
Lecture	2:	Network	Protocols	

and	Sockets	Programming	(TCP	Client)	

Computer Networks

What	is	the	Internet?	

Last	lecture	we	said	.	.	.	on	the	Internet	
• data	is	parceled	into	packets	
• each	packet	carries	a	destination	address	
• each	packet	is	routed	independently	
• packets	can	arrive	out	of	order	
• packets	may	not	arrive	at	all	

	

On	top	of	this	packet-switched	network,	the	Internet	

provides	two	types	of	delivery	service:	
• connectionless	(datagram,	UDP,	e.g.,	streaming	media,	games)	

• connection	oriented	(byte	stream,	TCP,	e.g.,	web,	email)	

What	is	the	Internet?	

Connection	oriented	service	provides:	
• end-to-end	reliability	(sender	retransmits	lost	packets)	

• in-sequence	delivery	(receiver	buffers	incoming	packets	

until	it	can	deliver	them	in	order)	

	

Some	fundamental	questions	about	

packet-switched	network:	
• how	does	a	router	know	which	router	to	forward	a	packet	to?	

• how	does	a	receiver	know	the	correct	ordering	of	packets?	

• how	does	a	sender	know	which	packet	is	lost	and	must	be	

retransmitted?	

The	answer	to	all	of	these	rely	on	network	protocols	

Network	Protocols	

Network	protocols	–	rules	(“syntax”	and	“grammar”)	

governing	communication	between	nodes	(sender,	

router,	or	receiver)	

• example	protocols?	

Protocols	define	the	format,	order	of	

messages	sent	and	received	among	network	

entities,	and	actions	taken	to	transmit	

message,	and	on	message	received	

Internet	Protocol	Stack	

application	protocol:	support	network	

applications	
•  HTTP,	SMTP,	FTP,	etc.	

transport	protocol:	endhost-to-endhost	

data	transfer	
•  TCP,	UDP	

network	protocol:	routing	of	

datagrams	from	source	to	destination	
•  IP,	routing	protocols	

link	layer	protocol:	data	transfer	

between	neighboring		network	elements	
•  Ethernet,	WiFi	

physical	protocol:	getting	bits	“on	the	wire”	

application

transport

network

link

physical

Layering	in	the	IP	Protocols	

Internet	Protocol	

Transmission	Control	

Protocol	(TCP)	

User	Datagram		

Protocol	(UDP)	

SMTP	HTTP	

Cellular	

Data	

WiFi	Ethernet	

NTP	DNS	FTP	

source

application
transport
network

link
physical

destination

application
transport
network

link
physical

network
link

physical

link
physical

router

switch

Not	all	Network	

Elements	“Speak”	

All	Layers	

Why	Layering?	

Networks	are	complex!		Many	“pieces”:	
• applications	
• hosts	
•  routers	
•  links	of	various	media	

One	way	to	deal	with	complex	systems:		
• explicit	structure	separates	out	the	pieces	
• modularization	makes	system	easier	to	maintain	and	

update	
•  changing	the	implementation	of	a	layer	is	transparent	to	the	rest	

•  change	of	implementation	≠	change	of	service	definition!	

Creating	a	Network	Application	

Example	benefits	of	layering:	

• programmers	can	write	apps	that	
•  run	on	different	end	systems	and	

•  communicate	over	a	network	

•  e.g.,	browser	communicates	

with	web	server	

• no	software	written	for	

devices	in	network	core	
•  network	core	devices	do	no	

function	at	app	layer	

This	design	allows	for	rapid	

app	development	

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Server:		
• a	process	that	manages	

access	to	a	resource	
•  process	or	machine?	

• usually	has	a	well-known,	

permanent	IP	address	

• waits	for	connection	

• can	use	server	farm/cluster	or	

cloud	computing	for	scaling	
•  how	do	server	farms	maintain		

a	single	IP	address	externally?	

