
Computer Networks

Lecture	27:	

Error	Control	

Error	Control	

Errors	are	unavoidable,	caused	by	noise	on	channel:	

• electrical	interference,	thermal	noise,	cosmic	rays,	etc.	

Three	kinds	of	transmission	errors:	

1.  sent	signal	destroyed	(doesn’t	receive	data)	
2.  sent	signal	changed	(received	wrong	data)	

3.  spurious	signal	created	(received	random	data)	

Error	control:	receiver	detects	and	corrects	lost	or	

corrupted	data	

1.  error	detecting	code	
2.  error	correcting	code	(ECC)	or	

forward	error	correction	(FEC)	

Error	Control	

No	error	control	method	is	fool-proof	

Trade-offs	between	alternative	methods:	

•  complexity	of	info	computation,	

•  bandwidth	transmission	overhead,	and	

•  degree	of	protection	(#	of	bit	errors	that	
can	be	detected/corrected)	

	

Not	often	used	for	mostly	reliable	links,	e.g.,	fiber,	

but	useful	for	unreliable	links	such	as	wireless	

• also	used	at	the	transport	layer	
(the	Internet	is	an	unreliable	“link”)	

Field:	Information	Theory	

Introduction	to	Coding	Theory	

Fundamental	issues	in	information	and	coding	theory:	

1.  How	can	we	tell	when	data	(transmitted	or	stored)	has	been	

corrupted?	

2.  How	to	recover	the	original	data?	

Example	alternatives:	

• do	nothing:	loss	may	not	be	discernable,	e.g.,	concealed	by	

interpolation	

•  send/store	each	bit	100	times,	majority	value	accepted	as	

original	value	

• parity	bit:	append	one	single	parity	bit	at	the	end	of	message/

storage	

Introduction	to	Coding	Theory	

Main	tool	and	trade-off:	

• by	sending	additional,	redundant	information,	we	can	

detect,	and	perhaps	correct,	transmission	errors	

•  the	more	redundancy,	the	more	effective	in	error	detection/

correction,	but	the	less	efficient	in	bandwidth	usage	

General	idea:	

• sender	computes	some	info	from	data	

• sender	sends	this	info	along	with	data	

• receiver	does	the	same	computation	

and	compares	it	with	the	sent	info	

	

Examples	error	detecting	code:	

•  parity	check,	checksum,	cyclic	redundancy	check	(CRC)	

Transmit	extra	

(redundant)	

information	

Use	redundant	

information	to	

detect	errors	

Parity	Check	

• uses	an	extra	bit	(parity	bit)	for	error	checking	
• even	parity:	total	number	of	1	bits	(incl.	the	parity	bit)		
is	an	even	number	

• odd	parity:	total	number	of	1	bits	is	odd	
•  single-bit	parity	examples:	

0100101,	even-parity	bit	=
0101101,	even-parity	bit	=
• what	happens	when	an	error	is	detected?	

•  discard	data	and,	if	reliability	is	required,	have	sender	retransmit	

• problem:	cannot	detect	even	number	of	flipped	bits	

Checksum	

Sender	treats	data	as	a	sequence	of	16-bit	integers	and	
computes	their	(1’s	complement)	sum	

• transmit	the	sum	along	with	the	packet	

• example:	16-bit	checksum	

•  the	string	“Hello	world.”	has	an	ASCII	representation	of	

[48 65 6C 6C 6F 20 77 6F 72 6C 64 2E]	
•  checksum:	4865 + 6C6C + 6F20 + 776F + 726C + 642E + carry = 71FC

Advantages:	

•  ease	of	computation	(only	requires	addition)	

•  small	amount	of	additional	info	to	carry:	

one	additional	16-bit	or	32-bit	integer	

Used	by	TCP	and	UDP	

Internet	Checksum	Example	

One’s	complement	arithmetic:	when	adding	numbers,	a	

carryout	from	the	most	significant	bit	is	added	back	to	the	

result	

Example:	add	two	16-bit	integers	
	

	

