
Computer Networks

Lectures	31:	
TCP	Congestion	Control	

What	is	Congestion?	

What	gives	rise	to	congestion?	
	
Resource	contention:	offered	load	is	
greater	than	system	capacity	
•  too	much	data	for	the	network	to	handle	
•  how	is	it	different	from	flow	control?	

Why	is	Congestion	Bad?	

Causes	of	congestion:		
•  packets	arrive	faster	than	a	router	can	forward	them	
•  routers	queue	packets	that	they	cannot	serve	immediately	

Why	is	congestion	bad?	
•  if	queue	overflows,	packets	are	dropped	
•  queued	packets	experience	delay	

A

B

packet	transmitted	(delayed)	

packets	queued	(delay)	

free	buffer:	arriving	packets		
dropped	(lost)	if	buffer	overflows	

10 Mbps

10 Mbps

10 Mbps

Consequences	of	Congestion	

If	queueing	delay	>	RTO,	sender	retransmits	packets,	
adding	to	congestion	

Dropped	packets	also	lead	to	more	retransmissions	

If	unchecked,	could	result	in	congestion	collapse	
•  increase	in	load	results	in	a	decrease	in	useful	work	done	

When	a	packet	is	dropped,	“upstream”	capacity	
already	spent	on	the	packet	was	wasted	

Approaches	to	Congestion	

Free	for	all	
• many	dropped	(and	retransmitted)	packets	
• can	cause	congestion	collapse	
• the	long	suffering	wins	

Paid-for	service	
• pre-arrange	bandwidth	allocations	
• requires	negotiation	before	sending	packets	
• requires	a	pricing	and	payment	model	
• don’t	drop	packets	of	the	high-bidders	
• only	those	who	can	pay	get	good	service	

Dealing	with	Congestion	

Dynamic	adjustment	(TCP)	
• every	sender	infers	the	level	of	congestion	
• each	adapts	its	sending	rate	“for	the	greater	good”	
	

What	is	“the	greater	good”	(performance	objective)?	
• maximizing	goodput,	even	if	some	users	suffer	more?	
• fairness?		(what’s	fair?)	
	

Constraints:	
•  decentralized	control	
•  unlike	routing,	no	local	reaction	at	routers	
(beyond	buffering	and	dropping)	

•  long	feedback	time	
•  dynamic	network	condition:	connections	come	and	go	

System	capacity:	load	vs.	throughput:	
•  congestion	avoidance:	operate	system	at	“knee”	capacity	

•  congestion	control:	drive	system	to	near	“cliff”	capacity	

To	avoid	or	prevent	congestion,	
sender	must	know	system	capacity	
and	operate	below	it	
	

How	do	senders	discover	system	
capacity	and	control	congestion?	
• detect	congestion	
•  slow	down	transmission	

Jain	et	al.	

What	is	the	Performance	Objective?	

congestion	
collapse	

increase	in	load	
that	results	in	a	
decrease	in	
useful	work	
done,	increase	
in	response	
time	

Sender	Behavior	
How	does	sender	detect	congestion?	
• explicit	feedback	from	the	network?	
• implicit	feedback:	inferred	from	network	performance?	

How	should	the	sender	adapt?	
• explicit	sending	rate	computed	by	the	network?	
• sender	coordinates	with	receiver?	
• sender	reacts	locally?	
	

How	fast	should	new	
TCP	senders	send?	

?	

What	does	the	sender	see?	
What	can	the	sender	change?	

How	Routers	Handle	Packets	
Congestion	happens	at	router	links	
Simple	resource	scheduling:	FIFO	queue	and	drop-tail	

Queue	scheduling:	manages	access	to	bandwidth	
• first	in	first	out:	packets	transmitted	in	the	order	they	arrive	

	
	
	

	

Drop	policy:	manages	access	to	buffer	space	
• drop	tail:	if	queue	is	full,	drop	the	incoming	packet	

[Rexford]	

How	it	Looks	to	the	Sender	
Packet	delay	
• packet	experiences	high	delay	

Packet	loss	
• packet	gets	dropped	along	the	way	

How	does	TCP	sender	learn	of	these?	
• delay:	

•  round-trip	time	estimate	(RTT)	

•  loss	
•  retransmission	timeout	(RTO)	
•  duplicate	acknowledgments	

How	do	RTT	and	RTO	translate	to	system	capacity?	
• how	to	detect	“knee”	capacity?	
• how	to	know	if	system	has	“gone	off	the	cliff”?	

