EECS 487: Interactive
Computer Graphics

Lecture 31: Interactive Visual Effects
» Stencil Buffer

* Framebuffer Object (see sample code:
http://web.eecs.umich.edu/~suqgih/courses/

eecs487/common/notes/gl3+webgl.tgz)

Stencil Buffer

Restrict drawing to certain portion of the screen
« stencil test: for each fragment, check the
corresponding stencil buffer content before rendering

- main idea: fragment rendering depends on contents of
the stencil buffer passing the test
+ (not on “content of the fragment passing the test")

render image: stencil buffer

pass

background foreground

Akenine-Mollero2

Clipped Projected Shadows

Once the projection matrix is determined:

- draw receiving planar polygon Light
~
« disable z-buffering INNR
RN
- draw projected occluder oA
- in some dark color RN R

« but only where receiver is drawn
« using stencil buffer

Current scan line

Viewer

Stencil Buffer

Stencil buffer usually 8 bits/pixel

Not all stencil buffer bits are tested, only those
corresponding to the fragment bits

Several actions are possible depending on

outcome of stencil test
« including modifying the stencil buffer contents
themselves

. ngtenc%lFunc()and
Stencil Buffer Stencil Buffer e e e e

stencil buffer content

First specify:
« criterion for passing
- the reference value to test against the stencil buffer content

Next specify what to do to stencil buffer content if:
+ fail:the test fails stencil test, or

- zfail: passes stencil test but fails depth test, or

void - zpass: passes both stencil and depth tests

glStencilFunc (GLenum func, GLint ref, GLuint mask);

void

+ mask: which bits of re £ and stencil buffer content to perform the test on glStencilOp (GLenum fail, GLenum zfail, GLenum zpass);
. func: * actions:

+ GL_NEVER + GL_KEEP keep the current value of stencil buffer

- GL_LESS:passesif (ref & mask) < (stencil & mask) + GL_ZERO set the stencil buffer value to zero

+ GL_EQUAL: passesif (ref & mask) == (stencil & mask) - GL_REPLACE set the stencil buffer value to ref,

LI as specified with glstencilFunc ()

* GL_ ALWAYS + GL_INCR increment the current stencil buffer value (clamped to max)

+ GL_DECR decrement the current stencil buffer value (clamped to 0)
+ GL_INVERT bitwise invert the current stencil buffer value

Stencil Test Example Stencil Test Example O
LT

void glStencilFunc (GLenum func, GLint ref, GLuint mask);

void glStencilOp (GLenum fail, GLenum zfail, GLenum - ss) ;

void glStencilFunc (GLenum func, GLint ref, GLuint mask);

GL_REPLACE: set the void glStencilOp (GLenum fail, GLenum zfail, GLenum zpass);

Want: stencil buffer value to re f

O /| draw unlit receiver in shadowed area, onto color buffer only

glDepthFunc (GL_ LEQUAL) ;

E glDisable (GL LIGHTING) ;

glstencilFunc (GL, EQUAL, 1, 1); //drawifcorresponding stencil
[pixel is 1, else don't draw

E glColor3f(0.0f, 0.0f, 0.0f); //coloritblack

// draw lit receiver on both color and stencil buffers

1StencilFunc (GL ALWAYS, 1, 1); both color and glPushMatrix () ;
ngt neil0p (GL il Z‘ERO‘“ G£., ZEP,iO ’,‘L REPLACE) 5 stencil buffers glMultMatrixf ((GLfloat*)shadowM) ;// shadow projection matrix
g enciip{bh_ ! — roTR_ Ry glCallList () ; [/ transform+draw onto color buffer in black

/] where stencil bufferis 1

glPopMatrix () ; i ! /
glDepthFunc (GL LESS) ;

glCalllist (receiver); [[setstencilto 1 everywhere receiverisdrawn

Planar Reflections

Reflections also influence visual
perception of spatial relationships
and help increase realism

Rendering Planar Reflections

Render:
1. the mirror plane into the stencil buffer

2. the scaled (1,1,-1) model, but masked with the stencil buffer
3. the mirror plane (semi-transparent)

4. the unscaled model

For plane atz =0, apply g1scalef (1,1,-1)
« back facing polygons become front facing!

