
Computer Networks

Lecture	9:	HTTP	

Content	Delivery	Infrastructure	

Peer-to-peer	(p2p):	
•  hybrid	p2p	with	a	centralized	server	
•  pure	p2p	
•  hierarchical	p2p	
•  end-host	(p2p)	multicast	
	
Content-Distribution	Network	(CDN)	
•  HTTP	Overview	
•  HTTP	Performance	
•  HTTP	Caching	
•  Content	Distribution	Network	

A	Web	Page	
A	web	page	consists	of	a	base	HTML-file	which	
may	include	references	to	one	or	more	objects	
•  an	object	can	be	another	HTML	file,	a	JPEG	image,	a	
Java	applet,	an	audio	file,	a	flash	video,	etc.	

•  each	object	is	addressable	by	a	URL	
•  example	URL:	
http://www.mgoblue.com/images/pic.gif	

host	name	 path	name	protocol	

HTTP	Overview	
HTTP:	HyperText	Transfer	Protocol	
• Web’s	application-layer	protocol	
•  client/server	model	

•  client:	browser	that	requests,		
receives,	and	“displays”	Web	objects	

•  server:	sends	objects		in	response	to	requests	
•  HTTP	1.0:	RFC	1945

•  HTTP	1.1:	RFC	2068

•  HTTP/2:	RFC	7540	(May	2015)	

PC	running	
Firefox	

Server		
running	
Apache	
Web	
server	

Mac	running	
Safari	

Uses	TCP:	
•  client	initiates	TCP	connection	(creates	socket)	
to	server,	port	80

•  server	accepts	TCP	connection	from	client	
•  HTTP	messages	(application-layer	protocol	
messages)	exchanged	between	browser	(HTTP	
client)	and	Web	server	(HTTP	server)	

•  TCP	connection	closed	
	
HTTP	is	“stateless”	
•  server	maintains	no	information	
about	past	client	requests	

HTTP	Overview	

Protocols	that	maintain	
“state”	are	complex!	
•  past	history	(state)	must	be	
maintained	

•  if	server/client	crashes,	their	views	
of	“state”	may	be	inconsistent,	and	
must	be	reconciled	

aside	

Two	types	of	HTTP	messages:	request,	response	

HTTP	request	message:	
•  in	ASCII	(human-readable	format)	
•  general	format:	

HTTP	1.x	Request	Message	

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language: fr

(extra carriage return, line feed)

Carriage	return,	line	feed		
indicates	end	of	message	

example	

Method	Types	(HTTP	1.1)	
•  GET,	POST,	HEAD	
•  PUT	

•  uploads	file	in	entity	body	to	path	specified	in	URL	field	
• DELETE	

•  deletes	file	specified	in	the	URL	field	

Uploading	form,	input	alternatives:	
1. POST	method:	

•  web	pages	often	include	form	input	
•  input	is	uploaded	to	server	in	entity	body	

2. as	parameter	to	GET	URL	method:	
•  input	is	uploaded	in	URL	field	of	request	line:	
www.somesite.com/animalsearch?monkeys&banana	

input	parameters	

HTTP	1.x Response	Message	Example	

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

first	line:	status	line	
(protocol	status	code,	
status	phrase)	

header	
lines	

data,	e.g.,		
requested	
HTML	file	

blank	line	

HTTP	1.x	Response:	Status	Line	
HTTP-version		3-digit-response-code	Reason-phrase	
• 1XX	–	informational	
• 2XX	–	success	

•  200 OK:	request	succeeded,	requested	object	later	in	this	message	
• 3XX	–	redirection	

•  301 Moved Permanently:	requested	object	moved,	new	location	
	specified	later	in	this	message	(“Location:”	in	header)	

•  303 Moved Temporarily
•  304 Not Modified

• 4XX	–	client	error	
•  400 Bad Request:	request	message	not	understood	by	server	
•  404 Not Found:	requested	document	not	found	on	this	server	

