
EECS	487:	Interactive	

Computer	Graphics	

Lecture	32:	Interactive	Visual	Effects	
•  Shadow	Map	

•  Ambient	Occlusion	

Shadow	Mapping	

A	point	is	lit	if	it	is	“visible”	

from	the	light	source	

•  similar	to	visible	surface	

determination	

Shadow	computation	by	

simulating	eye	at	light	

position	

Durand	

Shadow	Mapping	

Requires	2	passes	through	the	pipeline	
First	pass:	compute	shadow	map	

(depth	of	closest	pixels	to	the	light)		

•  render	scene	from	light	

• populate	z-buffer	that	we’ll	use	as	our	shadow	map	

•  store	the	distance	from	light	to	nearest	object	

• white	is	far,	black	is	near	
shadow	map	

depth	value	

Foley	et	al.,	Akenine-Möller02,Durand	

scene	from	light’s	point	of	view	

Shadow	Mapping	

Second	pass:	shadow	determination	

using	the	shadow	map	

For	each	pixel	

• do	normal	z-buffer	computation	

to	check	visibility	from	eye	

•  if	visible,	look	up	distance	to	light	
•  perspective	project	visible	pixels	from	eye	

space	back	to	light	space	

•  lookup	depth						stored	in	shadow	map	

•  if	distance	to	light					is	(epsilon)	greater	
than	stored	depth,	pixel	is	in	shadow	

Foley	et	al.,	Akenine-Möller02,Durand	

scene	from	eye’s	point	of	view	



Shadow	Mapping	with	OpenGL	

Create	the	shadow	map:	

•  render	the	scene	with	eye	at	light	position	

•  save	the	resulting	z-buffer	and	projection	matrix,	

these	are	the	shadow	map	and	shadow	projection	matrix	

•  glReadPixels(…)	to	read	back	z-buffer	
•  glGetDoublev(GL_MODELVIEW_MATRIX, …),	
glGetDoublev(GL_PROJECTION_MATRIX, …),	
glGetIntergerv(GL_VIEWPORT, …) 
	

Render	scene:	

•  render	the	scene	from	the	actual	viewpoint	

•  save	both	color	and	z-buffers	and	viewpoint	projection	matrix	

Yu	

Determine	eye-space,	light-space	correspondences:	

•  unproject	every	pixel	in	the	z-buffer	to	obtain	object	
coordinates,	using	gluUnproject(…)	and	the	
viewpoint	projection	matrix	

•  project	the	object	coordinates	into	the	shadow	map	using	

gluProject(…)	and	the	shadow	projection	matrix	

Shadow	rendering:	

•  compare	the	resulting	z	values	with	the	corresponding	

content	of	the	shadow	map	and	update	the	color	buffer	to	

draw	the	projected	shadows	

• write	back	the	modified	color	buffer	using	glDrawPixels(…) 

Yu	

Shadow	Mapping	with	OpenGL	

Limitations	of	Shadow	Maps	

1. Limited	field	of	view,	no	omni-directional	light	

2. Limited	depth	resolution	

3. Shadow	map	aliasing	

4. Hard	shadows	only	(with	jaggies)	

(or	soft	shadows	only	if	PCF	is	used)	

Durand	

Limited	Field	of	View	

What	if	a	point/ 	is	outside	field	of	

view	of	the	shadow	map?	

	

Use	six	shadow	maps,	to	form	a	cube	

enclosing	the	light	

•  requires	a	separate	rendering	
pass	for	each	shadow	map!	

Durand	



Limited	Depth	Resolution	

Due	to	z-fighting,	distance	to	light	and	stored	depth	
may	not	compare	correctly	

•  add	an	ε	to	depth	in	shadow	map	

to	prevent	unintended	(self-)shadowing	

•  in	computing	shadow	map	move	geometry	

away	from	light	by	a	small	amount	

•  choosing	correct	ε	value	is	tricky	
	

Precision	error	also	

possible	with	

projection	shadows	

Merrell	

ε	precision	
error	

Shadow	Map	Aliasing	

Results	from	sampling	rates	

mismatch	(re-sampling	

problem):	sampling	rate	(pixel	

size)	of	light	is	mismatched	to	

that	of	the	eye	

Kilgard	

Shadow	Map	Aliasing	

Least	aliasing	when	light	frustum	is	reasonably	

well	aligned	with	the	eye’s	view	frustum:	the	

ratio	of	sample	sizes	is	close	to	1
•  best	case	if	eye	and	light	frusta	are	nearly	identical	
(“miner’s	lamp”	case)	

•  but	only	limited	scene	setups	satisfy	this	

• worst	case	is	when	light	is	shining	at	the	viewer	

(“deer-in-the-headlights”	case)	

•  also	known	as	the	“dueling	frusta” problem	

Kilgard	

Shadow	Map	Aliasing	

Shadow	“fragment”	is	also	

stretched	when	eye	is	close	to	

the	surface	but	light	is	far	away	

• surfaces	that	are	nearly	edge-on	
to	the	eye	face	the	light	directly	

• results	in	under-sampling	of	near	

field	in	shadow	map	

projected	

fragment	

reference	image	

Durand,Merrell,RTR3	
standard	shadow	

map	



Shadow	Map	Anti-Aliasing	

Possible	solutions:	

