EE Bump Mapping

2D texture map looks unrealistically
smooth across different material,

E E C S 487 . I nte ra Ct I Ve especially at low viewing angle
Fool the human viewer:
h . « perception of shape is determined by shading,
O l I I p Ute r ra p I CS which is determined by surface normal
« use texture map to perturb the surface normal per fragment

+ does not actually alter the geometry of the surface
Lecture 26: « shade each fragment using the perturbed normal as if the surface

* Bump mapping were a different shape

Sphere w/Diffuse Texture Swirly Bump Map Sphere w/Diffuse Texture & Bump Map

* Solid and procedural texture

Bump Mapping Computing Perturbed Normal

wrinkle wrinkled surface
function Py
9b(u) bu)

Treat the texture as a single-valued
height function (height map)

- grayscale image stores height: black,
high area; white, low (or vice versa)

- difference in heights determines how
much to perturb n in the (u, v) directions
of a parametric surface
* 0b/ou = b, = (h[s+1,t] — h[s—1,1])/ds
« 9b/dv = b, = (h[s, t-+1] — hls, 1—11)/dt

- compute a new, perturbed normal
from (b, b,)

. i n
v, du n p P n
T P P P
n=p.Xpr HE
3 d smooth surface TP3

d
Pu = a—up(u,v), p- gp(u,v))
p'=p,v)+b(u,v)n < perturbed surface
1= (p(u)+bluy)m)=p, + B0 +buv)n, =B, + b
u ol

| |
p= ai(p(u,v)w(u,v)n) =p,+bn+bu,v)n, =p,+bn
Vv _

O:nlp

Perturbed Normal

fressis B 8

n'=p'.Xp'v & normal of perturbed surface
pu= P, +b“n Recall:
pv=p,+bn ax (kb+c)=k(axb)+(@xc)
n'=(p,+bn)x(p,+b,n)
=puXpr+b,(mxp)+b,(p,xn)+bb (nXn)
—n-+b,(nxp,)-b,(nxp,)

axb=-bxa

Interpret the RGB values per

Normal Map texel as the perturbed normal,
not height value

height map

Bump Map vs. Normal Map

Computing n’ requires the height samples from
4 neighbors
- each sample by itself doesn't perturb the normal

- an all-white height map renders exactly the same
as an all-black height map

Instead of encoding only the height of a point,
a normal map encodes the normal of the desired surface,
in the tangent space of the surface at the point
* can be obtained from:
+ a high-resolution 3D model
« photos (http://zarria.net/nrmphoto/nrmphoto.html)

« a height-map (with more complex offline computation of perturbed normals)
- filtered color texture (Photoshop, Blender, Gimp, etc. with plugin)

[Hastings-Trew]

Normal Map Creation on Gimp
On Mac OS X, run Gimp-2.6.11 (not 2.8.4)

+ load RGB file, then select Filters—Map—Normalmap

2-Gmp
Help

imap’ Crl+F 899, 1,y ©
Re-Show "Normalmap® Shift+Ctrl+F -
Recently Used -
Reset all Eilters

For Windows,
see http://code.google.com/p/gimp-normalmap/

Normal Mapping: Complications

1. Normalized normals range [-1, 1], but RGB values
range [0,1], convert normals by n’= (n+1)/2

Values in normal map must be converted
back before use: n = n’*2-1

2. Normals are in object space, so normals must be
transformed whenever object is transformed

Instead, most implementations store normals in
tangent space, but then light and view vectors
must be transformed to tangent space

Tangent Space T
A point p(s, 1) = py + (s—s,)T + (t—1,)B pe P40

[$0: o]

3D vectors p,—p, = (s,—s,)T + (1,—1,)B, I 1)

and pz_po — (SZ_SO)T + (tz_tO)B texture/tangent space
Let As; = (s;,—s,) and At; = (t,—1,), then /

pl _p() _ ASI At] |: T :|
P, =Py ASZ Atz B
T 1 At2 —Atl pl — pO object space
| B | AsAL-AsAn| —As, As, || p,—p,
in texture space, T, B, N are orthonormal, but not

necessarily so in object space, use Gram-Schmidt
Orthogonalization: B’= NxT; T'= B’ xN

[Premecz, Lengyel]

Tangent Space

Is a coordinate system attached to the local surface
with basis vectors comprising the normal vector (N),
perpendicular to the surface, and two vectors tangent
to the surface: the tangent (T) and bitangent (B)

We want T and B to span our texture:

B
[s5, 1,]
o
[0, 2ol s, 1]
)\ .
N T b
texturef/tangent space object space rPremecz
Tangent to Object Space
Given T’, B’, N orthonormal, Tangent Space
[T’B’N] matrix transforms | _
from tangent to object space ‘ TBN matrix ‘

([T’B’N]” matrix in Direct3D)

]

Object Space

ModelView matrix

Eye Space

|

‘ Projection matrix ‘

Clip Space

:

[Lengyel, Dreijer Madsen]

Lighting Computation

What we have: Tangent Space | n
- per-texel n in tangent space
stored in normal map ‘ TBN matrix ‘
« T, Nin object space
1, vineye space Object Space | T, B, N

To compute lighting with ‘ ModelView matrix ‘

normal map in tangent space:
1. transform 1 and v to tangent space (how?)
2. sample per-texel n from normal map ‘ Projection matrix ‘
3. compute lighting in tangent space

Eye Space Lv

i

Clip Space

L]

[Lengyel, Dreijer Madsen]

Bump/Normal Mapping Limitations

Smooth silhouette
Smooth when viewed at low viewing angle
No self-shadowing/self-occlusion

O'Brieno8

Tangent-Space Lighting
In app:

* load normal map into its own texture unit

» compute T per triangle and assign it to all three vertices
- average out T of shared vertices for curved surface
* pass per triangle N and T to vertex shader

In vertex shader:

s transform N and T from object to eye space (how?)