• 5XX	–	server	error	
•  505 HTTP Version Not Supported

Client-side	States:	Cookies	

HTTP	is	“stateless”	
•  server	maintains	no	information	about	past	client	requests	
•  but	sometimes	it	may	be	useful	to	keep	per-client	states,	
for	example	for:	
•  authorization	

•  shopping	carts	

•  wish	list	

•  recommendations	

•  user	session	state	(Web	e-mail)	
	

States	or	user	ID	(to	look	up	server-side	states)	kept	
at	client	side	using	cookies	

Client-side	States:	Cookies	
Four	components:	
1.  cookie	header	line	in	the	HTTP	response	message	
2.  cookie	header	line	in	HTTP	request	message	
3.  cookie	file	kept	on	client	host	and	managed	by	client	browser	
4. back-end	database	at	Web	server	

client	 amazon	server	

cookie-	
specific	
action,	e.g.,	
wish	list	

cookie-	
specific	
action	

usual	http	response	+	
Set-cookie:	1678		

usual	http	request	msg	

usual	http	request	msg	
cookie:	1678

usual	http	response	msg	

usual	http	request	msg	
cookie:	1678

usual	http	response	msg	

server	
creates	ID	
1678	for	user	

Cookie	file	

amazon:	1678
ebay:	8734

Cookie	file	
	
ebay:	8734

Cookie	file	

amazon:	1678
ebay:	8734

one	week	later:	

“Abuse”	of	Cookies	
Excellent	marketing	opportunities	and	
concerns	for	privacy:	
•  cookies	permit	sites	to	learn	a	lot	about	you	
•  you	may	unknowingly	supply	personal	info	to	sites	
• advertising	companies	tracks	your	preferences	and	
viewing	history	across	sites,	example	scenario:	
•  ad	company	contracted	with	(1)	a	social	networking	site,	
(2)	a	book	store,	and	(3)	a	clothing	store	

•  you	view	your	friend’s	travel	photos	to	Hawaii	at	the	social	networking	site	

•  when	you	visit	the	bookstore,	a	travel	book	about	Hawaii	is	pushed	to	you	

•  when	you	visit	the	clothing	store,	a	swimming	goggle	is	pushed	to	you	

•  at	all	three	places	a	travel	agency’s	extra-low	price,	expiring	in	30	seconds,	
Hawaii	vacation	package	is	pushed	to	you	

Object	Request	Response	Time	
RTT	(round-trip	time):	time	for	a	
small	packet	to	travel		
from	client	to	server	and	back	
	
Response	time:	
•  1	RTT	to	initiate	TCP	connection	
•  1	RTT	for	HTTP	request	and		
the	first	few	bytes	of	HTTP		
response	to	return	

•  file	transmission	time	
•  ����� =	2RTT+transmit	time	

time	to		
transmit		
file	

initiate	TCP	
connection	

RTT	

request	file	
RTT	

file	received	

time	 time	

HTTP	1.0
HTTP	1.0	uses	non-persistent	connections:	
• at	most	one	object	is	sent	over	a	TCP	connection	
• object	transmission	completion	detected	by	recv()	
returning	0	(connection	closed)	

• why	is	this	not	a	good	design?	

Client	 Server	

SYN
SYN

SYN

SYN

ACK

ACK

ACK

ACK

ACK

DAT

DAT

DAT

DAT

FIN

ACK

0 RTT

1 RTT

2 RTT

3 RTT

4 RTT

Server	reads	from	disk	

FIN

Server	reads	from	disk	

Client	opens	TCP	connection	

Client	sends	HTTP	request	for	
HTML	

Client	parses	HTML	
Client	opens	TCP	connection	

Client	sends	HTTP	request	for	
image	

Image	begins	to	arrive	

HTTP	1.1
HTTP	1.1	uses	persistent	connections:	
•  server	leaves	connection	open	after	sending	responses	
•  subsequent	HTTP	messages	between	the	same	client/server	
to	fetch	multiple	objects	are	sent	over	the	same	connection	

