
EECS	487:	Interactive	
Computer	Graphics	
Lecture	27:		
•  Introduction	to	Global	Illumination	
and	Ray	Tracing	

Ray	Tracing	

Introduction	and	context	
•  ray	casting	

Recursive	ray	tracing	
•  shadows	
•  reflection	
•  refraction	
	

Ray	tracing	implementation	

Distributed	Ray	Tracing	
•  anti-aliasing	
•  soft-shadows	
• motion	blur	
• depth-of-field	
• glossy	surface	
•  translucency	

Global	Illumination	
Computes	the	color	at	a	
point	in	terms	of	light	
directly	emitted	by	light	
sources	and	of	light	indirectly	
reflected	by	and	transmitted	
through	other	objects,	allowing	for	computation	of	
shadows,	reflection,	refraction,	caustics,	and	color	bleed	
	
Light	paths	are	complex,	not	light	�	triangle	�	pixel	
Nature	finds	equilibrium	efficiently	
Computers	struggle	L	

Akeley	

Pipelined	Rasterization	

Perform	projection	of	vertices	
	
Rasterize	triangle:	find	which	
pixels	should	be	lit	
	
Compute	per-pixel	color	
	
Test	visibility,	update	frame	
buffer	
	

Durand	

Ray	Tracing	

Hanrahan,Yu,Curless,Akeley	

Can	we	produce	more	realistic	
results	if	we	render	a	scene	by	
simulating	physical	light	
transport?	
	
The	Greeks	questioned	the	
nature	of	light:	do	light	rays	
proceed	from	the	eye	to	the	
light	or	from	the	light	to	the	
eye?	
	
Modern	theories	of	light	treat	
it	as	both	a	wave	and	a	particle	

image	(pixels)	

lights	(photons)	

objects	
(triangles)	

viewer	

Geometric	Optics	
We	will	take	a	combined	and	somewhat	simpler	view	of	
light–the	view	of	geometric	optics	

Light	sources	send	off	photons	in	all	directions	
•  model	these	as	particles	that	bounce	off	objects	in	the	scene	
•  each	photon	has	a	wavelength	and	energy	(color	and	intensity)	
•  when	photons	bounce,	some	energy	is	absorbed,	
some	reflected,	some	transmitted	

•  photons	bounce	until:	
•  all	of	its	energy	is	absorbed	(after	too	many	bounces)	
•  it	departs	the	known	universe	(not	just	the	view	volume!)	
•  it	strikes	the	image	plane	and	its	contribution	is	added	to	appropriate	pixel	

We	call	the	path	of	these	photons	“light	rays”	

If	we	can	model	light	rays	we	can	generate	images	

Curless,	Hodgins	

Geometric	Optics	
Light	rays	follow	these	rules:	
•  travel	in	straight	lines	in	free	space	

•  do	not	interfere	with	each	other	if	they	cross	(light	is	
invisible!)	

•  travel	from	the	light	sources	to	the	eye,	but	the	physics	is	
invariant	under	path	reversal	(reciprocity)	

•  obey	the	laws	of	reflection	and	refraction	

Curless,	Hanrahan	

Why	Trace	Rays?	
More	elegant	than	pipelined	
rasterization,	especially	for	
sophisticated	physics:	
• modeling	light	reflectance,	
e.g.,	from	skin	

• modeling	light	transport,	
e.g.,	inter-reflection,	caustics	

•  rendering,	e.g.,	soft	shadows	

Easiest	photorealistic	global	
illumination	renderer	to	implement	

Jensen,	Hart08	

Rays	emanate	from	light	sources	and	bounce	around	

Rays	that	pass	through	the	image	plane	and	enter	
the	eye	contribute	to	the	final	image	

Very	inefficient	since	it	computes	many	rays	that	are	
never	seen,	most	rays	will	never	even	get	close	to	the	eye!	

Light-Ray	Tracing	

image	plane	 Merrell08	

Ray	Casting	
For	each	pixel	shoot	a	ray	(a	3D	line)	
from	the	eye	into	the	view	volume	
through	a	point	on	the	screen	
• find	the	nearest	polygon	
that	intersects	with	the	ray	
•  shade	that	intersection	according	to	light,	
e.g.,	by	using	the	Phong	illumination	model,	
or	other	physically-based	BRDFs,	to	compute	pixel	color	

Computes	only	visible	rays	(since	we	start	at	the	eye):	
more	efficient	than	light	tracing	

Introduced	by	Appel	in	1968	for	local	illumination	
(on	pen	plotter)	

Merrell,	Curless	

Image plane

l

n

Ray	Casting	Illumination	Model	
So	far	it’s	still	light	→	triangle	→	pixel	

With	ray	casting,	we	additionally	shoot	a	ray	from	
each	point	toward	each	light	in	the	scene	and	ask:	
•  is	the	light	visible	from	the	intersection	point?	