« lights must be reflected as well Alternate method:
instead of scaling,

1. reflect the camera
position and direction
in the plane

el
‘ = ;‘ ’» 2. render reflection

image from there
B

When reflection surface
is smaller than reflected
image, reflected image
need to be clipped (how?)

Akenine-Mélleroz,Nielsen

OpenGL Default Framebuffer

Framebuffer: a collection of images that store
information representing the image OpenGL
eventually displays

Framebuffer Object

The accumulation buffer has been deprecated since OpenGL default framebuffer consists of:

OpenGL 3.1 « color buffer(s): contains info about the color of each pixel, there

Instead, use framebuffer object with floating-point could be up to 4 color buffers: two for double buffering, which,
i

. - . together with the other 2, enable stereoscopic rendering
pixel format (for the increased resolution) « depth (or z-) buffer: stores depth info of each pixel, allowing

closer pixels to be drawn over those farther away
- stencil buffer: for masked rendering
» multisample buffer }

subsumed by
FBO since
OpenGL 3

« accumulation buffer
- auxiliary color buffer(s)

Framebuffer Object (FBO)

A mechanism for rendering to other than the default
framebuffer, e.g., render-to-texture, as accumulation
buffer, or other intermediate buffers for GFX

Each FBO can have texture object or renderbuffer
object attached to it

Attachment is different from binding:

* binding binds an object to a context, the states of the
context are mapped to the states of the object
(changing one changes the other)

* attachment simply connects two objects together

Texture vs. Renderbuffer Object

A texture object (we're familiar with from texturing):
+ contains one or more images
« the images must all have the same format
« but could be of different sizes (for mipmapping, e.g.)

» used for render-to-texture
« can be used to render from/with
 can be bound to shader variables

A renderbuffer object:

« contains a single 2D image, no mipmaps, cubemap faces, etc.

- optimized to be used as render target

- can only be attached to an FBO and be rendered to

+ mostly used as depth and stencil buffers

« also for offscreen-rendering and for pixel transfer (see PBO)

« cannot be used to render from/with
« cannot be bound to shader variables

FBO Graphicallly

Texture Object FrameBuffer Object (FBO)
_+ GL_COLOR ATTACHMENTD I Renderbuffer Object
Texture Image =~ < A
[oL_coLor ATTACHMENTT ¢
] Renderbuffer
Image
| GL_COLOR_ATTACHMENTn |
Renderbuffer Object \—/
) EE— / N
—+ GL_DEPTH_ATTACHMENT 11. \
Renderbuffer | | ™1 Texture Image
Image
| GL_STENCIL_ATTACHMENT | K
p.d S

Texture Object

Attachment points

[Ahn]

Framebuffer Object (FBO)

Similar to the default framebuffer, an FBO
have attachment points for:

* n(>1) color-buffers (GL._COLOR_ATTACHMENTI)

* glGetFramebufferAttachmentParameter (..,
GL _MAX COLOR ATTACHMENTS, ..) forvalueof n

* 1 depth-buffer (GL_ DEPTH ATTACHMENT)

* 1 stencil-buffer (GL._STENCIL ATTACHMENT)
* also GL DEPTH STENCIL ATTACHMENT

* (all may be multisampled)

* (no accumulation buffer)

Different attachment points impose different
limitations on the format of attachable image

Framebuffer Object Setup

As with other OpenGL objects, first call g1Gen™* ():
glGenFramebuffers (GLsizei n, GLuint *fbods);

Next bind FBO descriptor to a type of framebuffer

glBindFramebuffer (target, fbod);

// targetisGL FRAMEBUFFER (for read/write),

// GL_DRAW FRAMEBUFFER, or

// GL_READ FRAMEBUFFER, allowing for

// glReadPixels () and glDraw* ()to operate

// on separate framebuffers

// fbod=0is reserved for the default framebuffer, use fbod=0

// tounbind current framebuffer and revert to the default framebuffer

Subsequently, all rendering goes to the bound framebuffer
» glViewport (0, 0, width, height) renderto the whole buffer

Renderbuffer Object Setup

To set up a renderbuffer object as the render target:

int rbod;
glGenRenderbuffers (1, &rbod);
glBindRenderbuffer (GL RENDERBUFFER, rbod);

allocate storage for the renderbuffer:

glRenderbufferStorage (GL RENDERBUFFER,
internalformat, width, height);

// internalformat: depending on attachment: GL_RGBA, GL RGB32F, etc.