	

	

	

	

	

Incremental	update	of	checksum	[RFC1624]:	
~C’	=	(~C + m + ~m’),	m	a	16-bit	field	of	the	header	

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound	

1’s	complement	sum	

1’s	complement	of	sum	

(Internet	Checksum)	

Checksum:	Disadvantage	

With	16-bit	checksum,	1	in	64K	corrupted	packet	will	

not	be	detected	(probability	of	a	random	16-bit	
number	matching	the	checksum	of	a	corrupted	

packet	is	1/216
)	

	

⇒ under	current	Internet	conditions	(error	rate	etc.),	1	
corrupted	packet	is	accepted	in	in	every	300M packets!	

Measured	on	a	busy	NFS	server	

that	has	been	up	40	days	[Mogul92]:	

Layer	 #errors	detected	 ~#pkts	

ethernet	 (CRC) 446 1.7x108

IP	 14 1.7x108

UDP	 5 1.4x108

TCP	 350 3x107

Cyclic	Redundancy	Check	

Goal	of	any	error	detection/correction	code:	

maximize	probability	of	detecting	error	with	minimal	

redundant	info	

	

32-bit	CRC	protects	against	most	bit	errors	in	

messages	thousands	of	bytes	long,	also	used	in	

storage	systems	(CD,	DVD)	

	

CRC	is	based	on	finite	fields	math	

Cyclic	Redundancy	Check	

Consider	a	binary	message	as	a	representation	of	

an	n-degree	polynomial,	with	the	coefficient	of	

each	term	being	1	or	0	depending	on	the	bit	in	the	
message,	with	the	most	significant	(leftmost)	bit	

representing	the	highest	degree	term	

•  for	example:	1011	represents	
1x3 + 0x2 + 1x1 + 1x0 = x3 + x + 1

An m-bit	message	represents	a	polynomial	of m-1	
degree	

Polynomial	Arithmetic	

You	can	divide	one	such	polynomial	by	another	of	

lower	or	equal	degree	by	dividing	the	binary	

representation	of	the	polynomials,	e.g.,	to	divide	

x5+x3+x2+x by	x3+1,	divide	101110	by	1001	

Polynomial	arithmetic	is	done	using	modulo-2	
arithmetic,	with	no	carry	and	borrow:	

1+1 = 0+0 = 0 and 1+0 = 0+1 = 1,	e.g.,	

10011011 11110000 01010101
11001010 + 10100110 - 10101111 -
--------------- --------------- ---------------
01010001 01010110 11111010

	

Note	that	both	addition	and	subtraction	are	identical	to	XOR	

Constructing	CRC	

Let’s	call	the	polynomial	to	be	divided	T	and	the	divisor/
generator	polynomial G	

Let	t	be	the	number	of	bits	in	T	and	r +1	be	the	number	

of	bits	in	G,	t ≥ r +1	

Let’s	call	the	remainder	of	T/G,	R;	R	is	of	r	bits

Want:	the	polynomial	representing	the	message	(M,	

not	T,	and	not	the	message	itself)	to	be	exactly	divisible	

by	G	⇒	if	the	receiver	divides	the	message	by	G	and	

the	remainder	is	not	0,	the	message	is	corrupted	

Observe:	M = (T–R) is	exactly	divisible	by	G,	want M	

Constructing	CRC	

Let	D	be	the	message	to	be	sent,	e.g.,	D = 101110	

Construct	T	as	D•2r
,	i.e., D	shifted	left	by r	bits,†	

e.g.,	r = 3,	T =101110000	

Let	G = 1001,	compute	R,	the	remainder	

of	T/G,	by	doing	long-division	with	modulo-2	
arithmetic,	R =	011	

Construct	M = (T–R) = (D•2r – R) = (D•2r XOR R)�
=	101110011;	M	is	exactly	divisible	by	G

†
	Recall:	multiplying	a	number	by	2	is	the	same	as	shifting	it	left	by	1	bit	

How	to	Choose	G?	