•  does	the	ray	intersect	any	objects	on	the	way	to	the	light?		

•  if	light	is	not	visible,	it	doesn’t	
lit	the	point	(point	in	shadow)	

Ray	Casting	
Image	

	
Cast	rays	

	
Find	first	

intersection	
	

Shading	

Pipelined	Rasterization	
Command	

	
Geometry	

	
Rasterization	

	
Texture	

	
Display	

Ray	Casting	vs.	Pipelined	Rasterization	

Zwicker06	

Scene	
Graph	

Output	
Image	

Image	
Order	

Object	
Order	

Ray	Tracing	
Whitted	introduced	ray	tracing	
to	the	graphics	community	in	
1980:	
•  recursive	ray	casting	
• first	global	illumination	model:	
•  an	object’s	color	is	influenced	by	lights	
and	other	objects	in	the	scene	�	shadows	
•  simulates	specular	reflection	and	refractive	
transmission	

image	plane	
Merrell08	

Whitted80	

Ray	Tracing	vs.	Pipelined	Rasterization	

Ray	Tracing	
+ no	computation	for	
hidden	parts	

- usually	implemented	in	
software	

-  slow,	batch	rendering	
- no	dominant	standard	for	
scene	description	(RenderMan	
format,	POVray,	PBRT,	…)	

+ photo-realistic	images:	more	
complex	shading	and	lighting	
effects	possible	

Pipelined	Rasterization	
+ implemented	in	GPU	
+ standardized	APIs	
+ interactive	rendering,	games	
-  limited	photo-realism:	harder	
to	get	global	illumination	(but	
getting	closer)	

Zwicker06	

Recursive	Ray	Tracing	
Basic	idea:	
•  Each	pixel	gets	light	from	just	one	direction�	
the	line	through	the	screen	and	the	eye	

• Any	photon	contributing	to	that	pixel’s	color	
has	to	come	from	this	direction	

•  So	head	in	that	direction	and	see	what	is	
sending	light	
•  if	we	find	nothing—done	

•  if	we	hit	a	light	source—done	

•  if	we	hit	a	surface—see	where	that	
surface	is	lit	from,	recurse	

image	plane	
Hodgins,	Merrell	

Ray:	a	Half	Line	

Anchor	point:	
e = (xe, ye, ze, 1)

Ray:	r = (e, d)
	
Translating	rays:	
points	translate,	
directions	don’t	
Tr = (Te, Td) = (Te, d)

p = r(t) = e + t d,
t > 0

Direction:
d = s − e = (xd, yd, zd, 0)
||d|| = 1	preferred,	
but	is	not	always	so	

s:	screen	intersection	

Hart08	

Recursive	Ray	Tracing	Algorithm	
1.  For	each	pixel	(s),	trace	a	primary	ray	from	the	eye	(e),	in	the	

direction	d = (s – e)	to	the	first	visible	surface	

2.  For	each	intersection,	trace	secondary	rays,	to	collect	light:	
•  shadow	rays	in	directions	li	to	light	source	i
•  reflective	surface:	reflected	ray	in	direction	r,	recurse	
•  transparent	surface:	refracted/transmitted/transparency	
ray	in	direction	t,	recurse	

r n

−dl1

t

l2

shadow rays

Shadow	Ray	
At	every	ray-object	intersection,	
we	shoot	a	shadow	ray	towards	
each	light	source			

If	the	ray	hits	the	light	source	(l1),		
the	light	is	used	in	lighting	calculation,	
with	the	shadow	ray	as	the	light	direction	

If	the	ray	hits	an	object	(l2),	the	intersection	is	in	shadow	
and	the	light	is	not	used	in	lighting	calculation	

Shadow	rays	do	not	spawn	additional	rays	
(no	transparency	through	transparent	object!)	

r n

−dl1

t

l2

shadow rays

Recursive	Ray	Tracing	
d = primary	ray	
l = shadow	rays	
r = reflected	rays	
t = transmitted	rays	

opaque,	
reflective	
object	 transparent,	

reflective		
object	

r1

r2

r3

t1

t2

l3

l1

l2

d

Merrell08	

How	deep	do	
we	recurse?	

Ray	Tree	
Each	intersection	may	spawn	secondary	rays:	
•  reflected	and	transmitted	rays	form	a	ray	tree	
•  nodes	are	the	intersection	points	

•  edges	are	the	reflected	and	refracted	rays	

•  shadow	rays	are	sent	from	every	intersection	point	
(to	determine	if	point	is	in	shadow),	but	they	do	not	
spawn	additional	rays	

Rays	are	recursively	spawned	until:	
•  ray	does	not	intersect	any	object	
•  tree	reaches	a	maximum	depth	
•  light	reaches	some	minimum	value	(reflected/
refracted	contribution	to	color	becomes	too	small)	

