
Computer Networks


Lecture	8:	Content	Delivery	
Infrastructure:	Peer-to-Peer	

2015	Internet	Traffic	Analysis	

Sandvine’s	Global	Internet	Phenomena	Report:	
https://www.sandvine.com/trends/global-internet-phenomena/	

Content	Distribution	

Most	popular	content	can	only	be	served	if	it	is	
highly	replicated	across	multiple	servers	
•  reduce	load	at	origin	server	
•  improve	performance	for	end	users	
	
Most	Content	Delivery	Infrastructures	(CDI)	have	
a	large	number	of	servers	distributed	across	the	
Internet	and	cache	content	on	these	servers	

Content	Delivery	Infrastructure	

Peer-to-peer	(p2p):	
•  hybrid	p2p	with	a	centralized	server	
•  pure	p2p	
•  hierarchical	p2p	
•  end-host	(p2p)	multicast	
	

Content-Distribution	Network	(CDN)	



Hybrid	P2P	and	Centralized	Server	

Napster:	
•  P2P	file	transfer	
•  centralized	file	search:		
•  peers	register	IP	address	and	
content	at	a	central	index	server	

•  peers	query	central	index	server	
to	locate	content	

register	

query	
reply	

Pure	P2P	Architecture	
• no	always-on	server	
• arbitrary	end	systems	directly	communicate	
• peers	are	intermittently	connected	and	
change	IP	addresses	
• example:	Gnutella	
• highly	scalable	(why?)	
• but	difficult	to	manage	
•  how	to	find	peer?	
•  how	to	find	content?	

Gnutella	
•  no	centralized	index	server	
•  network	discovery	using	ping	and	
pong	messages	

•  file	discovery	using	query	and	
queryHit	messages	

•  both	ping	and	query	messages	are	
forwarded	using	the	flooding	
algorithm:	forward	on	all	links	
except	incoming	one	

•  previously	seen	messages	are	not	
further	forwarded	

•  new	version	of	gnutella	uses	
KaZaA-like	supernodes	

A

B

ping

pong

A

B

query

queryHit

Hierarchical	P2P	
FastTrack	used	by	KaZaA,	Groskster,	iMesh,	Morpheus	
•  hierarchical	architecture	
•  peers	divided	into	supernodes		
and	ordinary	nodes	

•  each	supernode	keeps	an	index		
of	all	its	children’s	files	

•  requests	are	sent	to	supernodes	
•  supernodes	query	each	other	for		
files	not	in	their	local	indices	

•  ordinary	nodes	are	“promoted”	
to	supernodes	if	they	have	enough	resources	
and	have	stayed	on	network	long	enough	

•  parallel	download	of	files	

reg

req



Hierarchical	P2P:	Skype	
Skype	forms	a	hierarchical	P2P:	
•  index	mapping	usernames	to	
IP	addresses	is	distributed	
across	supernodes	
•  searches	for	Skype	users	
are	sent	to	supernodes	

•  supernodes	query	each	other	
for	users	not	in	their	local	index	

• supernodes	choose	a	peer	to	act	
as	relay	for	two	NATted	users	

eDonkey/eMule	also	builds	a	
hierarchical	network,	but	the	“supernodes”	are	
dedicated	servers,	not	just	more	equal	peers	

open	host	

A

B

maintain a central index of files, so that users
can send requests directly to information hold-
ers. Unfortunately, centralization creates a sin-
gle point of failure that is easy to attack. For
example, if you were trying to phone Michael
Jordan, the simplest way to get his number
would ordinarily be to call directory assistance.
However, because directory assistance is central-
ized, your access can be easily blocked if Jordan
or someone else decides to remove his directory
entry, or if the service goes down.

Systems like Gnutella broadcast queries to every
connected node within some radius. Using this
method, you would ask all of your friends if any
of them knew Jordan’s number, get them to ask
their friends, and so on. Within a few steps, thou-
sands of people could be looking for his number.
Although this process would eventually find your
answer, it is clearly wasteful and unscalable.

Freenet avoids both problems by using a
steepest-ascent hill-climbing search: Each node
forwards queries to the node that it thinks is
closest to the target. You might start searching
for Jordan by asking a friend who once played
college basketball, for example, who might pass
your request on to a former coach, who could
pass it to a talent scout, who might pass it to Jor-
dan’s agent, who could put you in touch with the
man himself.

