
Lecture	2:	Network	Protocols	

and	Sockets	Programming	(TCP	Client)	

Computer Networks

What	is	the	Internet?	

Last	lecture	we	said	.	.	.	on	the	Internet	
• data	is	parceled	into	packets	
• each	packet	carries	a	destination	address	
• each	packet	is	routed	independently	
• packets	can	arrive	out	of	order	
• packets	may	not	arrive	at	all	

	

On	top	of	this	packet-switched	network,	the	Internet	

provides	two	types	of	delivery	service:	
• connectionless	(datagram,	UDP,	e.g.,	streaming	media,	games)	

• connection	oriented	(byte	stream,	TCP,	e.g.,	web,	email)	

What	is	the	Internet?	

Connection	oriented	service	provides:	
• end-to-end	reliability	(sender	retransmits	lost	packets)	

• in-sequence	delivery	(receiver	buffers	incoming	packets	

until	it	can	deliver	them	in	order)	

	

Some	fundamental	questions	about	

packet-switched	network:	
• how	does	a	router	know	which	router	to	forward	a	packet	to?	

• how	does	a	receiver	know	the	correct	ordering	of	packets?	

• how	does	a	sender	know	which	packet	is	lost	and	must	be	

retransmitted?	

The	answer	to	all	of	these	rely	on	network	protocols	

Network	Protocols	

Network	protocols	–	rules	(“syntax”	and	“grammar”)	

governing	communication	between	nodes	(sender,	

router,	or	receiver)	

• example	protocols?	

Protocols	define	the	format,	order	of	

messages	sent	and	received	among	network	

entities,	and	actions	taken	to	transmit	

message,	and	on	message	received	



Internet	Protocol	Stack	

application	protocol:	support	network	

applications	
•  HTTP,	SMTP,	FTP,	etc.	

transport	protocol:	endhost-to-endhost	

data	transfer	
•  TCP,	UDP	

network	protocol:	routing	of	

datagrams	from	source	to	destination	
•  IP,	routing	protocols	

link	layer	protocol:	data	transfer	

between	neighboring		network	elements	
•  Ethernet,	WiFi	

physical	protocol:	getting	bits	“on	the	wire”	
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Not	all	Network	

Elements	“Speak”	

All	Layers	

Why	Layering?	

Networks	are	complex!		Many	“pieces”:	
• applications	
• hosts	
•  routers	
•  links	of	various	media	

One	way	to	deal	with	complex	systems:		
• explicit	structure	separates	out	the	pieces	
• modularization	makes	system	easier	to	maintain	and	

update	
•  changing	the	implementation	of	a	layer	is	transparent	to	the	rest	

•  change	of	implementation	≠	change	of	service	definition!	



Creating	a	Network	Application	

Example	benefits	of	layering:	

• programmers	can	write	apps	that	
•  run	on	different	end	systems	and	

•  communicate	over	a	network	

•  e.g.,	browser	communicates	

with	web	server	

• no	software	written	for	

devices	in	network	core	
•  network	core	devices	do	no	

function	at	app	layer	

This	design	allows	for	rapid	

app	development	
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Server:		
• a	process	that	manages	

access	to	a	resource	
•  process	or	machine?	

• usually	has	a	well-known,	

permanent	IP	address	

• waits	for	connection	

• can	use	server	farm/cluster	or	

cloud	computing	for	scaling	
•  how	do	server	farms	maintain		

a	single	IP	address	externally?	

Client-Server	Computing	

Email	(SMTP)	uses	the	

client-server	paradigm		

Client:	
• a	process	that	needs	access	to	a	
resource	

• initiates	connection	with	server	

• may	be	intermittently	connected	

• may	have	dynamic	IP	addresses	

• clients	do	not	communicate	

directly	with	each	other	

	

Alternative(s)	to	client-server?	

Client-Server	Computing	

Email	(SMTP)	uses	the	

client-server	paradigm		

socket	socket	

Sockets	

Process	sends/receives	

messages	to/from	its	

socket	

	

Socket	analogous	to	door	
• sending	process	shoves	
messages	out	the	door	

• sending	process	relies	on	
transport	infrastructure	on	

the	other	side	of	the	door	to	

deliver	message	to	the	socket	

at	the	receiver	process	
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Sockets	API	
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An	Application	Programmer	Interface	(API)	to	

access	the	network	

• set	of	function	prototypes,	
data	structures,	and	constants	

• allows	programmer	to	learn	

once,	write	anywhere	

• greatly	simplifies	the	job	of	

application	programmers	

Addressing	Socket	

A	server	host	may	support	many	simultaneous	

application	processes,	each	with	one	or	more	sockets	

• web	servers,	for	example,	uses	a	different	socket	for	each	

connecting	client		

	

When	a	packet	arrives,	how	does	the	kernel	know	

which	socket	to	forward	it	to?	

• by	the	host’s	unique	32-bit	IP	address?	
• is	the	IP	address	sufficient	to	identify	a	socket?	