[Rexford]	

Jain et al.

What	can	Sender	Do?	
Upon	detecting	congestion	(packet	loss)	
• decrease	sending	rate	

But,	what	if	congestion	abated?	
• suppose	some	connections	ended	transmission	and	
• there	is	more	bandwidth	available	
• would	be	a	shame	to	stay	at	a	low	sending	rate	

Upon	not	detecting	congestion	
•  increase	sending	rate,	a	little	at	a	time	
• and	see	if	packets	are	successfully	delivered	

Both	good	and	bad	
• pro:	obviate	the	need	for	explicit	feedback	from	network	
• con:	under-shooting	and	over-shooting	cliff	capacity	

[Rexford]	

What	TCP	sender	does:	
•  probe	for	point	right	before	cliff	(“pipe	size”)	
•  slow	down	transmission	on	detecting	cliff		(congestion)	
•  fast	probing	initially,	up	to	a	threshold	(“slow	start”)	

•  slower	probing	after	threshold	is	reached	(“linear	increase”)	

Why	not	start	by	sending	
a	large	amount	of	data	
and	slow	down	only	
upon	congestion?	

TCP	Tahoe	

co
ng

es
tio

n
wi

nd
ow

 (c
wn

d)

packet	
dropped	

Discovering	System	Capacity	

Self-Clocking	TCP	
TCP	uses	cumulative	ACK	for	flow	control	and	
retransmission	and	congestion	control	

TCP	follows	a	so-called	“Law	of	Packet	Conservation”:	
Do	not	inject	a	new	packet	into	the	network	until	a	
resident	departs	(ACK	received)	

Since	packet	transmission	is	timed	by	receipt	of	ACK,	
TCP	is	said	to	be	self-clocking	

receiver

receiver

[Stevens]	

TCP	Congestion	Control	
Sender	maintains	a	congestion	window	(cwnd)	
• to	account	for	the	maximum	number	of	bytes	in	transit	
•  i.e.,	number	of	bytes	still	awaiting	acknowledgments	

Sender’s	send	window	(wnd)	is		
wnd = MIN(rwnd, floor(cwnd))	
• rwnd:	receiver’s	advertised	window	

•  initially	set	cwnd	to	1	MSS,	never	drop	below	1 MSS

•  increase	cwnd	if	there’s	no	congestion	(by	how	much?)	
•  exponential	increase	up	to	ssthresh	(initially	64	KB)	
•  linear	increase	afterwards	

• on	congestion,	decrease	cwnd	(by	how	much?)	

• always	struggling	to	find	the	right	transmission	rate,	
just	to	the	left	of	cliff	

TCP	Slow-Start	

Host	A	

one	segment	

R
T
T
	

Host	B	

time	

two	segments	

four	segments	

Jacobson	and	Karels	

When	connection	begins,	increase	rate	
exponentially	until	first	loss	event:	
•  double	cwnd	every	RTT	(or:	increased	by	

1	for	every	returned	ACK)	
⇒  really,	fast	start,	but	from	a	low	base,	vs.	starting	

with	a	whole	receiver	window’s	worth	of	data	as	
TCP	originally	did,	without	congestion	control	

Jacobson	&	Karels	

Increasing	cwnd
Probing	the	“pipe-size”	(system	capacity)	in	two	phases:	
1.  slow-start:	exponential	increase	

	

while (cwnd <= ssthresh) {
 cwnd += 1
} for every returned ACK
	

OR:	cwnd	*=	2	for	every	cwnd-full	of	ACKs	

2.  congestion	avoidance:	linear	increase	
	

while (cwnd > ssthresh) {
 cwnd += 1/floor(cwnd)
} for every returned ACK	

	

OR:	cwnd	+=	1	for	every	cwnd-full	of	ACKs	

TCP	Slow	Start	Example

Stevens

pipe	full	

Dealing	with	Congestion
Once	congestion	is	detected,	

•  how	should	the	sender	reduce	its	transmission	rate?	

•  how	does	the	sender	recover	from	congestion?	
	

