

Lecture 19: BGP Security

Security Goals for BGP

Secure message exchange between neighbors

- confidential BGP message exchange
- no denial of service

Validity of the routing information

- origin authentication • is the AP owned by the AS announcing it?
- AS path authentication • is the AS-Path the actual sequence of ASs traversed?
- AS path policy
 does the AS path adhere to the routing policies of each AS?

Correspondence of the forwarding path

• does the traffic follow the advertised AS path?

BGP Security Topics

We'll look at an *ad hoc* collection of potential attacks on BGP and an *ad hoc* collection of ways to protect against them

Topics:

- BGP session security
- Origin authentication
- AS path validity
- Secure BGP
- Data forwarding vulnerability
- State of the BGP

TCP and BGP Session

BGP session runs over TCP

- neighboring routers create a TCP stream
- BGP messages sent over TCP
- makes BGP vulnerable to attacks on TCP

Primary types of attacks

- against confidentiality: eavesdropping
- against integrity: tampering
- against infrastructure availability: denial-of-service

Primary means of defense

- message authentication or encryption
- limiting access to physical path between routers
- defensive filtering to block unexpected packets

Attacks Against Confidentiality

Eavesdropping

 monitoring messages on BGP session by tapping the link(s) between the neighbors

Reveals sensitive information

- inference of business relationships
- analysis of network stability

Hard because

- difficult to tap link
- often, eBGP session traverses just one link
- and it may be hard to get access to the link
- encryption may obscure message contents
 BGP neighbors may run BGP over IPSec

physical link

Attacking Message Integrity

Tampering

- man-in-the-middle tampers with the messages
- insert, delete, modify, or replay messages

Leads to incorrect BGP behavior

- delete: neighbor doesn't learn of new route
- insert/modify: neighbor learns bogus route

Hard because

- getting in-between the two routers is hard
- use of authentication (signatures) or encryption
- spoofing TCP packets the right way is not trivial
- getting past source-address packet filters
- generating the right TCP sequence number

Denial-of-Service Attacks (I)

Overload the link between the routers

- to cause packet loss and delay
- disrupting the performance of the BGP session

Relatively easy to do

- can send traffic between end hosts
- as long as the packets traverse the link
- (which you can figure out from traceroute)

Easy to defend

- give higher priority to BGP packets
- e.g., by putting packets in separate queue

BGP session

physical link

Denial-of-Service Attacks (II)

- Third party sends bogus BGP/TCP packets
- FIN/RST to close the BGP session
- SYN flooding to overload the router
- Leads to disruptions in BGP
- session reset, causing transient routing changes
- route-flapping, which may trigger flap damping

Hard because

- spoofing TCP packets the right way is not trivial
- difficult to send FIN/RST with the right TCP header
- packet filters may block SYN flooding
- filter packets to BGP port from unexpected sources
- or filter packets destined to router from unexpected sources

Exploiting the IP TTL Field

BGP routers are usually one hop apart

- to thwart an attacker, can check that the packets carrying the BGP message have not traveled far (RFC 3682)
- send BGP packets with initial TTL of 255
- receiving BGP speaker checks that TTL is 254
- and flags and/or discards the packet others

Hard for third-party to inject packets remotely

IP Address Ownership and Hijacking

IP address-block assignment by

- Regional Internet Registries (ARIN, RIPE, APNIC)
- or Internet Service Providers

Proper origination of a prefix into BGP

- by the AS who owns the prefix
- or, by its upstream provider(s) on its behalf

However, what's to stop someone else?

- prefix hijacking: another AS originates the prefix
- BGP does not verify that the AS is authorized
- registries of prefix ownership are inaccurate

Prefix Hijacking

Consequences for the affected ASs

- blackhole: data traffic is discarded
- snooping: data traffic is inspected, and then redirected
- impersonation: data traffic is sent to bogus destinations

Hijacking is Hard to Detect

Legitimate origin AS doesn't see the problem

- picks its own route
- might not even learn of the bogus route

May not cause loss of connectivity

- e.g., if the bogus AS snoops and redirects
- may only cause performance degradation

Or, loss of connectivity is isolated

• e.g., only for sources in parts of the Internet

How to diagnose prefix hijacking?