Let	the	string	of	bit	errors	introduced	be	

represented	by	polynomial	E

Error	will	not	be	detected	only	if	T+E	is	
exactly	divisible	by	G

Want	G	that	makes	this	unlikely	

How	to	Choose	G?	

What’s	known:	

•  if	xr
	and	x0

	terms	have	non-zero	coefficients,		

G	can	detect	all	single-bit	errors	

• as	long	as	G	has	a	factor	with	at	least	3	terms,		

it	can	detect	all	double-bit	errors	

• as	long	as	G	contains	the	factor	(x+1),		
it	can	detect	any	odd	number	of	errors	

• G	can	detect	any	burst	(sequence	of	

consecutive)	errors	of	length	< r	bits	

Usually,	you	just	look	up	a	commonly	used	G
• Ethernet	uses	CRC-32	
• CRC-32’s	G:	100000100110000010001110110110111
• CRC-CCITT’s G:	10001000000100001	

CRC	Hardware	Implementation	

CRC	can	be	cheaply	implemented	in	hardware	by	

implementing	the	long-division	to	compute	R	as	a	
combination	of	linear	feedback	shift	register	(LFSR)	and	

XOR	gates,	representing	G:	

•  the	0-th	term	of	G	occupies	the	leftmost	bit	of	the	shift	registers	

•  each	XOR	gate	represents	a	modulo-2	addition	in	G
•  the	message	is	fed	into	the	circuit	most	significant	(leftmost)	bit	first	

•  each	bit	of	the	message	causes	the	current	content	of	the	shift	

registers	to	be	shifted	right	by	one	bit	

• when	the	message	is	exhausted,	the	shift	registers	contain	R
•  for	example,	computing	CRC	with	G = x2+1	can	be	implemented	as:	

Peterson	&	Davie	

Error	Correction	

Error	Correcting	Code	(ECC)	generally	requires	more	

redundant	bits	than	error	detection	

• known	in	networking	as	Forward	Error	Correction	(FEC);	

“forward”	because	error	correction	is	handled	“in	advance”	

before	errors	occur	

It	is	usually	cheaper	to	retransmit	corrupted	data	

than	to	transmit	redundant	data	at	all	times	

FEC	is	most	useful	when:	

1.  link	is	very	noisy,	e.g.,	wireless	link	

2.  retransmission	will	take	too	long,	e.g.,	

•  satellite	and	inter-planetary	communication	

•  deep	space	probe	transmission	

•  real-time	audio/video	streaming	(relatively	too	long)	

2D	Parity	Check	as	ECC	

• generates	both	a	horizontal	or	row	parity		

and	a	vertical	or	column	parity	

• both	parity	info	is	sent	to	receiver	
•  receiver	can	detect		
and	correct	single-bit	errors	

• problem:	cannot	detect		

even	number	of	flipped	bits	

Packet	Switched	Network	

Information	is	transported	the	same	way	as	cars	on	

freeways:	independent	data	streams	may	share	

resources	but	the	information	itself	is	separate	

playingwithmodels	 ericsson	

Network	Coding	

Instead	of	treating	data	in	discrete,	inviolable	

chunks,	network	nodes	may	recombine	several	

packets	into	one	or	more	output	packets	

	

	

	

	

Receipt	of	information	no	longer	means	receiving	

specific	packet	content	but	receiving	sufficient	

number	of	independent	packets	

netmit	

Linear	Network	Coding	

Several	packets	are	linearly	recombined	into	

one	or	more	output	packets,	where	addition	and	

multiplication	are	performed	over	a	finite/Galois	

field,	GF(2u)
• addition	is	XOR	

• multiplication	is	polynomial	multiplication	modulo	a	

chosen	irreducible	polynomial	over	GF(2)
•  can	be	very	efficiently	implemented	using	

bitwise	operations	or	2	log	table	lookups	
(see	http://www.cs.utsa.edu/~wagner/laws/FFM.html	

and	http://www.ee.unb.ca/cgi-bin/tervo/calc2.pl)	