Goals	of	congestion	control:	

1.  Efficiency:	resources	are	fully	utilized	

2.  Fairness:	if	k	TCP	connections	share	
the	same	bottleneck	link	of	
bandwidth	R,	each	connection	
should	get	an	average	rate	of	R/k

TCP	connection	1

bottleneck	
router	
capacity	R

TCP		connection	2

D. -M. Chiu, R. Jain / Congestion Avoidance in Computer Networks

class ought to have the equal share of the bot-

tleneck. Thus, a system in which x i (t) = x j (t) V i, j

sharing the same bottleneck is operating fairly. If

all users do not get exactly equal allocations, the

system is less fair and we need an index or a

function that quantifies the fairness. One such

index is [6]:

Fairness: F (x) - (Ex ')2
n(r ;i) "

This index has the following properties:

(a) The fairness is bounded between 0 and 1 (or

0% and 100%). A totally fair allocation (with

all xi 's equal) has a fairness of 1 and a

totally unfair allocation (with all resources

given to only one user) has a fairness of 1 / n

which is 0 in the limit as n tends to oo.

(b) The fairness is independent of scale, i.e.,

unit of measurement does not matter.

(c) The fairness is a continuous function. Any

slight change in allocation shows up in the

fairness.

(d) If only k of n users share the resource

equally with the remaining n - k users not

receiving any resource, then the fairness is

k / n .

For other properties of this fairness function, see

[61.

(3) Distributedness: The next requirement that

we put on the control scheme is that it be distrib-

uted. A centralized scheme requires complete

knowledge of the state of the system. For example,

we may want to know each individual user's de-

mand or their sum. This information may be

available at the resource. However, conveying this

information to each and every user causes consid-

erable overhead, especially since a user may be

using several resources at the same time. We are

thus primarily interested in control schemes that

can be implemented in real networks and, there-

fore, we assume that the system does the mini-

mum amount of feedback. It only tells whether it

is underloaded or overloaded via the binary feed-

back bits. Other information such as Xsoal and the

number of users sharing the resource are assumed

to be unknown by the users. This restricts the set

of feasible schemes. We, therefore, describe the set

of feasible schemes with and without this restric-

tion.

Goal

Total

load on

the

network

~ e _ _ ~ C Responsiveness

~ oothness

Time

Fig. 3. Responsiveness and smoothness.

(4) Convergence: Finally we require the control

scheme to converge. Convergence is generally

measured by the speed with which (or time taken

till) the system approaches the goal state from any

starting state. However, due to the binary nature

of the feedback, the system does not generally

converge to a single steady state. Rather, the sys-

tem reaches an "equil ibrium" in which it oscillates

around the optimal state. The time taken to reach

this "equilibrium" and the size of the oscillations

jointly determine the convergence. The time de-

termines the responsiveness, and the size of the

oscillations determine the smoothness of the con-

trol. Ideally, we would like the time as well as

oscillations to be small. Thus, the controls with

smaller time and smaller amplitude of oscillations

are called more responsive and more smooth, re-

spectively, as shown in Fig. 3.

1.5. Outline of this Paper

In this paper, we develop a simple and intuitive

methodology to explain when and why a control

converges. We address the following questions:

What are all the possible solutions that converge to

efficient and fair states? How do we compare those

controls that converge?

The paper is organized as follows. In Section 2

we will characterize the set of all linear controls

that converge and, thus, identify the set of feasible

controls. Then we narrow down the feasible set to

a subset that satisfies our distributedness criterion.

These subset still includes controls that have un-

acceptable magnitudes of oscillation or those that

converge too slowly. Then in Section 3, we discuss

Chiu	&	Jain	

Goals	of	Congestion	Control
3.  Responsiveness:	fast	convergence,	

quick	adaptation	to	current	
capacity	

4.  Smoothness:	little	oscillation	
•  larger	change-step	increases	
responsiveness	but	decreases	
smoothness	

5.  Distributed	control:	
no	(explicit)	coordination	
between	nodes	

	

Guideline	for	congestion	control	(as	in	routing):	
be	skeptical	of	good	news,	react	fast	to	bad	news

Adapting	to	Congestion
By	how	much	should	cwnd	(w)	be	changed?	
Limiting	ourselves	to	only	linear	adjustments:	
• increase	when	there’s	no	congestion:	w’ = biw +ai
• decrease	upon	congestion:	w’ = bdw +ad