- analyze updates from many vantage points on the Internet
- launch traceroute from many vantage points
- requires access to BGP routers or hosts across the Internet

Sub-Prefix Hijacking

Originating a more-specific prefix

• traffic follows the longest matching prefix

• every AS picks the bogus route for that prefix

February 24, 2008 YouTube Outage

YouTube (AS 36561)

- web site www.youtube.com
- address block 208.65.152.0/22

Pakistan Telecom (AS 17557)

- receives government order to block access to YouTube
- starts announcing 208.65.153.0/24 to its provider PCCW (AS 3491)
- all packets directed to YouTube get dropped on the floor

Mistakes were made

- AS 17557: announcing to everyone, not just customers
- AS 3491: not filtering routes announced by AS 17557

Lasted 100 minutes for some, 2 hours for others

How to Hijack a Prefix

The hijacking AS has

- a router with eBGP session(s)
- that is configured to originate the prefix

Ways to get access to a router:

- network operator makes configuration mistake,
- disgruntled operator launches an attack, or
- outsider breaks in to the router and reconfigures

Getting other ASs to believe bogus route

- neighboring ASs do not filter routes, i.e., by allowing only expected prefixes
- specifying filters on peering links is hard

Another Example: Spammers

Spammers sending spam

- form a (bidirectional) TCP connection to a mail server
- send a bunch of spam e-mail
- disconnect

Real IP addresses are relatively easy to trace back

Could hijack someone else's address space

- but you might not receive all the (TCP) return traffic
- and the legitimate owner of the address might notice

How to evade detection

- hijack unused (i.e., unallocated) address block in BGP
- temporarily use the IP addresses to send your spam

Bogus AS Paths

Remove ASs from the AS path

• e.g., turn "701 3715 88" into "701 88"

Motivations

- make the AS path look shorter than it is
- attract sources that normally try to avoid AS 3715
- help AS 88 look like it is closer to the Internet's core

Hard to tell that an AS path is invalid

maybe AS 88 does connect to AS 701 directly

Bogus AS Paths

Adds AS hop(s) at the end of the path • e.g., turns "701 88" into "701 88 3"

Motivations

• evade detection of a bogus route by adding the legitimate AS to the end

Hard to tell that the AS path is bogus

even if other ASs filter based on prefix ownership

18.0.0.0/8

Bogus AS Paths

Add ASs to the path

• e.g., turn "701 88" into "701 3715 88"

Motivations

- trigger loop detection in AS 3715
- denial-of-service attack on AS 3715
- or, blocking unwanted traffic coming from AS 3715!
- make your AS (701) looks like is has richer connectivity

Hard to tell that an AS path is invalid

- AS 3715 could, if it could see the route
- AS 88 could, but would it really care as long as it received data traffic meant for it?

Invalid Paths

AS exports a route it shouldn't

• AS path is a valid sequence, but violated policy

Example: customer misconfiguration

exports routes from one provider to another

interacts with provider policy

- provider prefers customer routes
- so picks these as the best route

leading to dire consequences

• directing all Internet traffic through customer, who does not have enough resources to handle so much traffic

Main defense

• filtering routes based on prefixes and AS path

701

88

Missing/Inconsistent Routes

Peers require consistent export

- prefix advertised at all peering points
- prefix advertised with same AS path length

Reasons for violating the policy

- trick neighbor into "cold potato"
- configuration mistake

Main defense

• analyze BGP updates, or data traffic, for signs of inconsistency

BGP Security Today

Applying best common practices (BCPs)

- securing the session (authentication, encryption)
- filtering routes by prefix and AS path
- filtering packets to block unexpected control traffic

This is not good enough

- depends on vigilant application of BCPs • and not making configuration mistakes!
- doesn't address fundamental problems
- can't tell who owns the IP address block
- can't tell if the AS path is bogus or invalid
- can't be sure the data packets follow the chosen route

S-BGP Secure Version of BGP

Address attestations

- claim the right to originate a prefix
- signed and distributed out-of-band
- checked through delegation chain from ICANN

