
EECS	487:	Interactive	
Computer	Graphics	
Lecture	31:	Interactive	Visual	Effects	
•  Stencil	Buffer	
•  Framebuffer	Object	(see	sample	code:	
http://web.eecs.umich.edu/~sugih/courses/
eecs487/common/notes/gl3+webgl.tgz)	

Clipped	Projected	Shadows	
Once	the	projection	matrix	is	determined:	
•  draw	receiving	planar	polygon	
•  disable	z-buffering	
•  draw	projected	occluder	
•  in	some	dark	color	

•  but	only	where	receiver	is	drawn	
•  using	stencil	buffer	

A!

a

b

c
d

B

A

Light

Viewer

Current scan line

Foley	et	al.	

Stencil	Buffer	
Restrict	drawing	to	certain	portion	of	the	screen		
•  stencil	test:	for	each	fragment,	check	the	
corresponding	stencil	buffer	content	before	rendering		
• main	idea:	fragment	rendering	depends	on	contents	of	
the	stencil	buffer	passing	the	test	
•  (not	on	“content	of	the	fragment	passing	the	test”)	

Akenine-Möller02	

render	image:	 stencil	buffer	 result	

pass	

fail	

foreground	background	

Stencil	Buffer	

Stencil	buffer	usually	8	bits/pixel	
	
Not	all	stencil	buffer	bits	are	tested,	only	those	
corresponding	to	the	fragment	bits	
	
Several	actions	are	possible	depending	on	
outcome	of	stencil	test	
•  including	modifying	the	stencil	buffer	contents	
themselves	

Stencil	Buffer	
First	specify:	
•  criterion	for	passing	
•  the	reference	value	to	test	against	the	stencil	buffer	content	
	
void
glStencilFunc(GLenum func, GLint ref, GLuint mask);

•  mask:	which	bits	of	ref	and	stencil	buffer	content	to	perform	the	test	on	

•  func:
•  GL_NEVER
•  GL_LESS:	passes	if	(ref & mask) < (stencil & mask)
•  GL_EQUAL:	passes	if	(ref & mask) == (stencil & mask)
•  …			
•  GL_ALWAYS	

Stencil	Buffer	

Next	specify	what	to	do	to	stencil	buffer	content	if:	
• fail:	the	test	fails	stencil	test,	or		
• zfail:	passes	stencil	test	but	fails	depth	test,	or		
• zpass:	passes	both	stencil	and	depth	tests	

void
glStencilOp(GLenum fail, GLenum zfail, GLenum zpass);

•  actions:	
•  GL_KEEP 	keep	the	current	value	of	stencil	buffer	
•  GL_ZERO	 	set	the	stencil	buffer	value	to	zero			
•  GL_REPLACE		set	the	stencil	buffer	value	to	ref,	

	as	specified	with	glStencilFunc()
•  GL_INCR	 	increment	the	current	stencil	buffer	value	(clamped	to	max)	
•  GL_DECR	 	decrement	the	current	stencil	buffer	value	(clamped	to	0)	
•  GL_INVERT	 	bitwise	invert	the	current	stencil	buffer	value	

glStencilFunc()	and
glStencilOp()	can	be	
used	together	to	initialize	
stencil	buffer	content	

Stencil	Test	Example	

//	draw	lit	receiver	on	both	color	and	stencil	buffers	
glStencilFunc(GL_ALWAYS, 1, 1);
glStencilOp(GL_ZERO, GL_ZERO, GL_REPLACE);

glCallList(receiver); //	set	stencil	to	1 everywhere	receiver	is	drawn	

both	color	and	
stencil	buffers	

Want:	

void glStencilFunc(GLenum func, GLint ref, GLuint mask);
void glStencilOp(GLenum fail, GLenum zfail, GLenum zpass);

GL_REPLACE:	set	the	
stencil	buffer	value	to	ref

Stencil	Test	Example	

//	draw	unlit	receiver	in	shadowed	area,	onto	color	buffer	only	
glDepthFunc(GL_LEQUAL);
glDisable(GL_LIGHTING);
glStencilFunc(GL_EQUAL, 1, 1); 	//	draw	if	corresponding	stencil	