Alternatives	for	the	coefficients:	
1.  Additive	increase,	additive	decrease:	

ai > 0, ad < 0, bi = bd = 1
2.  Additive	increase,	multiplicative	decrease:	

ai > 0, bi = 1, ad = 0, 0 < bd < 1
3.  Multiplicative	increase,	additive	decrease:	

ai = 0, bi > 1, ad < 0, bd = 1
4.  Multiplicative	increase,	multiplicative	decrease:	

bi > 1, 0 < bd < 1, ai = ad = 0

6 D.-M. Chiu, R. Jain / Congestion Avoidance in Computer Networks

how to find the subset of feasible distributed

controls that represent the optimal trade-off of

responsiveness and smoothness, as we defined in

convergence. In Section 4, we discuss how the

results extend to nonlinear controls. And in the

last section we summarize the results and discuss

some of the practical considerations (such as sim-

plicity, robustness, and scalability).

2. Feasible Linear Controls

2.1. Vector Representation of the Dynamics

In determining the set of feasible controls, it is

helpful to view the system state transitions as a

trajectory through an n-dimensional vector space.

We describe this method using a 2-user case, which

can be viewed in a 2-dimensional space.

As shown in Fig. 4, any 2-user resource al-

location {Xl(t), x 2 (t) } Can be represented as a

point (x 1, x2) in a 2-dimensional space. In this

figure, the horizontal axis represents allocations to

user 1, and the vertical axis represents allocations

to user 2. All allocations for which x I + x 2 = Xgoa l

are efficient allocations. This corresponds to the

straight line marked "efficiency line". All al-

locations for which x 1 = x 2 are fair allocations.

This corresponds to the straight line marked "fair-

ness line". The two lines intersect at the point

(X goal/2, Xgo~/2) that is the optimal point. The

goal of control schemes should be to bring the

l Equi-

Fairness Fairness

User ~ L m ~ Line

2's ~ ~ / /

Alloc-] ~ / / O v e r l o a d

User l ' s Allocation xt

Fig. 4. Vector representation of a two-user case.

system to this point regardless of the starting

position.

All points below the efficiency line represent an

"underloaded" system and ideally the system

would ask users to increase their load. Consider,

for example, the point x 0 = (xl0, x20). The ad-

ditive increase policy of increasing both users'

allocations by a~ corresponds to moving along a

45 ° line. The multiplicative increase policy of

increasing both users' allocations by a factor b I

corresponds to moving along the line that con-

nects the origin to the point. Similarly, all points

above the efficiency line represent an "overloaded"

system and additive decrease is represented by a

45 ° line, while multiplicative decrease is rep-

resented by the line joining the point to the origin.

The fairness at any point (x 1, x2) is given by

(Xl + x2) 2
Fairness -

2 (x 2 + x22) "

Notice that multiplying both allocations by a fac-

tor b does not change the fairness. That is,

(bx 1, bx2) has the same fairness as (x 1, x2) for all

values of b. Thus, all points on the line joining a

point to origin have the same fairness. We, there-

fore, call a line passing through the origin a

"equi-fairness" line. The fairness decreases as the

slope of the line either increases above or de-

creases below the fairness line.

Figure 5 shows a complete trajectory of the

two-user system starting from point x 0 using an

additive increase/multiplicative decrease control

policy. The point x 0 is below the efficiency line

and so both users are asked to increase. They do

so additively by moving along at an angle of 45 o.

This brings them to x~ which happens to be above

the efficiency line. The users are asked to decrease

and they do so multiplicatively. This corresponds

to moving towards the origin on the line joining

x 1 and the origin. This brings them to point x 2,

which happens to be below the efficiency line and

the cycle repeats. Notice that x 2 has higher fair-

ness than x 0. Thus, with every cycle, the fairness

increases slightly, and eventually, the system con-

verges to the optimal state in the sense that it

keeps oscillating around the goal.

Similar trajectories can be drawn for other con-

trol policies. Although not all control policies con-

verge. For example, Fig. 6 shows the trajectory for

the additive increase/additive decrease control Chiu & Jain

R

R

Resource	Allocation
View	resource	allocation	as	a	trajectory	through	an	
n-dimensional	vector	space,	one	dimension	per	user	
	
A	2-user	allocation	trajectory:	
•  x1, x2:	the	two	users’	allocations	

•  Efficiency	Line:	x1 + x2 = xi = R
•  below	this	line,	system	is	under-loaded	
•  above,	overloaded	

•  Fairness	Line:	x1 = x2

•  Optimal	Point:	efficient	and	fair	

•  Goal	of	congestion	control:	
to	operate	at	optimal	point	

6 D.-M. Chiu, R. Jain / Congestion Avoidance in Computer Networks

how to find the subset of feasible distributed

controls that represent the optimal trade-off of

responsiveness and smoothness, as we defined in

convergence. In Section 4, we discuss how the

results extend to nonlinear controls. And in the

last section we summarize the results and discuss

some of the practical considerations (such as sim-

plicity, robustness, and scalability).

