EECS 487: Interactive
Computer Graphics

Lecture 25:
* Texture Loading: Pixel-Buffer Object
* Texture Filtering

Pixel Buffer Object (PBO)

Stores pixel data into buffer objects

Same mechanisms as VBO, with two
additional “targets” (or types of buffer):

*GL PIXEL PACK BUFFER, used by:
* glReadPixel: read from framebuffer to PBO

* glGetTexImage: read from texture to PBO <2

>

unpack

* “packed to be shipped off”

PBO Framebuffer

*GL_PIXEL UNPACK BUFFER,usedby: |4 pac
* glDrawPixel: write to framebuffer from PBO

Texture
> Object

unpack

* glTex (Sub) Image2D: write to texture from PBO
* “unpacked to be used”

[Ahn]

Texture Loading and PBO

CPU controlled memory OpenGL controlled memory

Reading texture file into
client memory (RAM), T ST ™

\

a nd the n WI’ItI ng |t -'/Texure.vzi_; RAM gl‘T”I““"qez,D; Texture i

(\.smxrnﬂ ! cPU Object

from RAM to texture ~o | L

object can be slow P .
texture loading without PB

Pixel Buffer Object (PBO) texture loading with PBO

allows fast data transfer ~ OpenGL controlled memory

between graphics cardand —. | N
Texture i Texture

file through DMA (Direct Nsouee Jepr| " | [owA|_otie

Memory Access), bypassing -
RAM

[Ahn]

Pixel Buffer Object Setup

As with other OpenGL objects, first generate buffer
object handle(s):

glGenBuffers (GLsizei n, GLuint *pbods);

Next bind PBO descriptor to a type of buffer

glBindBuffer (target, pbod);
// targetisGL PIXEL PACK BUFFERor
// GL_PIXEL UNPACK BUFFER

and allocate space for it:

glBufferData (target, size, data, usage);
// data:setto NULL to simply allocate space (no data copy)
// usage:GL_STREAM {DRAW,READ}

Populating Pixel Buffer Object

As with VBO, we could populate the PBO by copying
over texture image stored in client-side memory using

glBufferData (target, size, data, usage);
glBufferSubData (target, offset, size, data);
// data: pointer to data in client-side memory (RAM)

Or we could bypass client-side memory by mapping
graphics-system memory to client address space

void *glMapBuffer (GLenum target, GLenum access);
// target:same as glBindBuffer ()
// access:GL WRITE ONLY, GL READ ONLY, GL READ WRITE

returns a pointer to the mapped memory

OpenGL controlled memory

Write to PBO el (e NS

T'ex:'ure A | PBO Tex.t.ur.e
source DMA Object

souree_/cpy
O

Bypassing RAM

To bypass RAM, read from file directly into PBO
* read into PBO from texture file with handle £in

fin >> texture;

* now we can unmap buffer from client address space and
write/unpack the PBO to texture object:

glUnmapBuffer (GL PIXEL UNPACK BUFFER);
glTexImage2D(..., offset /* instead of pointer */)

[Ahn]

OpenGL controlled memory

Write to PBO el (e NS

\

~ H
C[ex.fure \ PBO Texture i
H

H

H

source / Object
S ¢ _/CPU DMA Mbjec
J o

Bypassing RAM

Setup PBO and map it to client address:

* bind and allocate PBO

int pbod; glGenBuffers(l, &pbod);
ngindBuffer(GL_PIXEL_UNPACK_BUFFER, pbod) ;

glBufferData (GL PIXEL UNPACK BUFFER, DATASIZE,
NULL, GL STREAM DRAW) ;

* to map PBO to client address space use:

char *texture=glMapBuffer (GL PIXEL UNPACK BUFFER,
GL_WRITE ONLY); // app writes into PBO

[Ahn]

OpenGL controlled memory

Read from PBO i
Bypassing RAM

(k_’//cpu DMA

Setup PBO and pack it with framebuffer content:

* bind and allocate PBO

int pbod; glGenBuffers(l, &pbod);
glBindBuffer (GL PIXEL PACK BUFFER, pbod);

glBufferData (GL PIXEL PACK BUFFER, DATASIZE,
NULL, GL STREAM READ);

* next, specify the framebuffer to read from and pack it into the
bound PBO

glReadBuffer (GL FRONT) ;
glReadPixels (..., offset /* instead of pointer */)

[Ahn]

OpenGL controlled memory

4 glTexImage2D ()

Read from PBO () 0 Ded

____/CPU DMA

Bypassing RAM

To read from PBO directly to file:

* map PBO to client address space

char *image = glMapBuffer (GL PIXEL PACK BUFFER,
GL_READ_ONLY); // app reads from PBO

* finally, dump the PBO directly to image file with handle fout
and unmap buffer from client address space:

fwrite (image, sizeof (char), DATASIZE, fout);
glUnmapBuffer (GL PIXEL PACK BUFFER);

[Ahn]