	//	pixel	is	1,	else	don’t	draw	
glColor3f(0.0f, 0.0f, 0.0f); 	//	color	it	black	
glPushMatrix();
glMultMatrixf((GLfloat*)shadowM);//	shadow	projection	matrix	
glCallList(occluder); 	//	transform+draw	onto	color	buffer	in	black	

	//	where	stencil	buffer	is	1
glPopMatrix();
glDepthFunc(GL_LESS);

void glStencilFunc(GLenum func, GLint ref, GLuint mask);
void glStencilOp(GLenum fail, GLenum zfail, GLenum zpass);

Akenine-Möller02	

Planar	Reflections	
Reflections	also	influence	visual	
perception	of	spatial	relationships	
and	help	increase	realism	

For	plane	at	z = 0,	apply	glScalef(1,1,-1)	
•  back	facing	polygons	become	front	facing!	
•  lights	must	be	reflected	as	well	
	
When	reflection	surface	
is	smaller	than	reflected	
image,	reflected	image	
need	to	be	clipped	(how?)	

z Rendering	Planar	Reflections	
Render:	
1.  the	mirror	plane	into	the	stencil	buffer	
2.  the	scaled	(1,1,-1)	model,	but	masked	with	the	stencil	buffer	
3.  the	mirror	plane	(semi-transparent)	
4.  the	unscaled	model	

Alternate	method:	
instead	of	scaling,	
1.  reflect	the	camera	

position	and	direction	
in	the	plane	

2.  render	reflection	
image	from	there	

Akenine-Möller02,Nielsen	

Framebuffer	Object	

The	accumulation	buffer	has	been	deprecated	since	
OpenGL	3.1

Instead,	use	framebuffer	object	with	floating-point	
pixel	format	(for	the	increased	resolution)

OpenGL	Default	Framebuffer	
Framebuffer:	a	collection	of	images	that	store	
information	representing	the	image	OpenGL	
eventually	displays	

OpenGL	default	framebuffer	consists	of:	
•  color	buffer(s):	contains	info	about	the	color	of	each	pixel,	there	
could	be	up	to	4	color	buffers:	two	for	double	buffering,	which,	
together	with	the	other	2,	enable	stereoscopic	rendering	
•  depth	(or	z-)	buffer:	stores	depth	info	of	each	pixel,	allowing	
closer	pixels	to	be	drawn	over	those	farther	away	
•  stencil	buffer:	for	masked	rendering	
• multisample	buffer:	for	anti-aliasing	
•  accumulation	buffer:	for	GFX	
•  auxiliary	color	buffer(s):	for	off-screen	rendering	

subsumed	by	
FBO	since	
OpenGL	3

Framebuffer	Object	(FBO)	

A	mechanism	for	rendering	to	other	than	the	default	
framebuffer,	e.g.,	render-to-texture,	as	accumulation	
buffer,	or	other	intermediate	buffers	for	GFX		

Each	FBO	can	have	texture	object	or	renderbuffer	
object	attached	to	it	

Attachment	is	different	from	binding:	
• binding	binds	an	object	to	a	context,	the	states	of	the	
context	are	mapped	to	the	states	of	the	object	
(changing	one	changes	the	other)	
• attachment	simply	connects	two	objects	together	

FBO	Graphicallly	

Texture Object

Texture Image

Renderbuffer Object

Renderbuffer 
Image

Attachment	points	

[Ahn]	

Texture	vs.	Renderbuffer	Object	
A	texture	object	(we’re	familiar	with	from	texturing):	
•  contains	one	or	more	images	
•  the	images	must	all	have	the	same	format	
•  but	could	be	of	different	sizes	(for	mipmapping,	e.g.)	
•  used	for	render-to-texture	
•  can	be	used	to	render	from/with	
•  can	be	bound	to	shader	variables	

