
Computer Networks

Lecture	15:	Routing:	
Distance	Vector	Algorithm	

The	Internet	Network	Layer	

forwarding	
table	

Host,	router	network	layer	functions:	

Routing	protocols	
• path	selection	
• RIP,	OSPF,	BGP	

Forwarding	protocol	(IP)	
• addressing	conventions	
• datagram	format	
• packet	handling	conventions	

“Signalling”	
protocol	(ICMP)	
• error	reporting	
• router	“signaling”	

Transport	layer:	TCP,	UDP	

Link	layer:	Ethernet,	WiFi,	SONET,	ATM	

Physical	layer:	copper,	fiber,	radio,	microwave	

Network	
layer	

Routing	on	the	Internet	
Routers	on	the	Internet	are	store-and-forward	routers:	
• each	incoming	packet	is	buffered	
• packet’s	destination	is	
looked	up	in	the	forwarding	table	

• packet	is	forwarded	to	the	next	
hop	towards	the	destination	

A	

B	

packet	transmitted	
(forwarded)	

packets	queued	(stored)	
free	(available)	buffers:	arriving	packets		
dropped	(loss)	if	no	free	buffers	

1

2 3

0111

destination	
address	in	
packet’s	
header	

routing	algorithm	

local	forwarding	table	
dest	address	 output	link	

0100
0101
0111
1001

3
2
2
1

Routing	vs.	Forwarding	

Routing:	so-called	“control	plane”	
• compute	paths	that	packets	follow	across	an	internetwork	
• used	by	routers	to	talk	to	each	other	
•  individual	router	creates	a	forwarding	table	from	routing	data	

Forwarding:	“data	plane”	
•  individual	router	uses	forwarding	table	to	direct	packets	from	
an	incoming	to	an	outgoing	link	inside	the	router	

[after	Rexford]	

Inside	a	Router	

Switching	
Fabric	

Processor	

Line	card	

Line	card	

Line	card	

Line	card	

Line	card	

Line	card	

data	plane	

control	plane	

[Rexford]	

Line	Cards	
(Interface	Cards,	Adaptors)	
Interfacing		
• physical	link	
•  switching	fabric	

Packet	handling	
• packet	forwarding	
• decrement	8me-to-live	
• buffer	management	
•  link	scheduling	
• packet	filtering	
•  rate	limi8ng	
• packet	marking	
• measurement	

to/from	link	

to/from	switch	

lookup	

Re
ce

iv
e	

Transm
it	

[Rexford]	

Switching	Fabric	
Deliver	packets	inside	router	
•  from	incoming	to	outgoing	interfaces	

•  a	network	in	and	of	itself	

Must	operate	very	quickly	
• multitude	of	packets	destined	to	the	same	outgoing	interface	

•  switch	scheduling	to	match	inputs	to	outputs	

Implementation	techniques	
•  bus,	crossbar,	interconnection	network,	…	

•  running	at	a	faster	speed	(e.g.,	2�)	than	links	
•  divide	variable-length	packets	into	fixed-size	cells	

[after	Rexford]	

Switching	
Fabric	

Processor	

Line	card	

Line	card	

Line	card	

Line	card	

Line	card	

Line	card	

data	plane	

control	plane	 Router	Processor	
“Loopback”	interface	
•  IP	address	of	the	CPU	on	the	router	

“Control-plane”	software	
•  implementation	of	routing	protocols	
•  creation	of	forwarding	table	for	the	line	cards	

Handling	of	special	data	packets	
•  packets	with	IP	options	enabled	
•  packets	with	expired	Time-to-Live	

Network	management	functions:	
•  command-line	interface	(CLI)	for	configuration	
•  transmission	of	measurement	statistics		

Switching	
Fabric	

Processor	

Line	card	

Line	card	

Line	card	

Line	card	

Line	card	

Line	card	

[after	Rexford]	

Computing	Paths	Between	Routers	
Routers	need	to	know	two	things	
1.  which	router	to	use	to	reach	a	destination	prefix	
2. which	outgoing	interface	to	use	to	reach	that	router	

How	does	a	router	construct	its	routing	table?	
How	does	a	router	know	which	is	the	next	hop	towards	
a	destination?	
Use	a	routing	protocol	to	propagate	(and	update)	
reachability	information	

