
EECS	487:	Interactive	
Computer	Graphics	
Lecture	26:	
•  Bump	mapping	
•  Solid	and	procedural	texture	

Bump	Mapping		
2D	texture	map	looks	unrealistically	
smooth	across	different	material,	
especially	at	low	viewing	angle	

Fool	the	human	viewer:		
•  perception	of	shape	is	determined	by	shading,	
which	is	determined	by	surface	normal	
•  use	texture	map	to	perturb	the	surface	normal	per	fragment	
•  does	not	actually	alter	the	geometry	of	the	surface	
•  shade	each	fragment	using	the	perturbed	normal	as	if	the	surface	
were	a	different	shape	

Sphere	w/Diffuse	Texture	 Swirly	Bump	Map	 Sphere	w/Diffuse	Texture	&	Bump	Map	

Bump	Mapping		

t

TP3	

s

Treat	the	texture	as	a	single-valued	
height	function	(height	map)	
•  grayscale	image	stores	height:	black,	
high	area;	white,	low	(or	vice	versa)	

•  difference	in	heights	determines	how	
much	to	perturb	n	in	the	(u, v)	directions	
of	a	parametric	surface	
•  ∂b/∂u = bu = (h[s+1, t] − h[s−1, t])/ds
•  ∂b/∂v = bv = (h[s, t+1] − h[s, t−1])/dt	
•  compute	a	new,	perturbed	normal	
from	(bu,	bv)	

Computing	Perturbed	Normal	

!

n = pu × pv

pu =
∂
∂u
p(u,v), !pv =

∂
∂v
p(u,v)

p ' = p(u,v)+ b(u,v)n!⇐ !perturbed!surface

p 'u = ∂
∂u

p(u,v)+ b(u,v)n() = pu + bun+ b(u,v)nu = pu + bun

p ' v = ∂
∂v
p(u,v)+ b(u,v)n() = pv + bvn+ b(u,v)nv = pv + bvn

0: n ⊥ p

wrinkled	surface	
p’(u,v)

wrinkle	
function	

smooth	surface	
p(u,v)

n
p p

p’ p’
p n’

n’

TP3	

Blinn	

!

n ' = p 'u × p ' v ! ⇐ !normal!of!perturbed!surface

p 'u = pu + bun
p ' v = pv + bvn
n ' = (pu + bun)× (pv + bvn)

= pu × pv + bu (n× pv)+ bv (pu × n)+ bubv (n× n)
= n+ bu (n× pv)− bv (n× pu)

Perturbed	Normal	

Recall:

a × (kb + c) = k(a × b)+ (a × c)
a × b = −b × a

pv

�

n'

�

n

pu

n�pv

–n�pu

bu

bv

Bump	Map	vs.	Normal	Map	
Computing	n’	requires	the	height	samples	from	
4	neighbors	
• each	sample	by	itself	doesn’t	perturb	the	normal	
• an	all-white	height	map	renders	exactly	the	same	
as	an	all-black	height	map	

Instead	of	encoding	only	the	height	of	a	point,	
a	normal	map	encodes	the	normal	of	the	desired	surface,	
in	the	tangent	space	of	the	surface	at	the	point	
• can	be	obtained	from:	

•  a	high-resolution	3D	model	
•  photos	(http://zarria.net/nrmphoto/nrmphoto.html)	
•  a	height-map	(with	more	complex	offline	computation	of	perturbed	normals)	
•  filtered	color	texture	(Photoshop,	Blender,	Gimp,	etc.	with	plugin)	

[Hastings-Trew]	

Normal	Map	

Hanrahan09	

height	map normal	map	
(nx, ny, nz) = (r, g, b)

Interpret	the	RGB	values	per	
texel	as	the	perturbed	normal,	
not	height	value

[Hastings-Trew]	

Normal	Map	Creation	on	Gimp	
On	Mac	OS	X,	run	Gimp-2.6.11	(not	2.8.4)	
•  load	RGB	file,	then	select	Filters�Map�Normalmap	

	

	

	

	

	

	

For	Windows,		
see	http://code.google.com/p/gimp-normalmap/	

Normal	Mapping:	Complications	

1.  Normalized	normals	range	[-1, 1],	but	RGB	values	
range	[0,1],	convert	normals	by	n’= (n+1)/2	
Values	in	normal	map	must	be	converted	
back	before	use:	n = n’*2–1

2. Normals	are	in	object	space,	so	normals	must	be	
transformed	whenever	object	is	transformed	

Instead,	most	implementations	store	normals	in	
tangent	space,	but	then	light	and	view	vectors	
must	be	transformed	to	tangent	space

Tangent	Space	
Is	a	coordinate	system	attached	to	the	local	surface	
with	basis	vectors	comprising	the	normal	vector	(N),	
perpendicular	to	the	surface,	and	two	vectors	tangent	
to	the	surface:	the	tangent	(T)	and	bitangent	(B)	
We	want	T	and	B	to	span	our	texture:	

[Premecz]	
N

texture/tangent	space 	object	space	

[s0, t0] [s1, t1]