1.  increase	shadow	map	resolution	

2.  split	shadow	map	into	several	slices	

3.  use	asymmetric	frustrum	for	shadow	map	rendering	

4.  average	nearby	pixels	

Durand,RTR3	

Shadow	Map	Anti-Aliasing	

Asymmetric	frustrum	for	shadow	map	rendering	
	

	

	

	

	

	

	

	

	

	

	

	

different	projections,	same	resolution	

RTR3,Martin&Tan	

Percentage-Closer	Filtering	

Results	in	aliased	shadow	

Anti-aliasing	by	averaging	several	nearby	shadow	map	fragments	

What	to	average?		Depth	values?	

•  No,	1.2 < 49.8,	but	so	is	22.9:	still	a	binary	result,	no	anti-aliased	blurring	

Instead,	perform	depth	test	for	a	neighborhood	of	pixels	

•  then	compute	percentage	of	lit	pixels	

•  (this	makes	ε	computation	even	trickier!)	

Durand,Schulze	

depth values

If so, 
occludes 
surface

(5/9)

Soft-Shadows	with	Shadow	Map	

Look	up	several	nearby	shadow	map	fragments,	

not	just	one	

Compute	average	shadow	value	for	the	neighborhood	

•  use	immediate	neighbors	for	anti-aliasing	

•  use	neighbors	further	afield	for	soft-shadows	

Sampling	strategy:	grid,	jittered,	or	adaptive	for	

improved	performance	



Percentage-Closer	Filtering	

Supported	in	hardware	for	small	(2×2)	filters	
•  shadow	map	coordinates	generated	using	projection	matrix	

•  shadow	map	stored	as	texture:	modern	hardware	

permits	tests	on	texture	values	

•  can	use	larger	filters	with	additional	rendering	passes	

Durand,Schulze	

Ambient	Occlusion	
All	the	real-time	shadow	algorithms	

assume	directional	lighting	only	

Ambient	occlusion	is	shadows	due	to	

global	indirect/ambient	lighting	

Can	be	pre-computed	using	global	

illumination	and	baked	into	a	texture	

�	limited	to	static	scenes	

Yang	et	al.,	

TP3	

Ambient	Occlusion	

Two	approaches:	

• Screen-space	Ambient	Occlusion	(SSAO)	

• Screen-space	Directional	Occlusion	(SSDO)	

Basic	idea:	

• approximate	indirect	lighting	using	a	uniform,	

distant	environment	irradiance	

• simulate	the	darkening	effect	where	ambient	light	

is	blocked	by	other	geometry	in	the	scene	

•  compute	the	portion	of	the	hemisphere	

around	a	point	that	is	blocked	

•  purely	geometric,	independent	of	lighting	

conditions	or	viewing	direction	

TP3	

SSAO	

At	each	point	find	fraction	of	

hemisphere	that	is	occluded	

•  visible	fraction:	1-occlusion	
• modulate	diffuse	shading	by	

(1−occlusion)	
• cd = md sd max((n•l), 0) (1−occlusion)

Alternately,	to	avoid	ray	tracing,	

sample	a	circle	around	point	

• compare	depth	of	samples	

against	z-buffer	content	
• sample	is	not	occluded	if	

depth	< z-buffer	content	
Bala,	Yang,	Yip,	Xu	

−Z 



SSDO	

SSAO	plus	EM	and	indirect	lighting:	

•  instead	of	modulating	diffuse	shading	by	(1−occlusion),	
add	up	light	contribution	from	unoccluded	directions	only	

• compute	average	un-occluded	direction	(“bent	normal”,	b)	
•  lookup	light/environment	map	using	the	“bent	normal”	

�	result	in	light-colored	shadow	instead	of	just	grey	

• (can	add	a	single	bounce	off	facing	occluding	surfaces)	

Alternately,	to	avoid	ray	tracing,	

•  sample	uniformly	across	the	hemisphere	

above	point,	this	gives	N	light	vectors	

•  sample	each	light	vector	at	

random	offsets	from	the	point	

•  compare	depth	of	samples	against	z-buffer	content	
•  sample	is	not	occluded	if	depth	< z-buffer	content	

Ritschel,Grosch,Seidel09	

 n
b 

p

Shadow	and	Environment	Maps	

Basic	method	to	add	realism	to	interactive	rendering:	

instead	of	ray	tracing,	use	image-based	methods	

• Shadow	maps:	image-based	hard	shadows	[Williams78]	
•  many	recent	extensions	

•  widely	used	even	in	software	rendering	(RenderMan)	

• Environment	maps:	image-based	complex	lighting	

[Blinn&Newell76]	
•  huge	amount	of	recent	work	

Together,	give	many	“realistic”	effects	

•  but	cannot	be	easily	combined!	

Ramamoorthi	