12.34.158.0/24

interface	along		
the	path	to	z		

u z

router	z	that	can		
reach	destination	

[after	Rexford]	

Graph:	G = {N, E}

N =	set	of	nodes	= {u, v, w, x, y, z}

E =	set	of	edges/links	=�
{(u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z)}

c(u,v) =	cost	of	link	(u,v),	assume	full-duplex	(bidirectional)	
•  e.g.,	c(w, z) = 5
•  cost	could	always	be	manually	assigned,	e.g.,	based	on	price	
•  or	could	be	hop	count,	or	inversely	related	to	bandwidth,	reliability	
•  or	could	be	dynamic,	e.g.,	proportionally	related	to	congestion	
Cost	of	path	(x1, x2, x3,…, xp) = c(x1,x2) + c(x2,x3) + … + c(xp-1,xp)

What	is	the	least-cost	path	between	node	u	and	z?	
Routing	algorithm:	algorithm	that	finds	least-cost	path			

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5
Graph	Abstraction	

Routing	Algorithm	Classification	
Centralized	or	decentralized?	
•  traditionally	decentralized	preferred	for	scalability	
• software-defined	networking	(SDN)	is	centralizing	

Global	or	distributed,	local	information?	

• global:	all	routers	have	complete	topology	
•  	and	link	cost	information	

•  “link	state”	algorithms	

• local:	each	router	knows	only	of	physically-connected	
neighbors	and	its	link	costs	to	neighbors	
•  iterative	process	of	computation,	information	exchange	with	neighbors	
•  “distance	vector”	algorithms	

Routing	Algorithm	Classification	
Static	or	dynamic?	
•  static:		
⇒  routes	change	slowly	over	time	

• dynamic:		
⇒  routes	change	more	quickly	
⇒  periodic	update	in	response	to	link	cost	changes	

Dynamic	Programming	

Used	when	a	problem	can	be	divided	into	
sub-problems	that	overlap	

Solves	each	sub-problem	once	and	stores	the	
solution	in	a	table	
•  if	the	same	sub-problem	is	encountered	again,	
simply	looks	up	its	solution	in	the	table	

•  reconstructs	the	solution	to	the	original	problem	
from	solutions	to	the	sub-problems	

•  the	more	overlap	the	better,	as	this	reduces	the	
number	of	sub-problems	

Dynamic	Programming	
DP	used	primarily	to	solve	optimization	problem,	
e.g.,	find	the	shortest,	longest,	“best”	way	of	doing	
something	

Requirement:	an	optimal	solution	to	the	problem	
must	be	a	composition	of	optimal	solutions	to	all	
sub-problems	
	
In	other	words,	there	must	not	be	an	optimal	
solution	that	contains	suboptimal	solution	to	a	
sub-problem	

Distance	Vector	Algorithm	
Bellman’s	shortest	path	algorithm	(1957)	
• a	centralized	distance	vector	algorithm	
•  the	origin	of	the	name	“dynamic	programming”:	

•  dynamic:	multi-stage,	time-varying	process		
•  programming:	planning,	decision	making	by	a	tabular	method,	
e.g.,	TV	programming	

D[]	encodes	shortest	path	between	two	nodes	x	and	y	
computed	as	D[x, y] = min{c(x, v) + D[v, y]},	where	v	is	
a	neighbor	of	x	and	min	is	taken	over	all	neighbors	of	x

Relies	on	two	other	tables:		
• L[]:	link	table	
• H[]:	next	hop	table	

Example:	Initial	Values	

D u v w x y z

u 0 2 5 1 ∞ ∞

v 2 0 3 2 ∞ ∞

w 5 3 0 3 1 5

x 1 2 3 0 1 ∞

y ∞ ∞ 1 1 0 2

z ∞ ∞ 5 ∞ 2 0

L l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

n u u v v x x w w y u

m v x x w w y y z z w

c(n,m) 2 1 2 3 3 1 1 5 2 5

H u v w x y z

u l0 l1 l10 l2 - -

v l1 l0 l4 l3 - -

w l10 l4 l0 l5 l7 l8

x l2 l3 l5 l0 l6 -

y - - l7 l6 l0 l9

z - - l8 - l9 l0

l0: loopback	

Initial	values:	