[s2, t2]

p0

p1p1

p2

A	point	p(s, t) = p0 + (s−s0)T + (t−t0)B
3D	vectors	p1−p0 = (s1−s0)T + (t1−t0)B,	

and	p2−p0 = (s2−s0)T + (t2−t0)B
Let	Δsi = (si−s0)	and	Δti = (ti−t0),	then	
	
	
	
	
	
	
in	texture	space,	T,	B,	N	are	orthonormal,	but	not	
necessarily	so	in	object	space,	use	Gram-Schmidt	
Orthogonalization:	B’= N×T;	T’= B’×N

Tangent	Space	

object	space	

p1

p2

p0

[Premecz,	Lengyel]	

p1 − p0
p2 − p0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

Δs1 Δt1
Δs2 Δt2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
T
B

⎡

⎣
⎢

⎤

⎦
⎥

T
B

⎡

⎣
⎢

⎤

⎦
⎥ =

1
Δs1Δt2 − Δs2Δt1

Δt2 −Δt1
−Δs2 Δs1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

p1 − p0
p2 − p0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

N
texture/tangent	space	

[s0, t0] [s1, t1]

[s2, t2]

p(s, t) p0

Given	T’,	B’,	N	orthonormal,	
[T’B’N]	matrix	transforms	
from	tangent	to	object	space	
([T’B’N]T	matrix	in	Direct3D)	
[We	assume	TBN	orthonormal	in	the	
figure	and	in	subsequent	slides	and	
we	drop	the	“prime”	sign]	
	
Bitangent	is	sometimes	called	
binormal,	second	normal,	which	
is	applicable	to	curves,	but	not	
to	surfaces	(see	lecture	on	Frenet	frame)	
See	also:	
http://www.terathon.com/code/tangent.html	

Tangent	to	Object	Space	

[Lengyel,	Dreijer	Madsen]	

ModelView	matrix	

Projection	matrix	

TBN	matrix

What	we	have:	
•  per-texel	n	in	tangent	space	
stored	in	normal	map	
• T,	N	in	object	space	
•  l,	v	in	eye	space	
	
To	compute	lighting	with	
normal	map	in	tangent	space:	
1.  transform	l	and	v	to	tangent	space	(how?)		
2.  sample	per-texel	n	from	normal	map	
3.  compute	lighting	in	tangent	space	

Lighting	Computation	

[Lengyel,	Dreijer	Madsen]	

ModelView	matrix	

Projection	matrix	

TBN	matrix

l,	v

T,	B,	N

n

Tangent-Space	Lighting	
In	app:	
• load	normal	map	into	its	own	texture	unit	
• compute	T	per	triangle	and	assign	it	to	all	three	vertices	

•  average	out	T	of	shared	vertices	for	curved	surface	
• pass	per	triangle	N	and	T	to	vertex	shader	

In	vertex	shader:	
• transform	N	and	T	from	object	to	eye	space	(how?)	
• compute	B	and	orthonormal	eye-to-tangent	matrix	(how?)	

• transform	l	and	v	to	tangent	space,	normalize,	and	pass	them,	
interpolated,	to	the	fragment	shader	

In	fragment	shader:	
• sample	normal	map	per	texel	(n)	
• compute	lighting	in	tangent	space	using	normalized	n,	l,	and	v	

Bump/Normal	Mapping	Limitations	

Smooth	silhouette		
Smooth	when	viewed	at	low	viewing	angle	
No	self-shadowing/self-occlusion	

O’Brien08	

Parallax/Relief	Mapping	

ideal	parallax	map	
	
	
	
	
	
	

offset	approximation,		
bad	for	grazing	angle	

	
	
	
	
	
	

offset	limiting	*	a.k.a.	Parallax	Occlusion	Mapping	or	Steep	Parallax	Mapping	 RTR3	

Parallax	Mapping	and	Relief	Mapping*:	
•  use	height	field	and	view	vector		
to	compute	which	“bump”	is	visible	
•  how	to	avoid	computing	view	vector	
and	height	field	intersection?	

relief	sampling:	linear	search	to	
first	point	inside	surface,	then	
binary	search	between	this	point	
and	last	point	outside	surface	

Displacement	Mapping	
Interpret	texel	as	offset	vector	to	actually	displace	fragments:		
p’ = p + h(p)n
•  correct	silhouettes	and	shadows	
• must	be	done	before	visibility	determination	
•  complicates	collision	detection,	e.g.,	if	done	in	vertex	shader	

TP3	

Vertex	Texture	Fetch	

Marschner08	

Traditionally,	during	vertex	shading,	the	
only	texture-related	computation	is	
computing	texture	coordinates	per	vertex	
	
With	Shader	Model	3.0,	
vertex	shader	can	use	
texture	map	to	process	
vertices,	e.g.,	for	
displacement	mapping,	
fluid	simulation,	particle	
systems	

per	vertex	

texCoords	
per	fragment	

Texture	Mapping	

Alternative	definition:	a	general	
technique	for	storing	and	evaluating	
functions	
	
Textures	are	not	just	for	shading	
parameters	any	more!	

