
Computer Networks

Lecture	3:	
Sockets	Programming	(TCP	Server)	

Initialize	(TCP	Server	bind	addr)	
int sd;
struct sockaddr_in sin;

if ((sd = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0) {
 perror("opening TCP socket");
 abort();
}

memset(&sin, 0, sizeof (sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = htons(server_port);

if (bind(sd, (struct sockaddr *) &sin, sizeof (sin)) < 0) {
 perror(“bind");
 printf("Cannot bind socket to address\n");
 abort();
}	

Initialize	(Server	bind	addr)	
bind()	used	to	“label”	a	socket	with	an	IP	
address	and/or	port#	
• why	do	we	need	to	label	a	socket	with	a	port#?	
• must	each	service	have	a	well-known	port?	
• why	do	we	need	to	label	a	socket	with	IP	address?	
• what	if	we	want	to	receive	packets	from	all	
network	interfaces	of	the	server	machine?	

• why	not	always	receive	from	all	interfaces?	
• what	defines	a	connection?	
• mainly	used	by	TCP,	but	may	be	used	by	UDP	also	

If	we	call	bind()	with	server	port	0,	the	kernel	
will	assign	an	ephemeral	port#	to	the	socket	

Initialize	(TCP	Server	listen)	

if (listen(sd, qlen) < 0) {
 perror(“error listening");
 abort();
}

• specifies	max	number	of	pending	TCP	connections	
allowed	to	wait	to	be	accepted	(by	accept())	

Establish	(TCP	Server	accept)	
int addr_len = sizeof(addr);
int td;

td = accept(sd, (struct sockaddr *) &addr,
&addr_len);

if (td < 0) {
 perror("error accepting connection");
 abort();
}

• waits	for	incoming	client	connection	
• returns	a	connected	socket	�	different	from	the	
listened	to	socket	

Socket	Connection	Queues	

Stevens TCP/IP Illustrated v. 2 pp. 441, 461

sd	

td	

listen	queue	length	

sockets move to this queue�
when TCP SYNACK is ACKed,�

accept removes sockets �
from this queue

Socket	Connection	Queues	

Stevens TCP/IP Illustrated v. 2 pp. 441, 461

sd

td

TCP	SYN	denial	
of	service	attack	

Socket	API	Design	Questions	
Why	separate	listen()	and	accept()?	
	
Why	separate	bind()	and	listen()?

Receiving	Data	Stream	(TCP	Server)	
int
receive_packets(char *buffer, int blen, int *bytes)
{
 int left = blen - *bytes;
 received = recv(td, buffer + *bytes, left, 0);
 if (received > 0) *bytes += received;
 return received;
}

�  returns	the	number	of	bytes	actually	received	
�  0	if	connection	is	closed,	-1	on	error	
�  if	non-blocking:	-1	if	no	data,	with	errno	set	to	EAGAIN (or	
EWOULDBLOCK)	
� must	loop	to	ensure	all	data	is	received	
�  (in	this	example,	receive_packets()	itself	is	called	in	a	loop,	see	later	slide)	

Data	Stream	vs.	Datagram	

Stevens	

SOCK_STREAM	treats	data	as	one	stream,	not	chopped	
up	into	chunks	(above	the	transport	layer!)	

Calls	to	recv()	simply	return	however	much	data	is	
available	or	requested	(size	of	provided	buffer)	

To	receive	requested	amount	may	require	multiple	calls	

How	do	you	know	you	have	received	everything	sent?	

MSG_PEEK
recv(sd, buffer1, 1, MSG_PEEK);

Return	data	from	the	beginning	of	the	receive	queue	
without	removing	that	data	from	the	queue	

A	subsequent	call	to	recv()	will	return	the	same	data:	

recv(sd, buffer2, 1, 0);

buffer1	and	buffer2	contain	the	same	byte	
(if	the	byte	was	there	by	the	first	call)	

When	is	MSG_PEEK	useful?	