Client	 Server	

ACK

ACK

DAT

DAT

ACK

0 RTT

1 RTT

2 RTT

Server	reads	from	disk	Client	sends	HTTP	request	for	
HTML	

Client	parses	HTML	
Client	sends	HTTP	request	for	
image	

Image	begins	to	arrive	

DAT
Server	reads	from	disk	

DAT

How	to	Mark	End	of	Message?		
Three	options:	

Content-Length	in	header:	

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

How	to	Mark	End	of	Message?		
Implied	length,	e.g.,	304	(cache	fresh)	never	has	
content	

Transfer-Encoding:	chunked	(HTTP	1.1)	
•  after	headers,	each	chunk	comprises	content	length	in	
hex,	CRLF,	then	body;	length	0	indicates	end-of-chunk	

HTTP/1.1 200 OK<CRLF>
Transfer-Encoding: chunked<CRLF>
<CRLF>
25<CRLF>
This is the data in the first chunk<CRLF>
1A<CRLF>
and this is the second one<CRLF>
0<CRLF>

Pipelined	and	Parallel	Connections	
Persistent	without	pipelining:	
• client	issues	new	request	only	when		
previous	response	has	been	received	

• one	RTT	for	each	referenced	object	

Persistent	with	pipelining:	
•  client	sends	requests	as	soon	as	it		
encounters	a	referenced	object	

• as	little	as	one	RTT	for	all	referenced	objects	
• default	in	HTTP	1.1

Browsers	can	open	parallel	TCP	connections	to	fetch	
referenced	objects	(even	in	HTTP	1.0)	

HTTP	Modeling	
Assume	Web	page	consists	of:	
• 1	base	HTML	page	(of	size	L	bits)	
• M	images	(each	also	of	size	L	bits)	

Non-persistent	HTTP:		
• M+1	TCP	connections	in	series	
•  response	time	= (M+1)*2*RTT + (M+1)*L/µ,	

µ:	path	speed	

Persistent	HTTP	(with	pipelining):	
• 2	RTTs	to	request	and	receive	base	HTML	file	
• 1	RTT	to	request	and	receive	M	images	
•  response	time = 3*RTT + (M+1)*L/µ	

HTTP	Modeling	
Assume	Web	page	consists	of:	
• 1	base	HTML	page	(of	size	L	bits)	
• M	images	(each	also	of	size	L	bits)	

Non-persistent	HTTP	with	n	parallel	connections	
•  suppose	M/n	evenly	
• 1	TCP	connection	for	base	file	
• M/n	parallel	connections	for	images	
• n-parallel	response	time	= (M/n + 1)*2*RTT + (M/n+1)*L/µ
compare:	
• non-persistent	response	time	= (M+1)*2*RTT + (M+1)*L/µ
• persistent	response	time = 3*RTT + (M+1)*L/µ	

HTTP	Response	time	(in	seconds)	
RTT	= 100	msec,	L = 5	Kbytes,	M = 10,	and	n = 5

For	low	bandwidth,	transmission	time	
dominates	over	connection	and	response	time	
⇒	performance	of	persistent	connections	

comparable	to	that	of	parallel	connections	

HTTP	Response	time	(in	seconds)	

For	larger	RTT,	TCP	establishment	and	slow	start	delays	
dominate	over	response	time	
⇒	persistent	connections	now	give	significant	improvement:	

particularly	in	high	bandwidth×delay	networks	

RTT	= 1 sec,	L = 5	Kbytes,	M = 10,	and	n = 5

HTTP/2

Based	on	Google’s	SPDY	(2009)	
RFC	7540	came	out	in	May	2015	(written	by	the	

two	authors	of	SPDY)	

Chrome	browser	already	has	SPDY	built-in	

Problems	with	HTTP	1.x:	
•  pipelining	still	suffers	from	head-of-line	blocking	
(if	first	item	is	large,	the	rest	has	to	wait)	