2. Feasible Linear Controls

2.1. Vector Representation of the Dynamics

In determining the set of feasible controls, it is

helpful to view the system state transitions as a

trajectory through an n-dimensional vector space.

We describe this method using a 2-user case, which

can be viewed in a 2-dimensional space.

As shown in Fig. 4, any 2-user resource al-

location {Xl(t), x 2 (t) } Can be represented as a

point (x 1, x2) in a 2-dimensional space. In this

figure, the horizontal axis represents allocations to

user 1, and the vertical axis represents allocations

to user 2. All allocations for which x I + x 2 = Xgoa l

are efficient allocations. This corresponds to the

straight line marked "efficiency line". All al-

locations for which x 1 = x 2 are fair allocations.

This corresponds to the straight line marked "fair-

ness line". The two lines intersect at the point

(X goal/2, Xgo~/2) that is the optimal point. The

goal of control schemes should be to bring the

l Equi-

Fairness Fairness

User ~ L m ~ Line

2's ~ ~ / /

Alloc-] ~ / / O v e r l o a d

User l ' s Allocation xt

Fig. 4. Vector representation of a two-user case.

system to this point regardless of the starting

position.

All points below the efficiency line represent an

"underloaded" system and ideally the system

would ask users to increase their load. Consider,

for example, the point x 0 = (xl0, x20). The ad-

ditive increase policy of increasing both users'

allocations by a~ corresponds to moving along a

45 ° line. The multiplicative increase policy of

increasing both users' allocations by a factor b I

corresponds to moving along the line that con-

nects the origin to the point. Similarly, all points

above the efficiency line represent an "overloaded"

system and additive decrease is represented by a

45 ° line, while multiplicative decrease is rep-

resented by the line joining the point to the origin.

The fairness at any point (x 1, x2) is given by

(Xl + x2) 2
Fairness -

2 (x 2 + x22) "

Notice that multiplying both allocations by a fac-

tor b does not change the fairness. That is,

(bx 1, bx2) has the same fairness as (x 1, x2) for all

values of b. Thus, all points on the line joining a

point to origin have the same fairness. We, there-

fore, call a line passing through the origin a

"equi-fairness" line. The fairness decreases as the

slope of the line either increases above or de-

creases below the fairness line.

Figure 5 shows a complete trajectory of the

two-user system starting from point x 0 using an

additive increase/multiplicative decrease control

policy. The point x 0 is below the efficiency line

and so both users are asked to increase. They do

so additively by moving along at an angle of 45 o.

This brings them to x~ which happens to be above

the efficiency line. The users are asked to decrease

and they do so multiplicatively. This corresponds

to moving towards the origin on the line joining

x 1 and the origin. This brings them to point x 2,

which happens to be below the efficiency line and

the cycle repeats. Notice that x 2 has higher fair-

ness than x 0. Thus, with every cycle, the fairness

increases slightly, and eventually, the system con-

verges to the optimal state in the sense that it

keeps oscillating around the goal.

Similar trajectories can be drawn for other con-

trol policies. Although not all control policies con-

verge. For example, Fig. 6 shows the trajectory for

the additive increase/additive decrease control Chiu & Jain

R

R

Additive/Multiplicative	Factors
Additive	factor:	adding	the	same	amount	to	both	
users’	allocation	moves	an	allocation	along	a	45º	line	
	
Multiplicative	factor:		
multiplying	both	users’		
allocation	by	the	same	factor		
moves	an	allocation	on	a	line		
through	the	origin	(the		
“equi-fairness,”	or	rather,		
“equi-unfairness”	line)	
•  the	slope	of	this	line,	not	any	
position	on	it,	determines	fairness	

AIMD
Additive	Increase,	
Multiplicative	Decrease:	
system	converges	to	an	
equilibrium	near	the		
Optimal	Point	D.-M. Chiu, R. Jain / Congestion Avoidance in Computer Networks 7

User

2's

Alloc-

ation

x2

Fairness

Line

x l /"
/

/

/ /

/,,;):,;
] l l l /

/ I / 1
I l l l /

I I l l
I I I 1 ~

, ~5~' \ E f f i c i e n c y Line
I i / /

I i / / ~ /¢,

User l's Allocation xl

Fig. 5. Additive Increase/Multiplicative Decrease converges to the optimal point.