Connection	close	
Called	by	both	client	and	server	

close()	marks	socket	unusable	
• actual	tear	down	depends	on	TCP:	
• when	a	previous	binding	has	closed,	but	TCP	hasn’t	
released	the	port,	TCP	is	said	to	be	in	TIME_WAIT	state

• socket	option	SO_LINGER	can	be	used	to	
specify	whether	close()	should	
•  return	immediately,	

• wait	for	termination,	or	

•  abort	connection	

Socket	Options	
The	APIs	getsockopt()	and	setsockopt()	
are	used	to	query	and	set	socket	options	
	
Some	useful	options:	
• SO_LINGER
• SO_RCVBUF	and	SO_SNDBUF	used	to	set	buffer	sizes	
• SO_KEEPALIVE	tells	server	to	ping	client	periodically	
• SO_REUSEADDR	and	SO_REUSEPORT	

SO_REUSEADDR	
When	TCP	is	in	TIME_WAIT	state	and	a	socket	tries	to	
bind	to	the	same	address	and	port:	
bind: Address already in use

SO_REUSEADDR	allows	the	bind	to	proceed	

int sd;
int optval = 1;
if ((sd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
 perror("opening TCP socket");
 abort();
}
if (setsockopt(sd, SOL_SOCKET, SO_REUSEADDR,

&optval, sizeof(optval)) <0) {
 perror(“reuse address");
 abort();
}

SO_REUSEPORT	
Cases	when	we	want	to	bind	multiple	sockets	to	the	
same	address	and	port#	outside	TIME_WAIT	state:	
1. peers	accepting	and	initiating	connections	on	the	same	
port#,	and	

2. IP	multicast	applications	

Implementation:	
• on	Mac	OS	X	and	Winsocks,	SO_REUSEADDR	is	sufficient	
but	only	if	all	sockets	of	the	same	port	have	set	the	option	
• on	Linux,	SO_REUSEPORT	must	be	used;	again,	all	sockets	
of	the	same	port	must	set	this	option	
• Mac	OS	X	recognizes	SO_REUSEPORT,	Winsocks	doesn’t	

Multiple	I/O	Streams	
Where	does	a	process	get	its	input	from?	
•  device	(keyboard,	mouse,	touch,	mic,	sensors)	
•  network	sockets	
	
Input	arrives	asynchronously,	a	process	
doesn’t	know	when	its	data	will	arrive	
	
Alternatives	for	handling	asynchronous	I/O:	
• multithreading:	each	thread	handles	one	I/O	stream	(482)	
• I/O	multiplexing:	a	single	thread	handles	multiple	I/O	streams	

I/O	Multiplexing	
Two	stages	of	blocking:	
1. waiting	for	device	availability	(e.g.,	queueing	for	copy	machine)	
2. waiting	for	job	completion	(e.g.,	making	copies)	

Flavors:	
• blocking	I/O	(default):		wait	in	line,	wait	while	copies	are	made	
•  put	process	to	sleep	until	I/O	is	ready	
•  blocking	for	device	availability	and	I/O	completion	
•  by	calling	select()	or	poll()

• non-blocking	I/O:	continue	to	check	the	line,	wait	while	copying	
•  only	non-blocking	during	checks	for	device	availability	
•  by	manual	polling	or	signal	driven	(not	covered)	
•  I/O	completion	(device	use)	is	still	blocking	

• asynchronous	I/O:		give	job	to	copy	shop,	delivered	when	ready	
•  process	is	notified	when	I/O	is	completed	(not	covered)	

Non-Blocking	I/O:	Polling	
int nonblock=1;

if (ioctl(sd, FIONBIO, &nonblock) < 0) {
 perror(”ioctl(FIONBIO)");
 abort();
}

while (1) {
// both sd and stdin can be read from,
// without one blocking the other

 if (receive_packets(buffer, blen, &bytes)
 != /* full_amount or closed */) {

break;
 }

if (read_stdin(in_buf, in_len, &in_bytes)
 != 0) {

 break;
 }
}

get	socket	
data	

get	user	
input	

set	socket	
option	
non-blocking	

Why	is	this	code	not	efficient?	

Blocking	I/O:	select()
select(maxfd, readset, writeset, exceptset, timeout)

• waits	on	multiple	file	descriptors/sockets	or	timeout	
•  application	does	not	consume	CPU	cycles	while	waiting	
• maxfd	is	the	maximum	file	descriptor	number	+1

•  if	you	have	only	one	descriptor,	number	5,	maxfd	is	6

•  descriptors	provided	as	bitmask		
•  use	FD_ZERO,	FD_SET,	FD_ISSET,	and	FD_CLR		
to	manipulate	the	bitmasks	

•  ready	descriptors	returned	on	the	same	bitmask	
•  returns	as	soon	as	one	of	the	specified	sockets	is	ready		
to	be	read	or	written,	or	an	error	occurred,	or	timeout	
exceeded	
•  returns	#	of	ready	sockets,	-1	on	error,	
0	if	timed	out	and	no	device	is	ready	(what	for?)	