Initial	values:	

u

yx

wv

z

2

2
1

3

1

1

2

5
3

l1

l2

l4

l3 l5

l6

l7

l8

l9

5
l10

Example:	Final	Values	

D u v w x y z

u 0 2 3 1 2 4

v 2 0 3 2 3 5

w 3 3 0 2 1 3

x 1 2 2 0 1 3

y 2 3 1 1 0 2

z 4 5 3 3 2 0

H u v w x y z

u l0 l1 l2 l2 l2 l2

v l1 l0 l4 l3 l3 l3

w l7 l4 l0 l7 l7 l7

x l2 l3 l6 l0 l6 l6

y l6 l6 l7 l6 l0 l9

z l9 l9 l9 l9 l9 l0

Final	values:	

Final	values:	

do {
 for each node i in graph do {
 for all node k not i in graph do {
 for each j neighbor of i {
 d = c(i,j)+D[j,k];
 if (d < D[i,k]) {
 D[i,k]= d;
 H[i,k]= index of L[] where n=i,m=j;

 }
}

}
}

} while there has been a change in D[];

u

yx

wv

z

2

2
1

3

1

1

2

5
3

l1

l2

l4

l3 l5

l6

l7

l8

l9

5
l10 Distributed	Distance	Vector	Alg.	

Ford-Fulkerson	(1962):	modified	Bellman’s	algorithm	to	
a	distributed	version	(a.k.a.	Bellman-Ford	algorithm)	

Basic	idea:		
• each	node	periodically	sends	its	own	distance	estimates	to	all	its	
immediate	neighbors	

• when	node	i	receives	new	distance	estimates	from	a	neighbor,		
it	updates	its	own	distance	estimates	using	the	Bellman	distance	
equation:	

D[x, y] = min{c(x, v) + D[v, y]}, for each node y ∊ N

• under	stable	conditions,	the	estimate	D[x,y]	converges	to	the	
actual	least	cost	

x y z

x
y
z

0 2 7
∞∞ ∞
∞∞ ∞fr

om
	

cost	to	

2 0 1

fr
om

	
fr
om

	

x y z

x
y
z

∞ ∞

∞ ∞ ∞

cost	to	

x y z

x
y
z

∞∞ ∞
7 1 0

cost	to	

∞ ∞ ∞

x y z

x
y
z

0 2 3

fr
om

	

cost	to	

2 0 1
7 1 0

x y z

x
y
z

0 2 7

fr
om

	

cost	to	

2 0 1
7 1 0

x y z

x
y
z

0 2 7

fr
om

	

cost	to	

2 0 1
3 1 0

time	

x y z

x
y
z

0 2 3

fr
om

	

cost	to	

x y z

x
y
z

0 2 3

fr
om

	

cost	to	

x y z

x
y
z

0 2 3

fr
om

	

cost	to	

2 0 1
3 1 0

2 0 1

3 1 0
2 0 1

3 1 0

x z
12

7

y

x’s	table	

y’s	table	

z’s	table	

D[x,y] = min{c(x,y) + D[y,y], c(x,z) + D[z,y]}
 = min{2+0 , 7+1} = 2

D[x,z] = min{c(x,y) + D[y,z], c(x,z) + D[z,z]}
 = min{2+1 , 7+0} = 3

∞

Each	node	i:	
• knows	the	cost	to	each	neighbor	

• keeps	entries	of	L	table	for	local	links	
•  i’s	routing	table	consists	of	the	i-th	
row	of	tables	D	and	H

•  sends	i-th	row	of	table	D	as	route	update	from	i
• upon	receiving	a	route	update	from	another	node,	

i	recomputes	its	routing	table	(row	i	of	D	and	H)	

Example:	
• u’s	link	table:	[l1, l2]
• u’s	routing	table:	

dest	 u v w x y z
D 0 2 3 1 2 4
H l0 l1 l2 l2 l2 l2

dest	 u v w x y z
D 0 2 3 1 2 4

u

yx

wv

z

2

2
1

3

1

1

2

5
3

l1

l2

l4

l3 l5

l6

l7

l8

l9

5
l10

• u’s	route	update/distance	vector:	

Distributed	DVA	Implementation	

Route	Updates	

	

waits	for	change	in	local	link	
cost	or	message	from	neighbor	
	

recomputes	distance	estimates	
	

if	distance	to	any	destination	
has	increased,	notify	neighbors	
or	send	periodic	update		