// orGL DEPTH COMPONENT, GL_STENCIL_INDE;(, GL_DEPEH_STENCIL

// see http://www.opengl.org/wiki/lmage_Format#Required_formats

// width, height:mustbe < GL MAX RENDERBUFFER SIZE

!/ use glGet (GL MAX RENDERBUFFER SIZE, ..)

and attach it to the framebuffer

glFramebufferRenderbuffer (target, attachment point,
GL RENDERBUFFER, rbod);

Texture Object Setup

To set up a texture object as the render target:

int tod;

glGenTextures (1, &tod);

glBindTexture (GL TEXTURE 2D, tod);

glTexImage2D (GL TEXTURE 2D, level, internalformat,
width, height, border, format, GL UNSIGNED BYTE, O0);

// thelastargumentis 0, no texture needs be copied B B

// level:canrender to different levels of a mipmap, but no auto mipmap
// with TexParam GL_GENERATE_MIPMAP bjc no texture is copied,
// instead use glGenerateMipmap () after base image is modified

and attach it to the framebuffer:

glFramebufferTexture2D (target, attachment point,

GL TEXTURE 2D, tod, level);
// target:GL_FRAMEBUFFER (== GL_DRAW FRAMEBUFFER, not read & write)
// or GL_READ FRAMEBUFFER

// tod==0 detaches texture object

Framebuffer Check

Before using the framebuffer target, check that it is set
up properly and all objects are correctly attached:

GLenum glCheckFramebufferStatus (GL FRAMEBUFFER) ;
you want to see GL_FRAMEBUFFER_COMPLETE returned

If the framebuffer is not complete, any reading/writing
command will fail

See the wiki page for completeness rules and

corresponding error messages:
http://www.opengl.org/wiki/Framebuffer Object

Render-to-Texture

Used to generate dynamic texture, e.g., for reflection
effect, dynamic environment maps, shadow maps

Remember to:
- glEnable (GL_TEXTURE_ 2D) before applying the texture (use
glPushAttrib (GL _ENABLE BIT) and glPopAttrib ())

+ set the texture parameters for minification (and
magnification and texture coordinate wrap around behavior,

as necessary)

« and set the texture application mode: GI. REPLACE,
GL_BLEND, etc.

Post-processing FX

Creating multiple images takes time

Instead, simulate depth of field and
motion blur as image post-
processing

(a)

Depth of field, for depths away from

focal distance:
a. forward mapping: color of a pixel is
spread out to its circle of confusion as a

function of depth ‘\Iz—;r——————
b. reverse mapping: color of a pixel is C . SEuE
averaged from neighboring pixels, | i
neighborhood size a function of depth | 41-4l
I -
l

Yang, Yip, Xuoc

(b)

Render-to-Texture

Even if you only need the color buffer, you may
have to provide depth and stencil buffers if the

rendering process needs them

+ unless you want to store a shadow map, the depth buffer is

usually a renderbuffer (faster)

Can be combined with PBO for post-processing FX
such as image-based motion blur and depth-of-field

GPU reads pixe Texure Object

FrameBuffer Object (FBO)

PBO 1 -

CPU

processes &L |
pixels \
A pgo2

GL_COLOR_ATTACHMENTO

GL_COLOR_ATTACHMENT1

GL_COLOR_ATTACHMENTA

GL_DEPTH_ATTACHMENT

GL_STENCIL_ATTACHMENT

Post-processing FX

Motion blur:

* during rendering, renderto a
velocity buffer the screen-space
velocity of object at each pixel

* during post-processing, each pixel is
blurred by averaging pixels in a line
segment with equally spaced
sampling point

* the direction and length of the line
segment is a function of the velocity

* can also be simulated in object
space by stretching vertices over
time

[Ahn]

(a)

O
)

(b)

