Name-based Network

Today’s Internet: address-based packet forwarding
) « applications mustfirst resolve a name to an address
EECH - establishan end-to-endsessionwith the returned address

COMPUTER NETWORKS

Name-based network:

* nameresolutionand session establishmentasone

» session establishmentbased onname (abstractID)
instead of an address

Lecture 10: Content-based Routing - no separate address beyond name
. . » a.k.a.information-centric, content-centric, content-oriented,
and Consistent Hashing

content-addressable network

Characteristics of names:

« object agnostic: content, hosts, services, users, etc.
« cannotbe easily aggregated by topologicallocation

Network Architecture Key-Value Store

Instead of DNS-based name resolution, objects are Database (DB) entries consist of <key, value> pairs, for
located using a publish-subscribe mechanism example:
« objects published by principal (owner of object) * key: title; value: song

« key: SSN; value: person’sdata
« key: sessionID; value: shopping cart

« key: sessionID; value: wish list
« (objects can be returned from any copy) - key: itemID; value: reviews

« (replicatedin caches by network)
« requested by name by subscriber

Examples: Publish: object ownerinserts value into DB by key

. BitTorrent’s Tracker, Skype’s ID Subscribe: subscriberlooks up value by key

« Amazon’s Dynamo (paper linked to in syllabus)

« highly-available key-value store
« used for maintaining shopping cart, wish list, reviews, etc.

Distributed Database

DB is distributed across several nodes
- each node storesonly a portion of the DB

How to partition the DB to each node? Want:
« even spread:loadis evenly spread across nodes
- fast lookup: fasterthan linear search

* localized changes: additionand removal of node
requiresonly changesto nearby nodes, not to the
whole network

« consider conventional mod m hashing: adding a node (m+1)
requires changing/rehashing the content of every node!

Chord

DB is distributed across several nodes

- each node storesonly a portion of the DB 0
"
Given n-bit IDs ordered on an ID ring "y/ \\\
Each node is assigned an integer ID /
n 120 Node }4
from the range [0, 2"-1]

Each is hashed to aninteger ID

Y
in the same range [0, 2"-1] B

DB entry of a given key is stored at the smallest (or =)
node ID following the ID the key hashes to (mod 2")

Consistent Hashing

One solution is to use consistent hashing, 0
a.k.a., distributed hash table (DHT) VIZ S N
/ \

o]

N s

* here, n=4 \c\
- arrangeIDs in orderon anidentifierring/circle

Chord is an example of a DHT:
- specify an identifier key size, n bits

- given N nodes, assign each to a location on the ring (mod 2")
» here, N=4
« hash/map objectsto positionsonring

- actual location of object is the node closestto object’s position
onringin clockwise order

Chord

DB entry of a given key is stored at the smallest (or =)
node ID following the ID the key hashes to (mod 2")

Example: n = 6 bits,
node IDs: N1, N8, N14, N21,N32, .

N38,N42,N48,N51,N56
hash(keyl) = K10 = N14
hash(key2) = K54 = N56
hash(key3) = K24 = N32
hash(key4) = K38 = N38
hash(key5) = K30 = N32
hash(key6) = K58 = N?

hash(key7) = K15 = N?

hash(key8) = K1 = N? K38 |N38

K10
K54

N51
N14

anidentifier ring
with 10 nodes
and 8 keys

N48

K24

N32 ~

| K30

[Stoica+'03]

[Stoica+'03]

Chord: Basic Construction

Each node knows only the neighbors immediately
behind (predecessor) and ahead (successor) of it,
creating an overlay network

New node takes over keys in its
identifier space from its successor an identifer ring
« N1is responsibleforIDs [57-63,0-1] with 10 nodes

and 5 keys
- ifanew node N60 joins the network,

it takesover IDs [57-60] from N1
«and Nl is left with IDs [61-63,0-1]

Departing node returns its key range to its successor
* whenN60 leaves, N1 reclaimsits original range of [57-63,0-1]

[Stoica+'03]