Merrell08	

Ray	Tree	Example	

Ray	tree	is	evaluated	bottom	up:	
• depth-first	traversal	(by	recursion)	
•  the	node	color	is	computed	based	on	its	children’s	colors	
(BG:	background,	ambient	color)	
• don’t	forget	to	negate	the	normal	when	inside	an	object!	

eye	
d

O1

r2

BG

r3 t2

O1 BG

r1 t1

O1 O2 opaque,	
reflective	
object	 transparent,	

reflective		
object	

r3

t2

l3

r1

t1
l1

r2

l2

d

O1

O2

Merrell08	

raytrace()
raytrace(ray r)

find first intersection
color = ambient term
for every light

cast shadow ray
if (not in shadow)

color += local diffuse+specular terms
// Phong illumination model

if reflective surface
color += reflectedContrib // constant
* raytrace(reflected ray)*local specular term

if transparent object
color += refractedContrib // constant
 * raytrace(refracted ray)*local diffuse term

Durand	

e
dray r

Shadows	
Increase	realism	by	adding	spatial	relations	
•  provide	contact	points,	stop	“floating”	objects	
•  provide	depth	cue	
•  emphasize	illumination	direction	

Provide	“atmosphere”	

Palmer	

Some	of	it	is	absorbed	(heat,	vibration)	
Some	of	it	is	reflected	(bounces	back)	
Some	of	it	is	refracted	(goes	inside	the	material)	
	
The	proportion	of	absorbed,	reflected,	and	refracted	
light	depend	on	the	medium,	the	frequency	of	light,	
and	on	the	angle	between	the	direction	of	incident	
light	and	the	surface	normal	
	
Light	may	also	be	scattered	
by	the	medium	it	traverses	

Rossignac	

Light	Hitting	a	Surface	

Reflection:	arriving	energy	from	one	direction	
goes	out	in	only	one	reflection	direction	

Perfect	Specular	Reflection	

nd r

θi θr

θi = θr

r = d – 2(d � n)n

Refraction	
Light	transmits	through	transparent	objects	
	
Light	entering	a	new	medium	is	refracted	
•  its	trajectory	bends	inwards	when	entering	a	denser	medium	
•  think	of	the	wheel	on	one	side	of	a	cart	slowing	down	first	

•  similarly,	sound	bends	towards	cooler	air	

Why	does	hot	road	appear	wet?	
•  light	is	bent:	light	travels	faster	
through	the	hot	air	near	the	ground	

Rossignac	

Refraction	
Assume	that	kic	is	the	speed	of	light	in	medium	Mi	
and	ktc	is	the	speed	of	light	in	medium	Mt:	
•  index	of	refraction	of	a	material	M	is:	η = 1/k
•  light	bends	when	moving	from	one	medium	to	another	according	
to	Snell’s	law	(1621):	ηi sin θi = ηt sin θt

glass

ηiair

ηt

nd

t

θi

θt

Let µ =
ηi
ηt
, v = −d

t = µv − µ(n • v) + 1− µ2 (1− (n • v)2)()n

Unrefracted (geometrical)
line of sight Refracted (optical)

line of sight

Transparent
object

Line of sight

A
B

qi

qt

Merrell,	Rossignac,FvD	

θi

θt

Fresnel	Coefficient	
Captures	how	much	light	reflects	from	a	smooth	interface	
between	two	materials	(F,	fraction	of	light	reflected):	

c = F*creflection + (1−F) crefraction

• reflectance	depends	on	angle	of	incidence	
•  not	so	much	for	metal	(conductor	material)	
•  but	dramatically	for	water/glass	(dielectric/insulator	material):		

4%	at	normal,	100%	at	grazing	angle	

Schlick’s	approximation	of	Fresnel	coefficient:	
F(θ) = F (0) + (1−F (0))(1−(n•v))5	

	
where	
																											
is	the	Fresnel	coefficient	at	normal	(0º)	

F(0) = ηt −ηi

ηt +ηi

⎛
⎝⎜

⎞
⎠⎟

2

Zwicker06,	Gillies09	

Gold:	F(0) = 0.82	
Silver:	F(0) = 0.95	
Glass:	F(0) = 0.04	
Diamond:	F(0) = 0.15	

t = µv − µ(n • v)+ 1− µ2 (1− (n • v)2)()n

Total	Internal	Reflection	
When	going	from	a	dense	to	a	less	dense	medium,	
the	angle	of	refraction	becomes	larger	than	the	
angle	of	incidence	(θt > θi)	

If	the	angle	of	incidence	is	too	large	(≥ θc),	
light	can	get	trapped	inside	the	dense	material		
• diamond	→	air:	θc = 24.6º
• water	→	air:	θc = 48.6º
• principle	behind	optical	fiber	

Can	be	negative	for	grazing	
angles	when	η >1,	e.g.,	
when	going	from	glass	to	
air,	resulting	in	total	internal	
reflection	(no	refraction)	

Hart	