ID-

policy starting from the position x 0. The system

keeps moving back and forth along a 45 ° line

through x 0. With such a policy, the system can

converge to efficiency, but not to fairness. The
conditions for convergence to efficiency and fair-

ness are derived algebraically in the next section.

User

2's
Alloc-

ation

x2

] The operating

] point keeps

/ oscillating along , .
\ / this line I ~ awness

/ Line

\ / / ,,"

~ N ~ l / / j

fx0

/ j / j ~

/ ~ f f i c t e n e y Line

f

User l's Allocation x l

Fig. 6. Additive Increase/Additive Decrease does not converge.

Chiu & Jain

R

R

Additive	Increase,		
Additive	Decrease:	

system	converges	to	
efficiency,	but	not	to	
fairness	

D.-M. Chiu, R. Jain / Congestion Avoidance in Computer Networks 7

User

2's

Alloc-

ation

x2

Fairness

Line

x l /"
/

/

/ /

/,,;):,;
] l l l /

/ I / 1
I l l l /

I I l l
I I I 1 ~

, ~5~' \ E f f i c i e n c y Line
I i / /

I i / / ~ /¢,

User l's Allocation xl

Fig. 5. Additive Increase/Multiplicative Decrease converges to the optimal point.

ID-

policy starting from the position x 0. The system

keeps moving back and forth along a 45 ° line

through x 0. With such a policy, the system can

converge to efficiency, but not to fairness. The
conditions for convergence to efficiency and fair-

ness are derived algebraically in the next section.

User

2's
Alloc-

ation

x2

] The operating

] point keeps

/ oscillating along , .
\ / this line I ~ awness

/ Line

\ / / ,,"

~ N ~ l / / j

fx0

/ j / j ~

/ ~ f f i c t e n e y Line

f

User l's Allocation x l

Fig. 6. Additive Increase/Additive Decrease does not converge.
Chiu & Jain

R

R

It	can	be	shown	that	only	AIMD	
takes	system	near	optimal	point	 TCP	Congestion	Recovery

Once	congestion	is	detected,	
•  by	how	much	should	sender	decrease	cwnd?	
•  how	does	sender	recover	from	congestion?	
•  which	packet(s)	to	retransmit?	
•  how	to	increase	cwnd	again?	

	
First,	reduce	the	exponential	increase	
threshold	ssthresh	=	cwnd/2
	
TCP	Tahoe:	
•  retransmit	using	Go-Back-N	
•  reset	cwnd=1
•  restart	slow-start	

TCP	Tahoe	

co
ng

es
tio

n
wi

nd
ow

 (c
wn

d)

packet	
dropped	

Fast	Retransmit
Motivation:	waiting	for	RTO	is	too	slow	

TCP	Tahoe	also	does	fast	retransmit:	
•  with	cumulative	ACK,	receipt	of	packets	following	a	lost	
packet	causes	duplicate	ACKs	to	be	returned	

•  interpret	3	duplicate	ACKs	as	an	implicit	NAK	

•  retransmit	upon	receiving	3	dupACKs,	i.e.,	on	receipt	of	the	
4th	ACK	with	the	same	seq#,	retransmit	segment	

•  why	3	dupACKs?		why	not	2	or	4?	