Blocking	I/O:	select()
fd_set read_set;
struct timeval time_out;
while (1) {
 FD_ZERO(read_set);
 FD_SET(stdin, read_set); /* not on Windows */
 FD_SET(sd, read_set);
 time_out.tv_usec = 100000; time_out.tv_sec = 0;

 err = select(MAX(stdin, sd) + 1, &read_set,
 NULL, NULL, &time_out);

 if (err < 0) {
 perror ("select");
 abort ();
 } else if (err > 0) {

 if (FD_ISSET(sd, read_set)) // get socket data
 if (receive_packets(buffer, blen, &bytes)
 != /* full_amount or closed */)

 break;
 if (FD_ISSET(stdin, read_set)) // get user input
 if (read_user(in_buf, in_len, &in_bytes) != 0)
 break;
 } else {
 /* process time out */
 }

}

set	up		
parameters	

for	select()

run	select()

interpret	
result	

MSG_WAITALL	
recv(sd, buffer, len, MSG_WAITALL);

Blocks	until	len	amount	of	data	received	or	process	
interrupted	by	a	signal	or	an	error	or	disconnect	
occurs	(no	effect	on	non-blocking	socket)	

Name	three	disadvantages	of	using	MSG_WAITALL?	
Or,	why	is	recv()	not	designed	to	block	until	the	full	
len	amount	of	data	has	arrived?	

A	blocking	socket	may	similarly	be	used	in	non-
blocking	mode	per-call	with	MSG_DONTWAIT,	but	
only	on	Linux	(≥	2.2)	and	Mac	OS	X,	not	Winsocks	

Use	of	both	is	discouraged	

Byte	Ordering	Problem	
struct sockaddr_in sin;

memset(&sin, 0, sizeof (sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = IN_ADDR;
sin.sin_port = htons(server_port);

Little-endian:		
Most	Significant	Byte	(MSB)	in	
high	address	(sent/arrives	later)		
(Intel	x86)	

Big-endian:		MSB	in	low	address	
(sent/arrives	first)		

Bi-endian:	switchable	endians		(ARM,	SPARC	V9)	

Byte	Ordering	Solution	
To	ensure	interoperability,	ALWAYS	translate	integers	
(short,	long,	int,	uint16,	uint32)	to/from	“network	
byte	order”	before/after	transmission	

Use	these	macros	(note:	32-bit	only):	
htons():	host	to	network	short	
htonl():	host	to	network	long	
ntohs():	network	to	host	short	
ntohl():	network	to	host	long	

Do	we	have	to	be	concerned	about	
byte	ordering	for	char	type?	

How	about	float	and	double?	See	XDR	(RFC4506)	

Naming	and	Addressing	
Example	fully-qualified	domain	name	(FQDN)	in	
character	string:	www.eecs.umich.edu	

Its	IP	address	in	dotted-decimal	(dd)	character	
string:	141.212.113.110

Its	IP	address	in	32-bit	binary:	
10001101 11010100 01110001 01101110

Why	do	we	need	names?		
Why	not	just	use	addresses	directly?	

Why	do	we	need	addresses	in	addition	to	names?	

Name	and	Address	Manipulation	
APIs	to	map	name	to/from	address:	
• FQDN	to	binary:	gethostbyname()	
• binary	to	FQDN:	gethostbyaddress()
•  gethostbyname()	and	gethostbyaddr()	both	return		
struct hostent	that	contains	both	FQDN	&	binary	

	
APIs	to	change	representation:	
• dd	to	binary:	inet_aton()	
• binary	to	dd:	inet_ntoa()	
	
To	map	FQDN	to	dd:	
gethostbyname()	then	inet_ntoa()	

Name	and	Address	Manipulation	
Other	useful	APIs:	
• gethostname():	returns	FQDN	of	current	host	

• getsockname():	returns	IP	address	bound	to	socket	
(in	binary):	used	when	address	and/or	port	is	not	specified	
(INADDR_ANY),		to	find	out	the	actual	address	and/or	
port	in	use	

• getpeername():	returns	IP	address	of	peer	(in	binary)	

RTFM:	http://web.eecs.umich.edu/~sugih/courses/eecs489/links.html