Requesting files. Every node maintains a routing
table that lists the addresses of other nodes and the
GUID keys it thinks they hold. When a node
receives a query, it first checks its own store, and if
it finds the file, returns it with a tag identifying
itself as the data holder. Otherwise, the node for-
wards the request to the node in its table with the
closest key to the one requested. That node then
checks its store, and so on. If the request is suc-

cessful, each node in the chain passes the file back
upstream and creates a new entry in its routing
table associating the data holder with the request-
ed key. Depending on its distance from the holder,
each node might also cache a copy locally. 

To conceal the identity of the data holder, nodes
will occasionally alter reply messages, setting the
holder tags to point to themselves before passing
them back up the chain. Later requests will still
locate the data because the node retains the true
data holder’s identity in its own routing table and
forwards queries to the correct holder. Routing
tables are never revealed to other nodes.

To limit resource usage, the requester gives each
query a time-to-live limit that is decremented at
each node. If the TTL expires, the query fails,
although the user can try again with a higher TTL
(up to some maximum). Because the TTL can give
clues about where in the chain the requester is,
Freenet offers the option of enhancing security by
adding an initial mix-net route before normal
routing. This effectively repositions the start of the
chain away from the requester.

If a node sends a query to a recipient that is
already in the chain, the message is bounced back
and the node tries to use the next-closest key
instead. If a node runs out of candidates to try, it
reports failure back to its predecessor in the chain,
which then tries its second choice, and so on.

Figure 1 depicts a typical request sequence. The
user initiates a request at node A and forwards the
request to B, which forwards it to C. Node C is
unable to contact any other nodes and returns a
“request failed” message to B. Node B then tries
its second choice, E, which forwards the request
to F. Node F forwards the request to B, which
detects a loop and bounces the message back.
Unable to contact any additional nodes, node F
backtracks one step to E, which forwards the
request to its second choice, D, and locates the
file. D returns the file via E and B back to A,
which sends it to the user. Along the way, E, B,
and A might also cache the file.

With this approach, the request homes in closer
with each hop until the key is found. A subsequent
query for this key will tend to approach the first
request’s path, and a locally cached copy can sat-
isfy the query after the two paths converge. Sub-
sequent queries for similar keys will also jump over
intermediate nodes to one that has previously sup-
plied similar data. Nodes that reliably answer
queries will be added to more routing tables, and
hence, will be contacted more often than nodes
that do not.

44 JANUARY • FEBRUARY 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Peer-to-Peer Networking

Figure 1.Typical request sequence.The request moves through the
network from node to node, backing out of a dead-end (step 3) and
a loop (step 7) before locating the desired file.

= Data request

= Data reply

= Request failed
Requester

Data holder

2 3

5
8

9
10

4

1

11

12

6
7

a b

c

d

e
f

Freenet:	Anonymous	P2P	
•  no	index	server	
•  requester	doesn’t	connect	
directly	to	content	provider	

•  instead,	content	is	passed	
in	a	bucket-brigade	fashion	
from	provider	to	requester	

•  subsequent	request	for	the	
same	content	is	satisfied	
from	the	nearest	cache	

•  requester	cannot	
differentiate	provider	from	
a	cache	holder	or	a	forwarding	
peer	(allows	for	anonymity)	

BitTorrent	
Content	distribution:	
•  content	is	divided	into	N		
pieces	of	16KB	each	and		
sent	to	N	peers	

	

Content	download:	
•  to	download	a	file,	a	peer	must	first	register	with	a	Tracker	
•  Tracker	returns	a	random	list	of	peers	who	have	the	file	
•  peer	opens	about	5	TCP	connections	to	the	provided	peers	
•  a	peer	will	only	upload	to	peers	from	whom	it	can	also	download	
(“tit-for-tat”)	

Summary:	P2P	Overlay	Networks	
P2P	applications/peers	need	to:	
•  track	identities	and	IP	addresses	of	peers	
•  there	may	be	a	large	number	of	peers	
•  peers	may	come	and	go	frequently	(high	churn)	
•  can’t	keep	track	of	all	peers	
•  route	messages	among	peers	
•  may	be	multi-hop	

	
Overlay	network	
•  peers	have	to	do	both	naming	and	routing	
•  IP	becomes	�just�	the	low-level	delivery	
substrate	
•  all	IP	routing	is	opaque	

application 
 

transport 
 

network 

 
link 
 

physical 



Modes	of	Delivery	
Unicast,	broadcast,	multicast	
	
Assuming	a	video	conference		

involving	S,	D2,	and	D3
	
•  unicasting:	two	copies	of	packets	from	S	are	sent	over	the	
SR	link	
•  broadcasting:	one	copy	of	packets	sent	from	S	to	all	
destinations,	but	packets	sent	to	D1	and	D4	unnecessarily	
•  multicasting:	one	copy	of	packets	from	S	is	sent	over	the	
SR	link,	R	then	sends	one	copy	each	to	D2	and	D3

D4

D3

D2

D1

RS

Multicast	Delivery	

Uses	of	multicasting:	
•  video	conferencing,	distance	learning,	distributed	
computation,	p2p	delivery,	multi-player	gaming,	etc.	