Route attestations

- distributed as an attribute in BGP update message
- signed by each AS as route traverses the network
- signature signs previously attached signatures

Security provided by S-BGP:

- AS-Path indicates the order ASs were traversed
- no intermediate ASs were added or removed

S-BGP Deployment Challenges

Requires complete, accurate registries • e.g., of prefix ownership

Requires public-key infrastructure • to know the public key for any given AS

Requires expensive cryptographic operations

- e.g., digital signatures on BGP messages
- need to perform operations quickly
 to avoid delaying response to routing changes

Difficulty of incremental deployment • impossible to have a "flag day" to deploy S-BGP

Incrementally Deployable Schemes

Monitoring BGP update messages

- use past history as an implicit registry
- e.g., AS that announces each address block
- e.g., AS-level edges and paths

Out-of-band detection mechanism

- generate reports and alerts
- Internet Alert Registry: http://iar.cs.unm.edu/
- Prefix Hijack Alert System: http://phas.netsec.colostate.edu/

Soft response to suspicious routes

- prefer routes that agree with the past
- delay adoption of unfamiliar routes when possible
- some (e.g., misconfiguration) will disappear on their own

Routing vs. Forwarding

Routing:

- BGP is a routing protocol
- BGP security concerns validity of routing messages
- i.e., did the BGP message follow the sequence of ASs listed in the AS-path attribute

Forwarding:

- routers forward data packets
- supposedly along the path chosen by the routing protocol
 but what ensures that this is true?

Forwarding Attacks (I)

Drop packets in the data plane

• while still sending the routing announcements

Easier to evade detection

- especially if you only drop some packets
- e.g., BitTorrent or Skype traffic

Even easier if you just slow down some traffic

- how different are normal congestion and an attack (or provider throttling)?
- especially if you let ping/traceroute packets through?

Forwarding Attacks (II)

Direct packets to a different path

• that disagrees with the routing announcements

Direct packets to a different destination

• e.g., one controlled by an adversary

Motivations:

- to impersonate the legitimate destination (e.g., to perform identity theft, or promulgate false information)
- to snoop on traffic before forwarding it to the real destination

How to detect?

- traceroute? longer than usual delays?
- end-to-end checks, like site certificate or encryption?

Forwarding Attacks are Hard

Adversary must control a router along the path • so that the traffic flows through it

How to get control of a router

- buy access to a compromised router online
- guess the password
- exploit known router vulnerabilities
- insider attack (disgruntled network operator)

Malice vs. greed

- malice: gain control of someone else's router
- greed: Verizon DSL blocks Skype to steer customers towards its voice products (net neutrality?)

BGP is Vulnerable

Several high-profile outages

- http://merit.edu/mail.archives/nanog/1997-04/msgoo380.html
- http://www.renesys.com/blog/2005/12/internetwide_nearcatastrophela.shtml
- http://www.renesys.com/blog/2006/01/coned_steals_the_net.shtml
- http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml

Many smaller examples

- blackholing a single destination prefix
- hijacking unallocated addresses to send spam

Why isn't it an even bigger problem?

- really, most big outages are configuration errors
- most bad guys want the Internet to stay up
- so they can send unwanted traffic (e.g., spam, identity theft, denial-of-service attacks, port scans, etc.)

BGP is Hard to Fix

Complex system

- large, with around 50,000 ASs
- decentralized control among competitive ASs
- core infrastructure that forms the Internet

Hard to reach agreement on the right solution

- S-BGP with public key infrastructure, registries, crypto?
- who should be in charge of running the PKI and registries?
- worry about forwarding vulnerability or just routing?

Hard to deploy the solution once you pick it

- hard enough to get ASs to apply route filters
- now you want them to upgrade to a new protocol, all at the exact same moment, without incremental deployment plan? Ha!

Conclusions

Internet protocols were designed based on trust

Border Gateway Protocol is very vulnerable

- twigs and twine that hold the Internet together
- hard for an AS to locally identify bogus routes
- attacks can have very serious global consequences

Proposed solutions/approaches

- secure variants of BGP
- anomaly detection schemes, with automated response
- broader focus on forwarding availability