Marschner	

Solid	Textures	
Solid	textures:	
•  create	a	3D	parameterization 	2D	mapping 	3D	“carving”	

(s, t, r)	for	the	texture	
• map	this	onto	the	object	
•  the	easiest	parameterization	is	to	use	
the	model-space	coordinates	to	index	
into	a	3D	texture	(s, t, r) = (x, y, z)

•  like	“carving”	the	object	from	the	material	

Solid	procedural	textures:	
• more	generally,	instead	of	using	the		
texture	coordinates	as	an	index,	use	
them	to	compute	a	function	that		
defines	the	texture	

Wolfe	

Perlin	

Solid	Procedural	Texture	Example	
Instead	of	an	image,	use	a	function	
	
// vertex shader
varying vec3 pos;
...
pos = gl_Position.xyz;
...

// fragment shader
varying vec3 pos;
...
color = sin(pos.x)*sin(pos.y);
...

Advantages	over	image	texture:	
•  infinite	resolution	and	size	
• more	compact	than	texture	maps	

•  f(x, y, z)	may	be	a	subroutine	in	the	fragment	shader	
• no	need	to	parameterize	surface	
• no	worries	about	distortion	and	deformation	
• objects	appear	sculpted	out	of	solid	substance	
•  can	animate	textures	

Disadvantages:	
•  difficult	to	match	existing	texture	
•  not	always	predictable	
• more	difficult	to	code	and	debug	
•  perhaps	slower	
•  aliasing	can	be	a	problem	

Procedural	Textures	

Peachey	

Stripe:	color	each	point	one	or	
the	other	color	depending	on	
where	floor(z)	(or		
floor(x)	or	floor(y))	is	
even	or	odd	
	
Rings:	color	each	point	one	or	
the	other	color	depending	on	
whether	the	floor(distance	
from	object	center	along	two	
coordinates)is	even	or	odd	

Simple	Procedural	Textures	

Wolfe	

Ramp	functions:	
• ramp(x, y, z, a) = ((float) mod(x, a))/a
•  mod(3.75, 2.0)/2.0 = 1.75/2.0 = .875

• ramp(x, y, z) = (sin(x)+1)/2
	
Combination:	procedural		
color	table	lookup:		
f(x, y, z) computes	an	index	
into	a	color	table,	e.g.,	
using	the	ramp	function	
to	compute	an	index	

Simple	Procedural	Textures	

Wolfe	

Wood	Texture	
Classify	texture	space	into	
cylindrical	shells	

f(s, t, r) = (s2 + t2)

Outer	rings	closer	together,	which	
simulates	the	growth	rate	of	real	trees	
	
Wood	colored	color	table	
• woodmap(0) = brown	“earlywood”		
• woodmap(1) = tan	“latewood”	

wood(p) = woodmap(f(p) mod 1)
p = (s, t, r)	

f (s, t, r) = (s2 + t2)

wood(p)

woodmap(f (p))
0 1

Hart08	

Adding	Noise	
Add	noise	to	cylinders	to	warp	wood:	
wood(x2 + y2 + A*�

noise(fx *x + ϕx, fy *y + ϕy, fz *z + ϕz))	
controls:	
•  frequency	(f):	coarse	vs.	fine	detail,	number	and	
thickness	of	noise	peaks,	noise(fx x, fy y, fz z)
•  phase	(ϕ):	location	of	noise	peaks	
noise(x + ϕx, y + ϕy, z + ϕz)
•  amplitude	(A):	controls	distortion	
due	to	noise	effect	

connectedpixel.com/blog/texture/wood	
Hart08	

noise(p):	pseudo-random	number	generator	
with	the	following	characteristics: 		
• memoryless 	white	noise 	Perlin	noise	
•  repeatable	
•  isotropic	
• band	limited	(coherent):	difference	
in	values	is	a	function	of	distance	

• no	obvious	periodicity	
•  translation	and	rotation	invariant	
(but	not	scale	invariant)	

•  known	range	[-1, 1]	
•  scale	to	[0,1]	using	0.5(noise()+1)

•  abs(noise())	creates	dark	veins	at	zero	crossings	

Perlin	Noise	

Hodgins07	

Fractal:		
•  sum	multiple	calls	to	noise:	

	
	
	
	
	
	
	

	
1-8	octaves	of	turbulence	

	

•  each	additional	term	adds	finer	detail,	with	diminishing	return	

Turbulence	

Hodgins	

turbulance(p) = 1
2i f

noise(2i f ⋅p)
i=1

octaves

∑

Marble	Texture	
Use	a	sine	function	to	create	the	stripes:	
marble = sin(f * x + A*turbulence(x, y, z))	

•  the	frequency	(f)	of	the	sine	function	controls	the	
number	and	thickness	of	the	veins	

•  the	amplitude	(A)	of	the	turbulence	controls	the	
distortion	of	the	veins	

legakis.net/justin/MarbleApplet/	