OpenGL controlled memory

Texture
Objec
NN

Double Buffered
Unpack

Texture
source
int i=0;

glBindBuffer (GL_PIXEL UNPACK BUFFER, pbods[i]);
glBufferData (GL PIXEL UNPACK BUFFER, size, 0, GL STREAM DRAW) ;
texture = glMapBuffer (GL_PIXEL UNPACK BUFFER, GL_WRITE ONLY);
fin >> texture; // blocking
glUnmapBuffer (GL PIXEL UNPACK BUFFER);
while (not done) {
glBindBuffer (GL PIXEL UNPACK BUFFER, pbods[i]);
glTexSubImage2D(); // non-blocking

1= (i+1)%2;
glBindBuffer (GL_PIXEL UNPACK BUFFER, pbods[i]);
glBufferData (GL PIXEL UNPACK BUFFER, size, O,
GL_STREAM DRAW); // to prevent MapBuffer() from blocking
// 1f TexSubImage2D() from previous iteration is not done
texture = glMapBuffer (GL_PIXEL UNPACK BUFFER, GL WRITE ONLY) ;
fin >> texture; // blocking
glUnmapBuffer (GL PIXEL UNPACK BUFFER) ;

|
"l
Texture i \ Texture
source) Object
n
i PBO 2 +

[Ahn]

Double Buffering

Since file<>PBO transfer is done by the CPU and
PBO<texture/framebuffer is done by the GPU, the two

can happen asynchronously

*+ glMapBuffer () waits if GPU is busy with buffer

* glBufferbData () with NULL pointer detaches existing buffer
object, which will be freed when GPU is done with it

We can use double buffering to speed things up:

OpenGL controlled memory OpenGL controlled memory

i

gITexSublmage2D

FBO1

PBO 1 - GFU reads pixels

v n

CcPU

Frame

\
\

processes 4§ I L buffer
pixels \ =" 01
PBOZ2 |87

double-buffered unpack double-buffered pack

OpenGL controlled memory

Double Buffered heet .

CcPU

P a C k prm:nslsses \ — I buffer
pixels n L=
PBO2 |7

int i=0;
glReadBuffer (GL_FRONT) ;
glBindBuffer (GL_PIXEL PACK BUFFER, pbods[i+1]);
glBufferData (GLiPIXELiPACKiBUFFER, size, O, GLisTREAMiREAD) ;
(
(

glBindBuffer (GL PIXEL PACK BUFFER, pbods[i]);
glBufferData GL_PIXEL_PACK_BUFFER, size, O, GL_STREAM_READ);
glReadPixels (..., 0 /* offset */); // non-blocking
while (not done) {
glBindBuffer (GL PIXEL PACK BUFFER, pbods[i]);
// MapBuffer blocks until ReadPixel is done
image = glMapBuffer (GL PIXEL PACK BUFFER, GL READ ONLY);
fwrite (image, sizeof (char), size, fout);
glUnmapBuffer (GL PIXEL PACK BUFFER) ;

i = (i+1)%2;

glBindBuffer (GL_PIXEL PACK BUFFER, pbods[i]);

// fwrite() is blocking

glReadPixels (..., 0 /* offset */); // non-blocking

[Ahn]

[Ahn]

Texture Filtering Texture Filtering

Mipmapping Mipmapping
* mip == "multum in parvo” (many things in a small place) * mip == "“multum in parvo” (many things in a small place)
Summed-area table Summed-area table
Anisotropic filtering Anisotropic filtering
Texture Value Interpolation Bilinear Interpolation

Interpolated texture coordinates (s, t) are continuous
values, texture image is discretely indexed Linear interpolation in 2D:

How to compute the color of a pixel?
e=(1—-u)a+ub

Nearest neighbor (point sample), f=(0-u)c+ud
use color of closest texel: o | o p(u,v)=(1—-v)e+f ¢
o ™o =(1-uw)(l-v)a+u(l-v)b+1—u)ve+uvd
Simple and fast, but low quality
OpenGL:
glTexParameteri (GL TEXTURE 2D,
OpenGL: giTexParameteri (GL TEXTURE 2D, GL TEXTURE MIN FILTER, GL LINEAR);

GL_TEXTURE MIN FILTER,
GL_NEAREST) ;

Heckbert8g

Fitting Texture to Primitive

portion of
atexel
I
- L,
Ly pixel " | ‘

texel —1
texture polygon texture polygon
Magnification Minification

[T/

Magnification: texture is too small for §
polygon/triangle (not whole surface)
« nearest neighbor point sample:

texel repeated, causing aliasing
- (bi)linear interpolation: blurring

Minification: many texels per pixel
- nearest neighbor point sample:
aliasing causing moire pattern

« mipmapping with trilinear interpolation
+ GL_LINEAR MIPMAP LINEAR

texture

Finding the Mip Level |EE[

polygon

texel/pixel coverage: 2.5:1

One simple way to compute d (level of detail):