With	fast	retransmit,	TCP	can	retransmit	after	1	RTT	
instead	of	waiting	for	RTO	

Fast	Retransmit	Example

[Hoe]

3	dupACKs	 retransmit	on	
4th	dupACK	

ACKed	seq#	

rwnd

sent	segments	

time	(secs)	

sender’s	
wnd	

TCP	Tahoe	Recovers	Slowly
cwnd	re-opening	and	retransmission	of	lost	packets	
regulated	by	returning	ACKs	
•  duplicate	ACK	doesn’t	grow	cwnd,	so	TCP	Tahoe	must	wait	
at	least	1	RTT	for	fast	retransmitted	packet	to	cause	a	non	
duplicated	ACK	to	be	returned	

•  if	RTT	is	large,	Tahoe	re-grows	
cwnd	very	slowly	

1 RTT	

[Hoe]

TCP	Reno	and	Fast	Recovery
TCP	Reno	does	fast	recovery:	
•  current	value	of	cwnd	is	the	estimated	system	
(pipe)	capacity	
•  after	congestion	is	detected,	want	to	continue		
transmitting	at	half	the	estimated	capacity	

How?	
•  each	returning	ACK	signals	that	an	outstanding		
packet	has	left	the	network	

•  don’t	send	any	new	packet	until	half	of	the		
expected	number	of	ACKs	have	returned	

Fast	Recovery
1.  on	congestion,	retransmit	lost	
segment,	set	ssthresh	=	cwnd/2

2.  remember	highest	seq#	sent,	
snd_high;	and	remember	
current	cwnd,	let’s	call	it	pipe

3.  decrease	cwnd	by	half	
4.  increment	cwnd	for	every	
returning	dupACK,	incl.	the	3	
used	for	fast	retransmit	

5.  send	new	packets	(above	
snd_high)	only	when		
cwnd	>	pipe

6.  exit	fast-recovery	when	a	
non-dup	ACK	is	received	

7.  set	cwnd	=	ssthresh	+	1	
and	resume	linear	increase	 cwnd:	number	of	bytes	unACKed	

snd_high

pipe

cwnd/2
sshthresh+1

[Hoe]

Summary:	TCP	Congestion	Control	

• When	cwnd	is	below	ssthresh,	sender	in	slow-
start	phase,	window	grows	exponentially	

• When	cwnd	is	above	ssthresh,	sender	is	in	
congestion-avoidance	phase,	window	grows	linearly	

• When	a	3	dupACKs	received,	ssthresh	set	to	
cwnd/2	and	cwnd	set	to	new	ssthresh

•  If	more	dupACKs	return,	do	fast	recovery	

• Else	when	RTO	occurs,	set	ssthresh	to	cwnd/2	
and	set	cwnd	to	1	MSS	

TCP	Congestion	Control	Examples
TCP	keeps	track	of	outstanding	bytes	by	two	variables:	
1. snd_una:	lowest	unACKed	seq#,		

i.e.,	snd_una	records	the	seq#	associated	with	the	last	ACK	
2. snd_next:	seq#	to	be	sent	next	
Amount	of	outstanding	bytes:	
pipe	=	snd_next	-	snd_una	

Scenario:	
•  1	byte/pkt	
•  receiver	R	takes	1	transmit	time	to	return	an	ACK	
•  sender	S	sends	out	the	next	packet	immediately	upon	
receiving	an	ACK	
•  rwnd = ∞
•  cwnd = 21,	in	linear	increase	mode	
•  pipe = 21	

Factors	in	TCP	Performance

•  RTT	estimate	
•  RTO	computation	
•  sender’s	sliding	window	(wnd)	
•  receiver’s	window	(rwnd)	
•  congestion	window	(cwnd)	
•  slow-start	threshold	(ssthresh)	
•  fast	retransmit	
•  fast	recovery	

TCP	Variants
Original	TCP:		
•  loss	recovery	depends	on	RTO	

TCP	Tahoe:	
•  slow-start	and	linear	increase	

•  interprets	3	dupACKs	as	loss	signal,	
but	restart	sslow-start	after	fast	retransmit	

TCP	Reno:	
•  fast	recovery,	i.e.,	consumes	half	returning	dupACKs	
before	transmitting	one	new	packet	for	each	
additional	returning	dupACKs	

•  on	receiving	a	non-dupACK,	resumes	linear-increase	
from	half	of	old	cwnd	value	

Summary	of	TCP	Variants
TCP	New	Reno:	
•  implements	fast	retransmit	phase	whereby	a	partial	ACK,	a	
non-dupACK	that	is	<	snd_high	(seq#	sent	before	
detection	of	loss),	doesn’t	take	TCP	out	of	fast	recovery,	
instead	retransmits	the	next	lost	segment	

•  only	non-dupACK	that	is	≥	snd_high	takes	TCP	out	of	fast	
recovery:	resets	cwnd	to	ssthresh+1	and	resumes	linear	
increase	