Client-Server	Computing	

Email	(SMTP)	uses	the	

client-server	paradigm		

Client:	
• a	process	that	needs	access	to	a	
resource	

• initiates	connection	with	server	

• may	be	intermittently	connected	

• may	have	dynamic	IP	addresses	

• clients	do	not	communicate	

directly	with	each	other	

	

Alternative(s)	to	client-server?	

Client-Server	Computing	

Email	(SMTP)	uses	the	

client-server	paradigm		

socket	socket	

Sockets	

Process	sends/receives	

messages	to/from	its	

socket	

	

Socket	analogous	to	door	
• sending	process	shoves	
messages	out	the	door	

• sending	process	relies	on	
transport	infrastructure	on	

the	other	side	of	the	door	to	

deliver	message	to	the	socket	

at	the	receiver	process	

process	

TCP	with	

buffers,	

variables	

host	or	

server	

process	

TCP	with	

buffers,	

variables	

host	or	

server	

Internet	

controlled	

by	OS	

controlled	by	

app	developer	

Sockets	API	

physical	

data-link	

network	

transport	

application	
socket	API	

An	Application	Programmer	Interface	(API)	to	

access	the	network	

• set	of	function	prototypes,	
data	structures,	and	constants	

• allows	programmer	to	learn	

once,	write	anywhere	

• greatly	simplifies	the	job	of	

application	programmers	

Addressing	Socket	

A	server	host	may	support	many	simultaneous	

application	processes,	each	with	one	or	more	sockets	

• web	servers,	for	example,	uses	a	different	socket	for	each	

connecting	client		

	

When	a	packet	arrives,	how	does	the	kernel	know	

which	socket	to	forward	it	to?	

• by	the	host’s	unique	32-bit	IP	address?	
• is	the	IP	address	sufficient	to	identify	a	socket?	

How	Demultiplexing	Works	

Host	receives	IP	packets	
•  each	packet	has	source	and	
destination	IP	addresses	

•  each	packet	carries	1	transport-
layer	segment	

•  each	segment	has	source	and	

destination	port	numbers	

Host	uses	IP	addresses	&	port	

numbers	to	direct	segment	to	

the	appropriate	socket	

source	port	#	 dest	port	#	

32	bits	

application	

data		

(message)	

other	header	fields	

TCP/UDP	segment	format	

Multiplexing/Demultiplexing	

client	

IP:B	

P1

client	

	IP:	A	

P1	P2P4

server	

IP:	C	

SP:	9157
DP:	80

P5 P6 P3

S-IP:	A	

D-IP:C	

SP:	9157
DP:	80

D-IP:C	

S-IP:	B	

SP:	5775
DP:	80

D-IP:C	

S-IP:	B	

=	process	=	socket	

delivering	received	segments	

to	correct	socket	

Demultiplexing	at	rcv	host:	 transmitting	data	from	various	

sockets,	enveloping	data	with		

headers	(later	used	for		

demultiplexing)	

Multiplexing	at	send	host:	

Connection-oriented	Demux	

Socket	identifier	includes	both	the	IP	addresses	and	

port	numbers	associated	with	the	socket	on	the	host	

Example	port	numbers:	
•  HTTP	server:	80
•  Mail	server:	25
•  See	/etc/services
	

Receiver	kernel	uses	all	four	values	to	direct	packet	to	

appropriate	socket	

Somewhere	in	the	socket	structure:	

	

	

	

	

	

TCP	Server: 	TCP	Client:	

Socket	Addresses	

matched	against	incoming	

packet	destination	

copied	to	outgoing	

packet	destination	

Sockets	

What	exactly	are	sockets?	
•  an	endpoint	of	a	connection	
•  identified	by	the	IP	address	and	port	number	of	both	sender	and	receiver	

• API	similar	to	UNIX	file	I/O	API	(provides	a	file	descriptor)	
	

Berkeley	sockets	is	the	most	popular	network	API	
•  runs	on	Linux,	Mac	OS	X,	Windows	

•  can	build	higher-level	interfaces	on	top	of	sockets	
•  e.g.,	Remote	Procedure	Call	(RPC)	

	