Even	statically	assigned	link	cost	can	change	over	
time,	e.g.,	when	a	link	goes	down	(breaks)	

Each	node:	
Design	question:	how	does	a	
router	communicate	changes	
in	link	cost	to	other	routers?	
• when	cost	increases	(“bad	
news”)	send	on-demand/
triggered	updates		

• cost	decreases	(“good	
news”)	travel	slowly	with	
periodic	updates,	with	
random	periods	

Design	principle:	soft-state	

Routing	Loop	
Problems	with	distributed	DVA:	
• bouncing	effect,	when	there’s	alternate	
path,	e.g.,	between	A	and	D:	when	AB	
breaks,	A	and	D	(to	B)	count	to	11	before	
settling	on	ADEB

•  counting	to	∞,	when	there’s	no	alternate	path,	e.g.,	
between	B,	C,	and	E	(to	A	or	D)	when	both	AB	and	DE	break	

•  leads	to:	routing	loop	

Cause	of	routing	loop	(in	3	variations):	
•  inconsistent	routing	tables	
•  route	updates	do	not	reflect	reality	
•  routers	do	not	know	when	they	are	in	their	neighbor’s	path	to	
a	destination	

A B

C

ED

1

1

1

1

1

1

∞
/

∞
/

time	 B C D E
t0 1 2 3 2
t1 3 2 3 2
t2 3 4 3 4
t3 5 4 5 4
t4 5 6 5 6
t5 7 6 7 6
t6 7 8 7 8
t7 9 8 9 8
t8 9 10 9 10
t9 11 10 11 10
t10 11 12 11 10
t11 11 12 11 10

Routing	Loop	
Heuristics	(not	solution)	to	alleviate	routing	loop	in	
distributed	distance	vector	algorithm:	
• triggered	updates	
• split	horizon	(with	poisonous	reverse):	
don’t	advertise	reachability	
(or	advertise	∞)	to	next-hop	neighbor	

• path	hold-down,	route	poisoning:	
don’t	switch	path	for	n	rounds	or	
advertise	∞	if	cost	has	been	
going	up	for	n	rounds	

All	heuristics	rely	on	counting	to	∞	to	
detect	loop,	but	differ	in	convergence	time	

ABD CE
1

10

1

1 1

/

Cost	to	A,	
with	n	=	2:	

∞ 2 3 2
∞ ∞ 3 ∞

∞ ∞ ∞ ∞

∞ ∞ ∞ 10
11 ∞ 11 10
11 12 11 10

1
/

t1 � ∞

Loop-free	Routing	

Solutions	to	routing	loop:	
• diffusing	computation	(DUAL)	
• path	finding/source	tracing	
• link	reversal	
• path	vector	

Distributed	DVA	Deployment	History	
• Early	days:	GGP,	HELLO,	Fuzzball	(ARPANET,	early	Internet)	

• 1988	(standardized):	RIP	(routed)	
•  v1:	30	secs	periodic	update	with	triggered	updates	and	split	horizon	with	
poisonous	reverse	

•  v2	(1993):	supports	CIDR	

• 1988:	IGRP	(cisco):	Interior	Gateway	Routing	Protocol	
•  v1:	split	horizon,	with	path	hold-down	(n=2)	

•  v2:	90	secs	periodic	update	with	triggered	updates,	route	poisoning	

• 1993:	EIGRP	(cisco):	Enhanced	IGRP	for	intra-domain/AS	routing	
• uses	DUAL,	supports	CIDR	

• 1994:	BGPv4	for	inter-domain	routing	
• uses	path	vector,	supports	CIDR,	runs	on	TCP	

Jaffe-Moss	Algorithm	

Observations:		
1.  for	each	destination,	nodes	on	the	network	form	a	
directed	spanning	tree	rooted	at	the	destination	

2. loops	occur	in	BF	algorithm	only	after	link	cost	
increases	(incl.	going	to	∞)		

A B

C

ED

1

1

1

1

3

1

Jaffe-Moss	Algorithm	
New	idea:	impose	strong	constraints	on	the	ordering	of	
route	updates	among	nodes:		

