
Binary Space Partitioned Trees

John E. Laird



Motivation
 Want to find fast, correct method for ordering

polygons in the Painters algorithm
• Avoid the five checks of painters algorithm
• Preprocessing to determine the split planes

 Create a binary tree that partitions space.
• Can use it to find ordering for drawing polygons.
• Will be << n^2 for rendering

 Technique used in Doom, Quake, Descent, ...



Assumptions
 Examples will be 2D but this generalizes to 3D

 Works best for static information
• Good for map structures and even monster structure
• Gets tricky if topography can change a lot

 Can require significant space at runtime
• Must be managed efficiently to avoid cache problems



General Idea
 Recursively divide space into pairs of regions

• Stop when regions are “atomic”
– Doesn’t matter which order walls are drawn no matter where

you are in the space: convex

• Builds up a binary tree

 When rendering, traverse tree depth-first, always
first rendering region that you are not in
• This does the right thing!

!



BSP Tree Dividing Issues
 Want to maintain a balanced tree if possible

 Want to minimize splits of existing walls
• If divider crosses wall, wall must be split into two walls

 Keep dividers orthogonal to principle axes
• Simplifies math with splits being more likely to be

integer values.



Picking a Divider: Key Question
 Pick on coincident with a wall

• Less likely to split walls
 Pick 1% of existing walls, but at least 10

• Evaluate based on simple calculation and pick best
# unbalanced walls +
15 * # splits +
5 if not on principle axis



Example: Step 1

1



Example: Step 2

1 2



Example: Step 3

1 2

3 

A 

B 

C 

D 
A B C D 

1 

2 3 



Rendering
 To start with, all we care about ordering of

rendering
 Not going to worry about line of sight or

orientation of viewer

 Depth-first traversal, always visiting nodes on
opposite side of divisor from current node.
• Render space when atomic



1 2

3 

A 

B 

C 

D 
A B C D 

1 

2 3 

Rendering
 Go to node 2 (because C is right of divider 1)
 Go to A (because C is right of 2)
 Render A
 Render B
 Go to 3
 Go to D
 Render D
 Render C



Observations
 Will work very well with walls that are on x, y

axes.
• Might be worthwhile to have as basis for room dividers
• Other angles can be used to fill in outside of rooms.

 Depth will be related to log of # of concave areas



Inverted Painters: Front-to-Back
 Problem with Back-to-Front is lots of “over-draw”

• Set same pixel over and over
• Expensive because of lighting and texture calculations

 Front-to-back can avoid this
• First draw front rooms first

– Keep track of which pixels are filled in
• Only draw pixels in back rooms that haven’t been filled in
• Stop completely when all pixels are filled in

– Dynamically cuts off processing of rooms far away.



Front-to-Back: Field of View
 Don’t traverse a node if field of view completely

on other side of divider.

1 2

3 

A 

B 

C 

D 



Front-to-back Data Structure
 To hold data on filled in pixels: use linked list
 Holds ranged of filled in horizontal lines
 More compact, faster to access and initialize0

1

50

198
199

100 220

220100

50



Dynamic Modification of BSP
 Extremely expensive to dynamically recalculate

BSP if topology of game can arbitrarily change
 Can have pre-stored variants and swap in as

world changes
• Blow holes in walls - open doors

– Add subtree
• Different atomic regions

– Swap in

A B C 

1 

2 3 

A B C D 

1 

2 3 

 



3D Objects in BSP Trees
 Same idea, but render “outside” of object, not

“inside”.

 Can just drop in to existing BSP tree at the
bottom as a child of the atomic region it is in

 As 3D object moves, it changes where it is in
BSP tree



Conclusion
 Even with Z-buffers, BSP Trees are an important

tool for rendering static structures
 With front-to-back rendering, can eliminate

overdraw and greatly reduce polygons considered.