How	Demultiplexing	Works	

Host	receives	IP	packets	
•  each	packet	has	source	and	
destination	IP	addresses	

•  each	packet	carries	1	transport-
layer	segment	

•  each	segment	has	source	and	

destination	port	numbers	

Host	uses	IP	addresses	&	port	

numbers	to	direct	segment	to	

the	appropriate	socket	

source	port	#	 dest	port	#	

32	bits	

application	

data		

(message)	

other	header	fields	

TCP/UDP	segment	format	
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delivering	received	segments	

to	correct	socket	

Demultiplexing	at	rcv	host:	 transmitting	data	from	various	

sockets,	enveloping	data	with		

headers	(later	used	for		

demultiplexing)	

Multiplexing	at	send	host:	



Connection-oriented	Demux	

Socket	identifier	includes	both	the	IP	addresses	and	

port	numbers	associated	with	the	socket	on	the	host	

Example	port	numbers:	
•  HTTP	server:	80
•  Mail	server:	25
•  See	/etc/services
	

Receiver	kernel	uses	all	four	values	to	direct	packet	to	

appropriate	socket	

Somewhere	in	the	socket	structure:	

	

	

	

	

	

TCP	Server: 	TCP	Client:	

Socket	Addresses	

matched	against	incoming	

packet	destination	

copied	to	outgoing	

packet	destination	

Sockets	

What	exactly	are	sockets?	
•  an	endpoint	of	a	connection	
•  identified	by	the	IP	address	and	port	number	of	both	sender	and	receiver	

• API	similar	to	UNIX	file	I/O	API	(provides	a	file	descriptor)	
	

Berkeley	sockets	is	the	most	popular	network	API	
•  runs	on	Linux,	Mac	OS	X,	Windows	

•  can	build	higher-level	interfaces	on	top	of	sockets	
•  e.g.,	Remote	Procedure	Call	(RPC)	

	

Based	on	C,	single	threaded	model	
•  does	not	require	multiple	threads	

Process	File	Table	and	

Socket	Descriptor	

Stevens	TCP/IP	Illustrated	v.	2	p.	446	

sd

protocol switch table



Types	of	Sockets	

Different	types	of	sockets	implement	

different	service	models	
•  data	stream	vs.	datagram	

Data	stream	socket	(e.g.,	TCP)	
•  connection-oriented	
•  reliable,	in	order	delivery	
•  at-most-once	delivery,	no	duplicates	

•  used	by	e.g.,	smtp,	http,	ssh	

Datagram	socket	(e.g.,	UDP)	
•  connectionless	(just	data-transfer)	
•  “best-effort”	delivery,	possibly	lower	variance	in	delay	

•  used	by	e.g.,	IP	telephony,	streaming	audio,	

streaming	video,	multi-player	gaming,	etc.	

Data	Stream	vs.	Datagram	

Stevens	

Data	stream	treats	data	as	one	continuous	stream,	not	

chopped	up	into	separate	“chunks”	

Simplified	E-mail	Delivery	

You	want	to	send	email	to	friend@cs.usc.edu
	

At	your	end,	your	mailer	(client)	
•  translates	cs.usc.edu	to	its	IP	address	
(128.125.1.45)	
•  decides	to	use	TCP	as	the	transport	protocol	(Why?)	

•  creates	a	socket	
• connects	to	128.125.1.45	at	
the	well-known	SMTP	port	#	(25)	
•  parcels	out	your	email	into	packets		

• sends	the	packets	out	

Simplified	E-mail	Delivery	

On	the	Internet,	your	packets	got:	
•  transmitted	

•  routed	
•  buffered	
•  forwarded,	or	

•  dropped	

At	the	receiver,	smtpd	(server)	
• must	make	a	“receiver”	ahead	of	time:	

•  creates	a	socket	
• decides	on	TCP	
• binds	the	socket	to	smtp’s	well-known	port	#	

• listens	on	the	socket	
• accepts	your	smtp	connection	requests	
• recves	your	email	packets	



Stream/TCP	Sockets	
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Server	

When	a	TCP	server	accepts	a	client,	it	returns	a	
new	socket	to	communicate	with	the	client	

• allows	server	to	talk	to	multiple	clients	

•  source	address	&	port	number	used	to	distinguish	clients	

Initialize	(TCP	Client)	
int sd; 
if ((sd = socket(PF_INET, SOCK_STREAM, 
IPPROTO_TCP)) < 0) { 

  perror("socket"); 
  printf("Failed to create socket\n"); 
  abort(); 
} 
 

socket()creates	a	socket	data	structure	
and	attaches	it	to	the	process’s	file	descriptor	table	

	

Handling	errors	that	occur	rarely	usually	consumes	

most	of	systems	code	

Establish	(TCP	Client)	

unsigned short server_port; 
char *servername;           // both assume initialized 
struct sockaddr_in sin; 
 
struct hostent *host = gethostbyname(servername); 
 
memset(&sin, 0, sizeof(sin)); 
sin.sin_family = AF_INET; 
sin.sin_addr.s_addr = *(unsigned long *) host->h_addr_list[0]; 
sin.sin_port = htons(server_port); 
 
if (connect(sd, (struct sockaddr *) &sin, sizeof (sin)) < 0) { 
  perror("connect"); 
  printf("Cannot connect to server\n"); 
  abort(); 
} 
 
connect() initiates	connection	(for	TCP)	

Sending	Data	Stream	(TCP	Client)	

int  
send_packets(char *buffer, int buffer_len)  
{ 
 sent_bytes = send(sd, buffer, buffer_len, 0); 

 
 if (send_bytes < 0) 
  perror(“send”); 

 
 return 0; 

} 

•  returns	how	many	bytes	are	actually	sent	

•  must	loop	to	make	sure	that	all	is	sent	(unless	blocking	I/O)	

What	is	blocking	and	non-blocking	I/O?	

Why	do	you	want	to	use	non-blocking	I/O?	