A	renderbuffer	object:	
•  contains	a	single	2D	image,	no	mipmaps,	cubemap	faces,	etc.	
•  optimized	to	be	used	as	render	target	
•  can	only	be	attached	to	an	FBO	and	be	rendered	to	
• mostly	used	as	depth	and	stencil	buffers	
•  also	for	offscreen-rendering	and	for	pixel	transfer	(see	PBO)	
•  cannot	be	used	to	render	from/with	
•  cannot	be	bound	to	shader	variables	

Framebuffer	Object	(FBO)	
Similar	to	the	default	framebuffer,	an	FBO	
have	attachment	points	for:	
• n	(≥1)	color-buffers	(GL_COLOR_ATTACHMENTi)	
•  glGetFramebufferAttachmentParameter(…,
GL_MAX_COLOR_ATTACHMENTS, …)	for	value	of n

• 1	depth-buffer	(GL_DEPTH_ATTACHMENT)	
• 1	stencil-buffer	(GL_STENCIL_ATTACHMENT)	
• also	GL_DEPTH_STENCIL_ATTACHMENT
•  (all	may	be	multisampled)	

•  (no	accumulation	buffer)	

Different	attachment	points	impose	different	
limitations	on	the	format	of	attachable	image	

Framebuffer	Object	Setup	
As	with	other	OpenGL	objects,	first	call	glGen*():	
glGenFramebuffers(GLsizei n, GLuint *fbods);

Next	bind	FBO	descriptor	to	a	type	of	framebuffer	

glBindFramebuffer(target, fbod);
// target	is	GL_FRAMEBUFFER	(for	read/write),	
// GL_DRAW_FRAMEBUFFER,	or		
// GL_READ_FRAMEBUFFER,	allowing	for		
// glReadPixels()	and	glDraw*()	to	operate	
// on	separate	framebuffers	
// fbod=0	is	reserved	for	the	default	framebuffer,	use	fbod=0	
// to	unbind	current	framebuffer	and	revert	to	the	default	framebuffer	

Subsequently,	all	rendering	goes	to	the	bound	framebuffer	
• glViewport(0, 0, width, height)	render	to	the	whole	buffer	

Texture	Object	Setup	
To	set	up	a	texture	object	as	the	render	target:	
int tod;
glGenTextures(1, &tod);
glBindTexture(GL_TEXTURE_2D, tod);
glTexImage2D(GL_TEXTURE_2D, level, internalformat,

width, height, border, format, GL_UNSIGNED_BYTE, 0);
// the	last	argument	is	0,	no	texture	needs	be	copied	
// level:	can	render	to	different	levels	of	a	mipmap,	but	no	auto	mipmap	
// with	TexParam GL_GENERATE_MIPMAP	b/c	no	texture	is	copied,	
// instead	use	glGenerateMipmap()	after	base	image	is	modified	

and	attach	it	to	the	framebuffer:
glFramebufferTexture2D(target, attachment_point,

GL_TEXTURE_2D, tod, level);
// target:	GL_FRAMEBUFFER	(== GL_DRAW_FRAMEBUFFER,	not	read	&	write)	
// or	GL_READ_FRAMEBUFFER	
// tod==0	detaches	texture	object	

Renderbuffer	Object	Setup	
To	set	up	a	renderbuffer	object	as	the	render	target:	
int rbod;
glGenRenderbuffers(1, &rbod);
glBindRenderbuffer(GL_RENDERBUFFER, rbod);

allocate	storage	for	the	renderbuffer:	
glRenderbufferStorage(GL_RENDERBUFFER,

internalformat, width, height);
// internalformat:	depending	on	attachment:	GL_RGBA,	GL_RGB32F,	etc.		
//			or	GL_DEPTH_COMPONENT,	GL_STENCIL_INDEX,	GL_DEPTH_STENCIL
// see	http://www.opengl.org/wiki/Image_Format#Required_formats	
// width, height:	must	be	< GL_MAX_RENDERBUFFER_SIZE
// use	glGet(GL_MAX_RENDERBUFFER_SIZE, …)

and	attach	it	to	the	framebuffer	
glFramebufferRenderbuffer(target, attachment_point,

