goals
• Battles between aliens and Marines
• Scientist panics and runs into tripmines

Thief

• Developer - Looking Glass
• Publisher - Eidos interactive
• Revolutionary “Dark Engine"
• Based on stealth
• Released November 11th, 1998

“Dark Engine”

• Lightly scripted game
• Specifically single-player
• Multi-state sense system
• Decision state machines
• Centers around the

system's output

• Published - Ubi Soft Entertainment
• Greg Stelmack, lead engineer
• Development - Red Storm Entertainment
• Realistic combat battlefield game
• Released November 13th, 2001

Ghost Recon AI Technique

• A lot of scripting for individual missions
• Enemy and team units use FSM’s
• Modifiable hierarchical commands
• Local navigation and pathfinding (causes

some hang-ups small environmental
details)

Ghost Recon Unit Control

• Control five other
teammates

• Tactical overlay map
• Set team

engagement
strategy

• Units respond to
other unit actions

Ghost Recon Gameplay Focus

• Realistic military features
• Stealth and avoidance add new aspect to AI
• Both enemies and friendlies must have

heightened senses of awareness
• “Gameplay rules all.” - Greg Stelmack

Unreal

• Epic Games – Unreal Engine
• Steve Polge, lead programmer at epic
• Digital Extremes – Gameplay depth and design
• Very fast multiplayer FPS
• Large emphasis on team play

Unreal Scripting

• UnrealScript much like
Java/C++

• Scripting used to control
specific Bot actions

• Every respawned Bot
checks script flag

Unreal Pathfinding

• Based upon the common
pathnode technique for
navigation

• Uses a pre-computed data
structure for guiding movement

• Complex algorithm-controlled
assemblage of linked lists,
Navigation Points, and Binary
Space Partitioning (BSP)
collision data

Unreal Bot Combat

• AI uses states heavily
• Several triggers that determine Bot’s actions
• “Type” of Bot determines fighting style
• Accuracy and speed factor into Bot’s

difficulty level
• Fun factor heavily influences Bot strategy

Unreal Team Play

• Incorporates several
team oriented games:
• Team Deathmatch
• Capture the flag
• Bombing run
• Double domination

• Hierarchical AI system

• Player controlled
team

• Bots have numerous
types of flocking
patterns

• Team bots are
mediocre, while
enemy bots are
excellent

References
• http://www.pcgamer.com/eyewitness/eyewitness_2002-09-

18.html
• http://udn.epicgames.com/
• http://www.unrealtournament2003.com/
• http://www.eidosinteractive.com/gss/legacy/thief/
• http://ai.eecs.umich.edu/people/laird/gamesresearch.html/
• ftp://ftp.kbs.twi.tudelft.nl/pub/docs/MSc/all/Waveren_Jean-

Paul_van/thesis.pdf
• http://www.gamasutra.com/features/19991210/birdwell_pfv.

htm