Multicast	design	goals:	
•  can	support	millions	of	receivers	per	multicast	group	
•  receivers	can	join	and	leave	any	group	at	any	time	
•  senders	don’t	know	all	receivers	
•  senders	don’t	have	to	be	members	of	a	group	to	send	
•  there	could	be	more	than	one	senders	per	group	

Multicast	Group	Management	
Issues	in	multicast	group	management:	
1.  how	to	advertise/discover	a	multicast	group?	
2.  how	to	join	a	multicast	group?	
3.  delivering	multicast	packets	to	the	group	
	

IP	multicast:	
• use	multicast	addresses	as	anonymous	rendezvous	point:		
•  IPv4:	Class-D	(224.0.0.0	to	239.255.255.255	[RPC	3171])	
•  265	M	multicast	groups	at	most	
•  IPv6:	multicast	prefix:	FF00::/8	

•  create	a	well-known	multicast	group	(address)	to	advertise/
discover	multicast	groups	

Multicast	Delivery	
IP	multicast:	

•  sender	sends	a	single	packet	to	the	IP	multicast	address	

•  multicast	data	is	sent	best-effort,	using	UDP	(why?)	

•  routers	deliver	packets	out	all	interfaces	that	has	a	receiver	
belonging	to	the	multicast	group	

•  receivers	join	groups	by	informing	upstream	routers,	e.g.,	
by	using	Internet	Group	Management	Protocol	(IGMP)	

•  not	uniformly	deployed	throughout	the	Internet	



Flood	and	Prune	
How	to	ensure	that	only	one	copy	of	packet	
from	S	is	forwarded	by	P3	to	P4?	
•  keep	track	of	packet	sequence	number	
•  only	forward	packet	that	comes	from	
shortest	path	from	(to)	source	

	
How	to	ensure	that	only	one	copy	of	packet	
from	S	reaches	P3?	
•  only	forward	if	self	is	on	neighbor’s	shortest	path	
from	(to)	source	

•  prune	(P3	tells	P2	not	to	forward	packets	from	S )	
•  must	be	done	per	source	if	there	are	multiple	sources,	

each	source	forming	its	own	multicast	group	and	
(logically)	its	own	multicast	tree	

•  must	periodically	flood	in	case	of	membership	change	

S

P3

P2P1

P4

End-host	Multicast	
Issues	in	multicast	group	management:	
1.  how	to	advertise/discover	a	multicast	group?	
2.  how	to	join	a	multicast	group?	
3.  delivering	multicast	packets	to	the	group	
	

End-host	(p2p)	multicast:	
•  uses	a	well-known,	centralized	rendezvous	server	
•  each	peer	must	register	with	rendezvous	server	
•  rendezvous	server	returns	a	(random)	list	of	peers	
•  each	peer	can	support	only	a	limited	number	of	peers	
•  avoid	sending	duplicate	messages	and	looping:	
•  if	single	source,	constructs	a	shortest-path	tree	rooted	at	source	
•  or	uses	flood-and-prune	algorithm	

•  prefers	peers	in	same	subnet	

P2P	Challenges	

Relative	to	IP	networking:	
• much	higher	function,	more	flexible	
• much	less	controllable/predictable	

Relative	to	other	parallel/distributed	systems:	
•  no	administrative	organizations	
•  few	guarantees	on	transport,	storage,	etc.	
•  partial	failure	
•  churn	
•  network	bottlenecks	and	other	resource	constraints	
•  trust	issues:	security,	privacy,	incentives	

Challenges	for	P2P	Networks	
1.  NAT	and	firewall:	
•  cannot	peer	with	a	host	you	can’t	address	

Solutions:	
•  Gnutella:	
•  querier	sends	PUSH	message	to	responder	over	the	p2p	network	
•  responder	opens	a	TCP	connection	to	querier	and	sends	over	the	file	
•  no	luck	if	both	are	behind	firewalls	

•  KaZaA,	eDonkey,	Skype:	
•  a	supernode	acts	as	relay	if	both	peers	are	behind	firewalls	

•  Standards	to	traverse	NAT	(and	firewall!):	UPnP,	STUN,	TURN	

2. Download/upload	bandwidth	asymmetry	
�	needs	bandwidth	subsidy	by	content	provider	or	CDN,	

or	suffer	long	download	time	