GL_RENDERBUFFER, rbod);

Framebuffer	Check	

Before	using	the	framebuffer	target,	check	that	it	is	set	
up	properly	and	all	objects	are	correctly	attached:	
GLenum glCheckFramebufferStatus(GL_FRAMEBUFFER);

you	want	to	see	GL_FRAMEBUFFER_COMPLETE	returned	

If	the	framebuffer	is	not	complete,	any	reading/writing	
command	will	fail

See	the	wiki	page	for	completeness	rules	and	
corresponding	error	messages:	
http://www.opengl.org/wiki/Framebuffer_Object	

Render-to-Texture	
Used	to	generate	dynamic	texture,	e.g.,	for	reflection	
effect,	dynamic	environment	maps,	shadow	maps	
	
Remember	to:	
•  glEnable(GL_TEXTURE_2D)	before	applying	the	texture	(use	
glPushAttrib(GL_ENABLE_BIT)	and	glPopAttrib())	

•  set	the	texture	parameters	for	minification	(and	
magnification	and	texture	coordinate	wrap	around	behavior,	
as	necessary)	

• and	set	the	texture	application	mode:	GL_REPLACE,	
GL_BLEND,	etc.	

Render-to-Texture	
Even	if	you	only	need	the	color	buffer,	you	may	
have	to	provide	depth	and	stencil	buffers	if	the	
rendering	process	needs	them	
• unless	you	want	to	store	a	shadow	map,	the	depth	buffer	is	
usually	a	renderbuffer	(faster)	

Can	be	combined	with	PBO	for	post-processing	FX	
such	as	image-based	motion	blur	and	depth-of-field	

[Ahn]	

Post-processing	FX	
Creating	multiple	images	takes	time	
	
Instead,	simulate	depth	of	field	and	
motion	blur	as	image	post-
processing	
	
Depth	of	field,	for	depths	away	from	
focal	distance:	
a.  forward	mapping:	color	of	a	pixel	is	

spread	out	to	its	circle	of	confusion	as	a	
function	of	depth	

b.  reverse	mapping:	color	of	a	pixel	is	
averaged	from	neighboring	pixels,	
neighborhood	size	a	function	of	depth	

Yang,	Yip,	Xu09	

Post-processing	FX	
Motion	blur:	
• during	rendering,	render	to	a	
velocity	buffer	the	screen-space	
velocity	of	object	at	each	pixel	
• during	post-processing,	each	pixel	is	
blurred	by	averaging	pixels	in	a	line	
segment	with	equally	spaced	
sampling	point	
• the	direction	and	length	of	the	line	
segment	is	a	function	of	the	velocity	

• can	also	be	simulated	in	object	
space	by	stretching	vertices	over	
time		

Yang,	Yip,	Xu09	

Read	and	Render	Targets	
In	the	app,	you	can	specify	which	buffer	to	draw	to	or	
read	from	per	bound	framebuffer	using:	

glDrawBuffer(GL_COLOR_ATTACHMENTi);
glReadBuffer(GL_COLOR_ATTACHMENTi);

or	specify	more	than	one	draw	buffers:	

glDrawBuffers(#buffers, buffers[]);

For	example,	to	use	buffer	0	as	texture	to	render	to	buffer	1:	

glReadBuffer(GL_COLOR_ATTACHMENT0);
glDrawBuffer(GL_COLOR_ATTACHMENT1);
glDrawArrays(…);

Render	Target	in	Shader	

If	you	attach	a	texture	object	tod	at	mipmap	level	0	to	
color	attachment	1:	
glFramebufferTexture(GL_FRAMEBUFFER,

GL_COLOR_ATTACHMENT1, tod, 0);	

your	fragment	shader	specifies	this	render	target	with:	

layout(location = 1) out vec3 color;