•  parallel	streams	solves	HoL	blocking,	but	on	bandwidth-
limited	channel,	too	many	streams	clog	up	the	channel		

HTTP/2
Some	changes	from	1.1:	
• headers	no	longer	in	text	format	
•  separate	control	and	data	headers	
•  stream	multiplexing	over	a	single	TCP	
connection:	
•  each	stream	has	an	ID,	data	is	tagged	with	
stream	ID	

•  each	stream	can	also	have	different	priority	

•  server	push:	don’t	have	to	wait	for	client	
to	parse	page	before	initiating	download	

• header	compression	

Performance	improvement:	up	to	64%	
reduction	in	page	load	time	

[Grigorik]	

Web	Caches	(Proxy	Server)	
Goal:	satisfy	client	request	without	involving	origin	server	
• user	sets	browser	to	direct	all	web	accesses	via	cache	
• browser	sends	all	HTTP	requests	to	cache	

•  if	object	is	not	cached,	cache	requests	
object	from	origin	server,		then	
returns	object	to	client	

•  else		cache	returns	object		
•  cache	acts	as	both	client	and	server	

•  typically	cache	is	installed	by	ISP		
(university,	company,	residential	ISP)	

•  must	be	transparent,	allow	for	plug-n-play	

client	

Proxy	
server	

client	

origin		
server	

Web	Caching	Example:	No	Caching		

Parameters:	
•  average	object	size	=	100,000	bits	
•  avg.	#	of	requests	to	servers	=	15/sec	
•  Internet	latency	between	a	router	on	the	
public	Internet	and	any	server	=	2	secs	

	

Resulting	performance:	
•  utilization	on	LAN	=	15%
•  utilization	on	access	link	=	100%�
over-utilized	link	causes	long	queue	(delay	of	minutes)	

•  total	delay 	=	Internet	delay	+	access	delay	+	LAN	delay	
	=	2	secs	+	minutes	+	milliseconds	

origin	
servers	

public	
	Internet	

institutional	
network	

10	Mbps	LAN	

1.5	Mbps		
access	link	

Possible	solution	
•  increase	access	link	bandwidth	to,	
say,	10	Mbps	(often	a	costly	upgrade)	

	
	

Performance:	
•  utilization	on	LAN	=	15%
•  utilization	on	access	link	=	15%
•  total	delay	=	Internet	delay	+	access	delay	+	LAN	delay	

	=	2	secs	+	msecs	+	msecs	

origin	
servers	

public	
	Internet	

institutional	
network	

10	Mbps	LAN	

10	Mbps		
access	link	

Web	Caching	Example:	No	Caching		
Another	solution:	install	cache	
•  assume	hit	rate	of	0.4

	

Performance:	
•  40%	requests	will	be	satisfied		
almost	immediately	

•  60%	requests	satisfied	by	origin	server	
•  utilization	of	access	link	reduced	to	60%,		
resulting	in	negligible	delays	(say	10	msecs)	

•  avg.	total	delay 	=	Internet	delay	+	access	delay	+	LAN	delay	
	=	.6*(2.01)	secs	+	msecs	<	1.4	secs	

origin	
servers	

public	
	Internet	

institutional	
network	 10	Mbps	LAN	

1.5	Mbps		
access	link	

cache	

Web	Caching	Example:	With	Caching		

Conditional	GET
Goal:	don’t	send	object	if	cache	has	up-to-date	version	

•  cache:		specifies	date	of	
cached	copy	in	HTTP	request	
If-modified-since: <date>

•  server:	response	contains		
no	object	if	cached	copy		
is	up-to-date:		
HTTP/1.0 304 Not Modified

	
	