• when	a	link	cost	increase	is	
detected,	all	nodes	in	the	spanning	
tree	rooted	at	the	destination		
(=	C)	that	uses	the	link	must	
freeze	their	next-hop	(successor)	
choice	to	that	destination,	i.e.,	
they	cannot	pick	an	alternate	next-hop	

•  instead,	they	run	a	diffusing	computation	

A B

C

ED

1

1

1

1

3

1 � ∞
✗

Diffusing	Computation	
Each	node	queries	all	its	neighbors	for	a	shorter	path	
(queries	carry	increased	link	cost):	first,	E	queries	B	and	D

If	query	comes	from	shortest	
path	next	hop,	a	node	freezes	
its	path	to	the	destination	and	
recursively	queries	its	neighbors	
for	a	shorter	path:	B	freezes	
path	to	C	and	queries	A, C,	and	E

Otherwise,	node	replies	with	current	cost:	C	replies	to	B	

A B

C

ED

1

1

1

1

3

1 � ∞
✗

Diffusing	Computation	
A	node	doesn’t	unfreeze	and	reply	to	a	query	until	it	has	
received	replies	from	all	of	its	neighbors:	B	doesn’t	reply	
to	E	until	it	has	heard	from	both	C	and	A

When	a	frozen	node	receives	
another	query,	it	replies	
immediately	with	increased	
cost:	D	and	B	reply	immediately	
to	A	with	increased	cost	

A B

C

ED

1

1

1

1

3

1 � ∞
✗

Jaffe-Moss	Algorithm	

Short-coming:	may	freeze	path	unnecessarily	
•  it’s	right	that	E	doesn’t	switch	to	B

• but	there’s	no	reason	for	B	to	wait	for	A’s	ACK	before	
switching	to	its	direct	link	to	C	

A B

C

ED

1

1

1

1

3

1 � ∞
✗

DUAL:	Diffusing	Update	ALgorithm	
Solves	Jaffe-Moss’	short-coming	by	not	freezing	a	
destination	to	which	there	is	a	viable	alternate	path	

Successor:	next	hop	node	

Feasible	successor:	an	alternate	successor	whose	cost	
towards	destination	is	≤	the	cost	of	the	current	
successor	before	the	link	cost	increased	

Cost	from	F	to	C	→	∞,	which	of	B,	D,	and	E	are	
feasible	successor	for	A?	

A

B

C
D

E

3

1

1

2

2F

3

2

✗
� ∞

3

DUAL:	Diffusing	Update	ALgorithm	
Why	it	works:	a	path	through	a	feasible	successor	cannot	
contain	a	loop,	i.e.,	it	could	not	and	cannot	be	using	the	
link	whose	cost	has	gone	up	to	get	to	destination	

	

	

	

	

A	node	freezes	a	path	to	a	particular	destination	and	
initiate	diffusing	computation	only	when	it	cannot	find	
any	feasible	successor	

A

B

C
D

E

3

1

1

2

2F

3

2

✗
� ∞

3

DUAL:	Diffusing	Update	ALgorithm	
Worst-case	complexity	analysis:	cost	required	for	the	
network	to	converge	after	a	resource	failure:	
• time	complexity	(TC):	number	of	steps	
• communication	complexity	(CC):	number	of	messages	

	
D:	network	diameter	
d:	max	degree	of	a	node	(�	N)	
x:	#	nodes	affected	by	failure;	
worst	case,	e.g.,	on	network	partition,	x	=	N

DBF	 ILS	 JM	 DUAL	

TC	 O(N) O(D) O(x) O(x)
CC	 O(N2) O(2E) O(E) O(6dx)

DBF:	Distributed	Bellman-Ford	
ILS:	Incremental	Link-State	
JM:	Jaffe-Moss	

Path	Vector	
Idea:		
• instead	of	sending	only	the	path	cost	to	a	destination	in	
distance	vector,	send	the	full	path	to	each	destination	

• a	router	adopts	a	neighbor	as	the	next	hop	to	a	destination	
only	if	it	is	not	in	neighbor’s	path	to	the	destination	

• a	router	prepends	itself	to	all	of	its	paths	before	propagating	
them	further	

Path	vector	is	used	in	BGP	

Example:	A’s	path	vector:	

dest	 A B C D E
metric	 0 1 2 1 2
path	 A BA CBA DA EDA

A B

C

ED

1

1

1

1

1

1