Based	on	C,	single	threaded	model	
•  does	not	require	multiple	threads	

Process	File	Table	and	

Socket	Descriptor	

Stevens	TCP/IP	Illustrated	v.	2	p.	446	

sd

protocol switch table

Types	of	Sockets	

Different	types	of	sockets	implement	

different	service	models	
•  data	stream	vs.	datagram	

Data	stream	socket	(e.g.,	TCP)	
•  connection-oriented	
•  reliable,	in	order	delivery	
•  at-most-once	delivery,	no	duplicates	

•  used	by	e.g.,	smtp,	http,	ssh	

Datagram	socket	(e.g.,	UDP)	
•  connectionless	(just	data-transfer)	
•  “best-effort”	delivery,	possibly	lower	variance	in	delay	

•  used	by	e.g.,	IP	telephony,	streaming	audio,	

streaming	video,	multi-player	gaming,	etc.	

Data	Stream	vs.	Datagram	

Stevens	

Data	stream	treats	data	as	one	continuous	stream,	not	

chopped	up	into	separate	“chunks”	

Simplified	E-mail	Delivery	

You	want	to	send	email	to	friend@cs.usc.edu
	

At	your	end,	your	mailer	(client)	
•  translates	cs.usc.edu	to	its	IP	address	
(128.125.1.45)	
•  decides	to	use	TCP	as	the	transport	protocol	(Why?)	

•  creates	a	socket	
• connects	to	128.125.1.45	at	
the	well-known	SMTP	port	#	(25)	
•  parcels	out	your	email	into	packets		

• sends	the	packets	out	

Simplified	E-mail	Delivery	

On	the	Internet,	your	packets	got:	
•  transmitted	

•  routed	
•  buffered	
•  forwarded,	or	

•  dropped	

At	the	receiver,	smtpd	(server)	
• must	make	a	“receiver”	ahead	of	time:	

•  creates	a	socket	
• decides	on	TCP	
• binds	the	socket	to	smtp’s	well-known	port	#	

• listens	on	the	socket	
• accepts	your	smtp	connection	requests	
• recves	your	email	packets	

Stream/TCP	Sockets	

time	

initialize	

establish	

data	xfer	

terminate	

socket ()

connect ()

send ()

recv ()

close ()

Client	

socket ()

bind ()

listen ()
accept ()

recv ()

close ()

send ()

Server	

When	a	TCP	server	accepts	a	client,	it	returns	a	
new	socket	to	communicate	with	the	client	

• allows	server	to	talk	to	multiple	clients	

•  source	address	&	port	number	used	to	distinguish	clients	

Initialize	(TCP	Client)	
int sd;
if ((sd = socket(PF_INET, SOCK_STREAM,
IPPROTO_TCP)) < 0) {

 perror("socket");
 printf("Failed to create socket\n");
 abort();
}

socket()creates	a	socket	data	structure	
and	attaches	it	to	the	process’s	file	descriptor	table	

	

Handling	errors	that	occur	rarely	usually	consumes	

most	of	systems	code	

Establish	(TCP	Client)	

unsigned short server_port;
char *servername; // both assume initialized
struct sockaddr_in sin;

struct hostent *host = gethostbyname(servername);

memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = *(unsigned long *) host->h_addr_list[0];
sin.sin_port = htons(server_port);

if (connect(sd, (struct sockaddr *) &sin, sizeof (sin)) < 0) {
 perror("connect");
 printf("Cannot connect to server\n");
 abort();
}

connect() initiates	connection	(for	TCP)	

Sending	Data	Stream	(TCP	Client)	

int
send_packets(char *buffer, int buffer_len)
{
 sent_bytes = send(sd, buffer, buffer_len, 0);

 if (send_bytes < 0)
 perror(“send”);

 return 0;

}

•  returns	how	many	bytes	are	actually	sent	

•  must	loop	to	make	sure	that	all	is	sent	(unless	blocking	I/O)	

What	is	blocking	and	non-blocking	I/O?	

Why	do	you	want	to	use	non-blocking	I/O?	