May	be	used	with	or	without	TTL,	
TTL	hard	to	set,	depends	on	site	content	

cache	 server	

HTTP	request	msg	
If-modified-since: <date>

HTTP	response	
HTTP/1.0 304 Not Modified

object		
not		
modified	

HTTP	request	msg	
If-modified-since: <date>

HTTP	response	
HTTP/1.0 200 OK <data>

object		
modified	

Multiple	caches	may	form	a	
distributed	cache	

Instead	of	going	
directly	to	origin	
server,	a	cache	may	query	
one	or	more	other	caches	for	object	first,	
e.g.,	cse	cache	queries	ece	cache	first	

To	eliminate	frequent	inter-cache	query-reply,	each	
cache	may	push	an	index	of	its	contents	to	other	caches,	
i.e.,	ece	cache	tells	cse	cache	all	the	objects	it	is	holding	

Frequently,	this	“index”	is	in	the	form	of	a	Bloom	Filter	

Cooperative	Caching	 origin	
servers	

public	
	Internet	

cse	

cse	cache	

ece	

ece	cache	

Bloom	Filter	
An	efficient,	lossy	way	of	describing	a	set,	comprising:	
• a	bit	vector	of	length	w	
• a	family	of	independent	hash	functions	

•  each	maps	an	element	of	the	set	to	an	integer	in	[0, w)
	
To	insert	an	element:	
•  for	each	hash	function,	set	
the	bit	the	element	hashes	to	

	
To	search	for	an	element:	
•  for	each	hash	function,	examine	the	bit	the	element	hashes	to	
•  if	any	bit	is	not	set,	the	element	is	definitely	not	in	the	set	
•  if	all	the	bits	are	set,	the	element	may	be	in	the	set	(potential	
for	false	positive)	

insert:	

search:	

search:	

Bloom	Filter	
The	false	positive	rate	is	a	well-defined,	linear	function	of:	

1. width(w),	
2.  the	number	of	hash	functions,	and		
3.  the	number	of	elements	in	the	set	

• wider	filters	are	always	more	accurate	

• optimal	tradeoff	between	filter	storage	and	accuracy	is	when	
about	half	of	the	bits	are	set	

Bloom	Filters	also	useful	in	maintaining	p2p	supernode	
backbone	and	distributed	storage	in	data	center	network	

Variable	Delay	

browser		
cache	

DNS	
resolution	

TCP	
open	

1st	byte	
response	

Last	byte	
response	

Sources	of	variability	of	delay	
• browser	cache	hit/miss,	need	for	cache	revalidation	

• DNS	cache	hit/miss,	multiple	DNS	servers,	errors	
• TCP	handshake,	packet	loss,	high	RTT,	server	accept	queue	

• RTT,	busy	server,	CPU	overhead	(e.g.,	CGI	script)	
•  response	size,	receive	buffer	size,	congestion	

Limitations	of	Web	Caching	
Significant	fraction	(>50%)	of	HTTP	objects	are	
not	cacheable	

Why	not?	
•  dynamic	data:		stock	prices,	scores,	web	cams	
•  scripts:		results	based	on	passed	parameters	
•  use	of	cookies:		results	may	be	based	on	passed	data	
•  advertising	/	analytics:		owner	wants	to	measure	#hits	
•  random	strings	in	content	ensure	unique	counting	
• HTTPS:		encrypted	data	is	not	cacheable	
• multimedia:	object	larger	than	cache	or	not	allowed	to	be	
cached	due	to	intellectual	property	rights	

How	to	ensure	scalability	of	web	server	when	
content	is	not	cacheable?	

Content	Distribution	Networks	(CDNs)	

Streaming	large	files	(e.g.,	video)	from	
a	single	origin	server	in	real	time	requires	
large	amount	of	bandwidth	
	
Solution:	replicate	content	to	hundreds	
of	servers	throughout	the	Internet	
•  place	servers	in	edge/access	network	
•  content	pre-downloaded	to	servers	
• when	user	downloads	content,	
direct	user	to	the	server	closest	to	it	
•  placing	content	“close	to”	user	avoids	
network	delay	and	loss	of	long	paths	

origin	server		
in	N.	America	

CDN	distribution	
node	

CDN	server	in	
S.	America	

CDN	server	
in	Europe	

CDN	server	
in	Asia	

CDNs	vs.	Content	Owners	
Maintaining	your	own	network	of	such	servers	is	
expensive	(both	CAPEX	and	OPEX)	