Yang, Yip, Xuoc

Read and Render Targets

In the app, you can specify which buffer to draw to or
read from per bound framebuffer using:

ngrawBuffer(GL_COLOR_ATTACHMENTH;
glReadBuffer(GL_COLOR_ATTACHMENTD;

or specify more than one draw buffers:
glDrawBuffers (#buffers, buffers[]);
For example, to use buffer 0 as texture to render to buffer 1:

glReadBuffer(GL_COLOR_ATTACHMENTO);
ngrawBuffer(GL_COLOR_ATTACHMENTI);
glDrawArrays(..) s

Framebuffer Blitting

Blitting ::= copying a rectangular area of pixels
from one framebuffer to another

« can blit between FBOs

« can also blit between an FBO and the default
framebuffer, in either direction

« blitting is more limited than pixel transfer in format
conversion (see http://www.opengl.org/wiki/Framebuffer_Object)

Render Target in Shader

If you attach a texture object tod at mipmap level O to
color attachment 1:

glFramebufferTexture (GL FRAMEBUFFER,
GL_COLOR_ATTACHMENTI, tod, 0);

your fragment shader specifies this render target with:

layout (location = 1) out vec3 color;

To render to multiple targets, attach multiple color
attachments and specify a different location for each
fragment shader variable, e.g., temperature, stress
level, etc. rendered as false color into different targets

Framebuffer Blitting Example

To copy from buffer 1 of your fbo to the default
framebuffer, for example:

glBindFramebuffer (GL DRAW FRAMEBUFFER, O0);
glBindFramebuffer (GL READ FRAMEBUFFER, fbod);
glReadBuffer (GL_COLOR ATTACHMENTI) ;

glBlitFramebuffer (srcX0, srcY0, srcXl, srcYl, dstXO,
dstY0, dstXl, dstYl, GLbitfield mask, GLenum filter);
// mask:GL COLOR BUFFER BIT,GL DEPTH BUFFER BIT, or

// GL_STENCIL BUFFER BIT - a -

// filter:if the image needs to be stretched, interpolate by

// GL_NEAREST Ofr GL_LINEAR

For color buffer, only GL_READ FRAMEBUFFER is copied
to GL_DRAW FRAMEBUFFER

Multi renders if more than one GI. DRAW FRAMEBUFFER
is specified

Using FBO as Accumulation Buffer

What we need: a framebuffer object with:

* a texture object with G1. RGRA internalformat to be our per-
frame color buffer (attachment 0)

- arenderbuffer object with c1. RcB32F internalformattobe
our accumulation buffer (attachment 1)

- arenderbuffer object to serve as our depth (and stencil) buffer

Init: clear our “accumulation buffer” (to 0):

glDrawBuffer (GL COLOR ATTACHMENTI1) ;
glClearColor (0.0, 0.0, 0.0, 0.0);
glClear (GI, COLOR BUFFER BIT) ;
glDrawBuffer (GL COLOR ATTACHMENTO) ;
// for per-frame rendering

Using FBO as Accumulation Buffer

To display the accumulation buffer:

- bind our FBO to GI, READ FRAMEBUFFER, set color
attachment 1 as the read buffer

« bind the default FBO (0) to GI_ DRAW_FRAMEBUFFER

°Ca”nglitFramebuffer()

« bind the default FBO (0) to G FRAMEBUFFER and display

See fbo. cpp for example

Using FBO as Accumulation Buffer

After each frame is rendered to color buffer O:
- draw a quad that fills the screen (modify model-view and
projection matrices) onto the accumulation buffer, textured

with color buffer 0 already bound to ¢1_TExTURE_2D:
glPushAttrib (GL_ENABLE BIT);
glDisable (GL_DEPTH TEST); glDisable (GL_ LIGHTING) ;
// enable blending as per below
glDrawBuffer (GL COLOR ATTACHMENTI1) ;
glEnable (GL TEXTURE 2D);
glDrawArrays (..);
glDrawBuffer (GL COLOR ATTACHMENTO) ;
glPopAtrib () ;

» blend color buffer 0 with content of “accumulation buffer”:
glEnable (GL BLEND) ;
glBlendColor (0.0, 0.0, 0.0, weight);
// sameweight used with glAccum ()
glBlendFunc (GL CONSTANT ALPHA, GL_ONE) ;
glBlendEquation (GL FUNC ADD) ;