To	render	to	multiple	targets,	attach	multiple	color	
attachments	and	specify	a	different	location	for	each	
fragment	shader	variable,	e.g.,	temperature,	stress	
level,	etc.	rendered	as	false	color	into	different	targets	

Framebuffer	Blitting	

Blitting	::=	copying	a	rectangular	area	of	pixels	
from	one	framebuffer	to	another	

•  can	blit	between	FBOs	

•  can	also	blit	between	an	FBO	and	the	default	
framebuffer,	in	either	direction	

•  blitting	is	more	limited	than	pixel	transfer	in	format	
conversion	(see	http://www.opengl.org/wiki/Framebuffer_Object)	

Framebuffer	Blitting	Example	
To	copy	from	buffer	1	of	your	qo	to	the	default	
framebuffer,	for	example:	
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
glBindFramebuffer(GL_READ_FRAMEBUFFER, fbod);
glReadBuffer(GL_COLOR_ATTACHMENT1);
glBlitFramebuffer(srcX0, srcY0, srcX1, srcY1, dstX0,
dstY0, dstX1, dstY1, GLbitfield mask, GLenum filter);
// mask:	GL_COLOR_BUFFER_BIT,	GL_DEPTH_BUFFER_BIT,	or	
// GL_STENCIL_BUFFER_BIT
// filter:	if	the	image	needs	to	be	stretched,	interpolate	by	
// GL_NEAREST	or	GL_LINEAR

For	color	buffer,	only	GL_READ_FRAMEBUFFER	is	copied	
to	GL_DRAW_FRAMEBUFFER
Multi	renders	if	more	than	one	GL_DRAW_FRAMEBUFFER	
is	specified	

Using	FBO	as	Accumulation	Buffer	
What	we	need:	a	framebuffer	object	with:	
• a	texture	object	with	GL_RGBA	internalformat	to	be	our	per-
frame	color	buffer	(attachment	0)	

• a	renderbuffer	object	with	GL_RGB32F	internalformat	to	be	
our	accumulation	buffer	(attachment	1)		
• a	renderbuffer	object	to	serve	as	our	depth	(and	stencil)	buffer	

Init:	clear	our	“accumulation	buffer”	(to	0):	
glDrawBuffer(GL_COLOR_ATTACHMENT1);
glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT);
glDrawBuffer(GL_COLOR_ATTACHMENT0);

// for per-frame rendering

Using	FBO	as	Accumulation	Buffer	
After	each	frame	is	rendered	to	color	buffer	0:	
• draw	a	quad	that	fills	the	screen	(modify	model-view	and	
projection	matrices)	onto	the	accumulation	buffer,	textured	
with	color	buffer	0	already	bound	to	GL_TEXTURE_2D:	

	glPushAttrib(GL_ENABLE_BIT);
 glDisable(GL_DEPTH_TEST); glDisable(GL_LIGHTING);
 // enable blending as per below
 glDrawBuffer(GL_COLOR_ATTACHMENT1);
 glEnable(GL_TEXTURE_2D);
 glDrawArrays(…);
 glDrawBuffer(GL_COLOR_ATTACHMENT0);
 glPopAtrib();

• blend	color	buffer	0	with	content	of	“accumulation	buffer”:	
	glEnable(GL_BLEND);
 glBlendColor(0.0, 0.0, 0.0, weight);	
	 	// same	weight	used	with	glAccum()
 glBlendFunc(GL_CONSTANT_ALPHA, GL_ONE);
 glBlendEquation(GL_FUNC_ADD);

Using	FBO	as	Accumulation	Buffer	

To	display	the	accumulation	buffer:	
•  bind	our	FBO	to	GL_READ_FRAMEBUFFER,	set	color	
attachment	1	as	the	read	buffer	
•  bind	the	default	FBO	(0)	to	GL_DRAW_FRAMEBUFFER
•  call	glBlitFramebuffer()
•  bind	the	default	FBO	(0)	to	GL_FRAMEBUFFER	and	display	

See	fbo.cpp	for	example	