Chord: Adding a Node

A new node N26 joins the DHT at node N21
« N21 forwardsitto N32, why?
« N32 accepts N26 as its new predecessor

+ N32informs N26 that N32 is its successor, ® N21
N21 its predecessor '

[Stoica+'03]

Chord: Adding a Node

Another example; let n = 6 bits

Assume there are only 2 nodes on the identifier ring

« N21is responsibleforIDs [33-63,0-21]

« and N32is responsiblefor IDs [22-32] ® N21
two items are stored at N32: K24 and K30

successor(N21)

Chord: Adding a Node

N26 has N32 as its successor
(and N21 as its predecessor, not shown):
« N26is responsibleforIDs [22-26]
« N32is responsibleforIDs [27-32]
« item K24 is migratedto N26

But:
« N21 still has N32 as successor

[Stoica+'03]

Chord: Adding a Node

Immediate predecessor and periodic fingers

stabilization in Chord (1ookup () always undershoot)

On-demand/lazy fix in Lab4+PA2:

« when contacted by N21 againin the future, ’ N21
N32tells N21 that N26 is its successor now \5
|
« N21 updates its successorto point to N26 *
« N21 remainsresponsible for 1/
IDs [33-63,0-21] throughout N26
® . K4
N32~
K30

[Stoica+'03]

Chord: Finger Table Construction

Each node i knows of its successor and the nodes
responsible for ID i+2% (0 < k < 5, for example)
- these nodes are keptin its finger table

Example: the finger table of N8 consists of:

* 8+1:atsuccessor,N14 N1

* 8+2:at successor,N14

* 8+4:at successor,N14

* 848: query N14 = N21

* 8+16: query N21 = N32

* 8+32: query N32 = N42 "
(fromN32's finger table)

* in othercases, may need to
query multiple nodes
(recursively or iteratively)

[Stoica+'03]

N21

N32

Finger table

N8 +1 N14
N8 +2 [N14

N8 +4 |N14|

N8 +8 N21

N8 +16 |N32 |
N8 +32 [N42 |

Chord: Basic Search

Given a key, route search message
towards node holding key

N1

lookup(K54)
,NB

) K54 | N56
Each node only knows its

immediate successor NST
N48

basic search

Example: lookup(K54)

It takes O(N) time(!) to do a "
search, N number of nodes

[Stoica+'03]

Chord: Search with Finger Table
Example: lookup(K54)

What is the finger table of N42, assuming n = 6 bits?

What is the time complexity to do a search?
N1

lookup(54)

#

Finger table

N8 +1 |N14
N14 N8 +2 [N14
N8 +4 |N14
N8 +8 |N21
| N8 +16 |N32
N8 +32 [N42

N51

N48

N21

[Stoica+'03] N32

Chord: Node Failure

Each node must know both its immediate

and subsequentsuccessors
« sends periodic keep-alive pings

If ping fails, obtain new successor "
(new successor assumes ID range ™
of old successor)

Example:
« N1 has N8 asimmediate successor
and N14 as subsequent successor
« if N8 fails, N1 makes N 14 its immediate successor,
and queries N 14 for its immediate successor
- if N14 fails, N1 queries N8 for its new immediate successor

Inbound fingers fixed lazily

[Stoica+'03]

Limitations of Consistent Hashing

Limited to <key, value> pair search
(What other kinds of search might you want to do?)

High overhead at node arrivals and departures

Complicated node failure recovery and topology
maintenance

Suffersfrom “hot-spots” due to keyword-to-node
mapping
- popular keywords concentrate trafficon a few nodes
- cannotspreadload associated with a single keyword
across multiple nodes

Storage Models

DHT can be used as “content-addressable network”

Where to backup the values of a node? Alternatives:

« only atthe node’simmediate successorin the identifier ring
« immediate successor assumes node’s ID range in case of failure
« churn, routing issues, packet loss make lookup failure more likely

 on k successornodes
« when nodes detect successor/predecessor failure, replicate further

* cached along reverse lookup path
« cache consistency and dynamic content issues
« query and reply must both be recursive