Example:	Butterfly	Network	

Simplest	case:	S1	and	S2	want	to	send	to	R1	and	R2
• u = 1
• GF(2) = {0, 1}
• addition	is	XOR,	decoding	is	also	a	simple	XOR

Without	network	coding	 With	network	coding	

Use	Case:	Wireless	Network	

Without	network	coding	 With	network	coding	

In	the	simplest	case:	

• u = 1
• GF(2) = {0, 1}
• addition	is	XOR,	decoding	is	a	simple	XOR

Simple	XOR	Parity	Packet	

XOR	operation	across	n	packets	
• transmit	1	parity	packet	for	every	n	data	packets	
• if	1	in	n	packet	is	lost,	can	fully	recover	

Perkins	et	al.	

Simple	XOR	Parity	Packet	

DEMO	

Disadvantages:	

• delivery	to	upper-layer	must	wait	for	receipt	of	all	n+1	packets	
• can	fix	only	one	lost/corrupted	packet	
	

Tradeoff:	larger	n		
•  less	bandwidth	“wastage,”	but	

•  longer	wait	to	correct	error,	and	

•  higher	probability	that	2	or	more	packets	can	be	lost	

Also	based	on	polynomial	codes	over	finite	fields	

Good	for	correcting	burst	errors	

With	dedicated	hardware,	can	achieve	over	600	
Mbps	encoding/decoding	throughput	

Used	in	CD,	DAT,	DVD,	Blu-ray,	Compact	Flash,	

MPEG-2	TS,	DSL,	RAID,	WiMax,	DVB,	ATSC,	the	

Voyager,	Mars	Pathfinder,	Galileo,	Mars	Rover,	etc.	

For	more	info,	take	EECS	554	Intro	to	Digital	
Communication	and	Coding	or	read	Lin	and	Costello	

Reed-Solomon	Code	

A	(n, k, 2s+1)	code	has	
	

	

	

k-unit	message,	where	unit	is	usually	in	bit	or	byte	

n-unit	code	word	

2s-unit	parity	
can	detect	2s	errors	
can	correct	s	errors	
Generally	can	correct	α	erasures	and	β	errors	if	α+2β ≤ 2s

Polynomial-Based	Code	

k 2s

n

Polynomial	representation	over	GF(28):	
• message:	“hello”	
• ASCII	decimal:	104 101 108 108 111
• polynomial:	104x4 + 101x3 + 108x2 + 108x + 111

RS(20, 13)	code	over	GF(28)	:	13	(k)	message	bytes,	

7	(2s)	parity	bytes:	can	correct	up	to	3	errors	
• message:	“Hello world!\0”	

• code	word:	“Hello world!\08D13F4F94310E5”	

Reed-Solomon	Code	Example	

[Brown]	

Message:	

ALICE’S ADVENTURES IN WONDERLAND
Alice was beginning to get very tired of sitting by her sister
on the …

	

Using	RS(255, 223)	code	over	GF(28)	:	
visualize	each	byte	as	a	grayscale	pixel	such	that	

each	row	in	image	is	a	code	word;	message	is	

encoded	as:	

Reed-Solomon	Code	Example	

[Brown]	

Since	each	row	is	a	RS(255, 223)	code	word,	it	can	

handle	up	to	16	bytes	(or	pixels)	errors	per	row	

Each	of	the	following	still	decodes:	

Reed-Solomon	Code	Example	

[Brown]	

A.	Brown’s	slides:

http://www.cs.duke.edu/courses/spring11/cps296.3/

decoding_rs.pdf	

	

R.	Morelos-Zaragoza,	The	ECC	Page	and	source	code:	

http://www.eccpage.com	and	http://www.eccpage.com/rs.c	

	

Linux	code:	

http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/lib/

reed_solomon/reed_solomon.c	

	

Schifra	RS	code	library:		

http://www.schifra.com	

Reed-Solomon	Implementations	