* compute B and orthonormal eye-to-tangent matrix (how?)

* transform 1 and v to tangent space, normalize, and pass them,
interpolated, to the fragment shader

In fragment shader:
* sample normal map per texel (n)
» compute lighting in tangent space using normalized n, I, and v

Parallax/Relief Mapping v heighiied

vector

Parallax Mapping and Relief Mapping™:
- use height field and view vector
to compute which “bump” is visible
+ how to avoid computing view vector
and height field intersection?

polygon

Tideal T
ideal parallax map

offset

offset approximation,
bad for grazing angle

relief sampling: linear search to
first point inside surface, then
binary search between this point
and last point outside surface
*a.k.a. Parallax Occlusion Mapping or Steep Parallax Mapping offset “miting

RTR3

Displacement Mapping

Interpret texel as offset vector to actually displace fragments:
p =p+ h(p)n

- correct silhouettes and shadows

+ must be done before visibility determination

- complicates collision detection, e.g., if done in vertex shader

TP3

Texture Mapping

Alternative definition: a general
technique for storing and evaluating
functions

Textures are not just for shading
parameters any more!

Marschner

Vertex Texture Fetch

Traditionally, during vertex shading, the
only texture-related computation is
computing texture coordinates per vertex

. _ teuredua, TEXTURES s,
With Shader Model 3.0, e e '
vertex shader can use o -

texture map to process
vertices, e.g., for
displacement mapping,
fluid simulation, particle

systems \ /*

— UNIFORM VARIABLES =

— uonedidde wouy —

SALNGIYLLY XTLYIA

Y3Z1yaLsvy

-

L EEENE:ENTLA-E

Marschnero8

Solid Textures

Solid textures:

« create a 3D parameterization 2D mapping 3D “carving”
(s, t, r) for the texture

+ map this onto the object

« the easiest parameterization is to use
the model-space coordinates to index
into a 3D texture (s, t,r) = (z, ¥, 2)

« like “carving” the object from the material

Solid procedural textures:

« more generally, instead of using the
texture coordinates as an index, use
them to compute a function that
defines the texture

Solid Procedural Texture Example

Instead of an image, use a function

// vertex shader
varying vec3 pos;

pos = gl Position.xyz;

// fragment shader
varying vec3 pos;

color = sin(pos.x)*sin(pos.y);

Simple Procedural Textures

Stripe: color each point one or
the other color depending on
where f1loor (z) (or

floor (x) orfloor (y))is
even or odd

Rings: color each point one or
the other color depending on
whether the £1oor (distance
from object center along two
coordinates) is even or odd

Procedural Textures

Advantages over image texture:
« infinite resolution and size
« more compact than texture maps

* f(z, ¥, z) may be a subroutine in the fragment shader
* no need to parameterize surface
+ no worries about distortion and deformation
« objects appear sculpted out of solid substance //‘
 can animate textures 7

7

Simple Procedural Textures

Disadvantages:

- difficult to match existing texture
* not always predictable

« more difficult to code and debug
« perhaps slower

- aliasing can be a problem

Ramp functions:
« ramp(z, y, z,a) = ((float) mod(z, a))/a
+ mod(3.75,2.0)/2.0 =1.75/2.0 = 875

or .

« ramp(z,y,z) = (sin(x)+1)/2 (

Combination: procedural
color table lookup:
f(x,y,z) computes an index
into a color table, e.qg.,
using the ramp function
to compute an index

Wood Texture

Classify texture space into
cylindrical shells

f(s, t, 1) = (s> +)

0 1
woodmap(f(p))

f(s,t, 1) = (s2 4+ 12)

Outer rings closer together, which
simulates the growth rate of real trees

Wood colored color table
» woodmap(0) = brown “earlywood”
» woodmap(1l) = tan “latewood”

wood(p)

wood(p) = woodmap(f(p) mod 1)
p=_(s,t,r)

Perlin Noise

noise(p): pseudo-random number generator
with the following characteristics:
» memoryless
- repeatable
« isotropic
« band limited (coherent): difference
in values is a function of distance
* no obvious periodicity
« translation and rotation invariant
(but not scale invariant)
- known range [-1, 1]

« scale to [0,1] using 0.5(noise()+1) .
+ abs(noise()) creates dark veins at zero crossings

Perlin noise

Hodginsoy

Adding Noise

Add noise to cylinders to warp wood:
wood(z? + y? + A*

noise(f, *z+ ¢, L%y + ¢, f. %2+ ¢)
controls:

- frequency (f): coarse vs. fine detail, number and
thickness of noise peaks, noise(f, z.f, y.f, 2)

* phase (): location of noise peaks
noise(z+ ¢,y + ¢,z2+ ¢)

« amplitude (A): controls distortion
due to noise effect

connectedpixel.com/blog/texture/wood

Turbulence

Fractal:
« sum multiple calls to noise:

octaves

turbulance(p)= z ﬁnoise(ff'l’)

i=1

Ti b

- each additional term adds finer detail, with diminishing return

Hodgins

1-8 octaves of turbulence

Marble Texture

Use a sine function to create the stripes:
marble = sin(f* z 4+ A*turbulence(x,y, 2))

- the frequency (f) of the sine function controls the
number and thickness of the veins

« the amplitude (A) of the turbulence controls the
distortion of the veins

legakis.net/justin/MarbleApplet/