CDN	providers	maintain	a	network	of	servers	and	sell	
content	replication	service	to	multiple	content	owners	
• example	of	content	owners:	ABC,	HBO,	Netflix	
• example	of	CDN	providers:	Akamai,	Limelight	

• Akamai	has	~25K	servers	spread	over	~1K	clusters	world-wide	

CDN	replicates	owners’	content	in	CDN	servers	

When	owner	updates	content,	CDN	updates	servers	

Some	large	content	owners	operate	their	own	CDNs:	
Amazon,	Google/YouTube,	Netflix	(virtual)	

Sample	
Delivery	
(Example	
Only)	

index.html,	
logo.gif	

shirtad.gif	

stadium.mp4,	
tvlogo.mp4	

shirtad.gif	

stadium.mp4,	
tvlogo.mp4	

index.html,	
logo.gif	

Why	don’t	we	
store	index.html	
and	shirtad.gif	at	
the	CDN	also?	

www1.cdi.ex

www2.cdi.ex

www3.cdi.ex

[Frank13]	

Content	Distribution	Network	

CDN	nodes	create	application-
layer	overlay	network	
	
Larger	CDNs	may	have	
their	own	WANs,	e.g.,	Google’s	
B4,	that	interconnect	with	the	
rest	of	the	Internet	like	any	
other	ISP’s	network	
	
CDN	directs	a	request	to	the	
server	closest	to	the	client	
(how?)	

[after	Walrand]	

Tier-1	Backbones	

ISPs	

IXPs	

Access	Aggregators	

CDNs:	e.g.,	Akamai,	
Amazon,	Google	

Client	Redirection	

How	to	direct	clients	to	a	particular	server?	

As	part	of	application:		HTTP	redirect	
•  pros:	application-level,	fine-grained	control	
•  cons:	additional	load	and	RTTs,	hard	to	cache	

As	part	of	naming:		DNS	
•  pros:	well-suited	to	caching,	reduce	RTTs	
•  cons:	relies	on	proxies	and	estimations,	not	accurate	

Pros	and	cons	of	each?	

DNS-based	Redirection	

Clients	are	directed	to	the	closest	server	as	part	of	
the	DNS	name	resolution	process:	
1.  client	asks	its	local	DNS	resolver	to	resolve	CDN’s	
server’s	name	

2.  the	local	DNS	resolver	is	directed	to	CDN’s	authoritative	
name	server	by	DNS	

3.  CDN’s	name	server	either	returns	the	address	of	server	
closest	to	the	DNS	resolver	or	an	ordered	list	of	
addresses,	ranked	by	distance	to	local	DNS	resolver	

CDN	Example	
HTTP	request	for		
home.ex/index.html
contains	
cdi.ex/stadium.mp4

DNS	query	for	cdi.ex

HTTP	request	for		
cdi.ex/stadium.mp4

1

2

5

origin	server	

client’s	local	name	server	

			nearby	CDN	server	

DNS	query	for	cdi.ex

CDN’s	authoritative	DNS	server	

3
4

Server	Selection	
How	to	choose	which	server	to	direct	a	client?	
•  server	load	
•  client-server	distance	

•  CDN	maintains	a	“map”,	estimating	distances	between	access	
ISPs	and	CDN	nodes	

•  CDN’s	name	server	uses	“map”	to	determine	server	closest	to	
the	local	DNS	resolver	

•  DNS	resolver	used	as	proxy	for	client	
�	inaccurate	location	
•  CDN	doesn’t	know	client’s	address	at	name	resolution	time	

•  distance	can	be	measured	using	different	metrics,	
e.g.,	latency,	loss	rate	�	only	estimated	

• delivery	cost	(ISP	pricing)	