— — A=approx. area of

texel —
r quadrilateral
pixel projected | K (in #texels/pixel)
to texture space d= 10g2 \/Z
dtoo large:

- compute number of texels per pixel

- approximate coverage with square

- e.g., given a texture of 128 x 128 texels
- fora 128 x 128 polygon, d = log,(1) =0
« for a 64 x64 polygon, 4 texels per pixel, d = log2(\/4) =1

= gives overblur

dtoo small:
= fails to anti-alias

Akenine-Méllero2

Minification: Mipmapping

Many texels map (shrunk) into a single pixel

« need to average effects of many texels: expensive

« precompute/prefilter texture maps of decreasing resolutions:
lessens interpolation errors for smaller textured objects

« image pyramid

« halve width (s) and height (#)
when going upwards (d, d > 0)

- filtering while down sampling
« simple box filter
(average over 4 “parent
texels” to form a “child texel”)
+ or some other, better filter

Trilinear Interpolation

Given texels in 2 levels, do trilinear interpolation:
- bilinear interpolation in each level
« linear interpolation across levels

f level n+1
(s,t,d) /
\\.l

d —~ leveln

N

(can also use nearest neighbor instead)

Akenine-Méllero2

GL TEXTURE MIN FILTER

GL_NEAREST MIPMAP NEAREST GL_LINEAR MIPMAP NEAREST

GL_LINEAR_MIPMAP_LINEAR
(trilinear)

Use textures from different
mipmap levels as one moves
towards the horizon

Setting Mipmap Parameters

glTexParameteri (target, pname, param);
where
+ targetis GL TEXTURE 2D
+ pname is a parameter name that you want to change:
+ GL_TEXTURE WRAP T
+ GL_TEXTURE WRAP_ S
+ GL_TEXTURE MIN FILTER
+ GL_TEXTURE MAG FILTER
« paramis the parameter value to change to

For example:

glTexParameterf (GL_TEXTURE 2D, GL TEXTURE MIN FILTER,
GL_LINEAR MIPMAP_NEAREST) // or GL_NEAREST MIPMAP NEAREST
or GL LINEAR MIPMAP LINEAR (trilinear)

glTexParameterf (GL_TEXTURE 2D, GL TEXTURE MAG FILTER,
GL_LINEAR) // or GL_NEAREST

Schulzeot

Specifying the Mipmap Image

Manually specify a different texture image for each level:

glTexImage2D (target, level, internalFormat, width,
height, border, format, type, teximage)

// target:GL TEXTURE 2D

// level: mipmap level, 0 if not mipmapping

// teximage: pointer to image in memory

Or generate mipmap pyramid automatically
by using one of:

* glTexParameteri (GL TEXTURE 2D, GL GENERATE MIPMAP,
GL TRUE); // mustbe called BEFORE glTexImage2D ()

* glGenerateMipmap (GL_TEXTURE 2D) ;
// must be called AFTER gl TexImage?2D (), used with FOB

* gluBuild2DMipmaps () ; // deprecated

Limitations of Mipmapping

1. Area over which to compute pixel value (i.e., texel
coverage) is always as a square (isotropic filtering)

2. Fixed filters: only a pre-determined, fixed number
of area sizes are available, i.e., mip levels are fixed
in number and pre-determined

Result: overblurred

=7 (NN

Summed-Area Tables Summed-Area Tables

Table contains two-dimensional cumulative distribution

Pre-compute area-sum, but filtering (size of function: keep sum of everything above and to the left

area to average from) to fit pixel |s. done on- texel ;; Z ; i C:) : L Average texel value in

the-fly, only when texel coverage is known teel P LT area covered by pixel:

Advantages: el S NEBE (55-5+1-18 = 33)/6
‘ pixel - b

* no pre-determined mip levels,
texture can be shrunk to custom size

* no need to keep multiple tables m m k

- texel coverage can be rectangular in shape orin discrete form: Zf[i]ZZf[i]—Zf[i]
(but still isotropic) i=k i=0 i=0

Recall from calculus:jf(x)dx:jf(x)dx—jf(x)dx

Popovicog

Summed-Area Tables Problem with Isotropic Filtering

aschilda

Uniform averaging (isotropic filtering) in screen space

Disadvantages: . . .
becomes non-uniform (anisotropic) in texture space

« requires four table lookups

- and more memory to keep
the larger summed values
(2-4 times the original image)

Crow84

Problem with Isotropic Filtering

Texture distortion happens not only due to surface
curving, but also due to perspective projection

e ——

_ _ _ _
.;y-—.-&
- —

N 1T 7
/

/ texture
N\

screen

N
q

Anisotropic Filtering

Summed-area table is constrained to axis-aligned
rectangle

Alternative: approximate quad with several smaller
mipmap samples along line of anisotropy
* line of anisotropy along the ‘
longer of the quad edges o /\m
» use the shorter of the quad s | i b
edges to determine level K

* number of samples =
ratio of long/short quad edges

texture space

Pixel color is weighted average of the samples

RTR

