
EECS	487:	Interactive	
Computer	Graphics	
Lecture	25:		
•  Texture	Loading:	Pixel-Buffer	Object	
•  Texture	Filtering	

Texture	Loading	and	PBO	

Reading	texture	file	into	
client	memory	(RAM),		
and	then	writing	it	
from	RAM	to	texture	
object	can	be	slow	
	
Pixel	Buffer	Object	(PBO)	
allows	fast	data	transfer	
between	graphics	card	and	
file	through	DMA	(Direct	
Memory	Access),	bypassing	
RAM	

[Ahn]	

texture	loading	without	PBO	

glTexImage2D()

fread()

texture	loading	with	PBO	

glTexImage2D()

fread()

Pixel	Buffer	Object	(PBO)	
Stores	pixel	data	into	buffer	objects	

Same	mechanisms	as	VBO,	with	two	
additional	“targets”	(or	types	of		buffer):		
• GL_PIXEL_PACK_BUFFER,	used	by:	
• glReadPixel:	read	from	framebuffer	to	PBO	

• glGetTexImage:	read	from	texture	to	PBO	

•  “packed	to	be	shipped	off”	

• GL_PIXEL_UNPACK_BUFFER,	used	by:	
• glDrawPixel:	write	to	framebuffer	from	PBO	

• glTex(Sub)Image2D:	write	to	texture	from	PBO	

•  “unpacked	to	be	used”	

[Ahn]	

Pixel	Buffer	Object	Setup	
As	with	other	OpenGL	objects,	first	generate	buffer	
object	handle(s):	

glGenBuffers(GLsizei n, GLuint *pbods);

Next	bind	PBO	descriptor	to	a	type	of	buffer	
glBindBuffer(target, pbod);
// target	is	GL_PIXEL_PACK_BUFFER	or	
// GL_PIXEL_UNPACK_BUFFER

and	allocate	space	for	it:	
glBufferData(target, size, data, usage);

// data:	set	to	NULL	to	simply	allocate	space	(no	data	copy)	
// usage:	GL_STREAM_{DRAW,READ}	

Populating	Pixel	Buffer	Object	

As	with	VBO,	we	could	populate	the	PBO	by	copying	
over	texture	image	stored	in	client-side	memory	using	

glBufferData(target, size, data, usage);
glBufferSubData(target, offset, size, data);
// data:	pointer	to	data	in	client-side	memory	(RAM)	

Or	we	could	bypass	client-side	memory	by	mapping	
graphics-system	memory	to	client	address	space	
void *glMapBuffer(GLenum target, GLenum access);
// target:	same as glBindBuffer()
// access:	GL_WRITE_ONLY,	GL_READ_ONLY,	GL_READ_WRITE		

returns	a	pointer	to	the	mapped	memory

Write	to	PBO	
Bypassing	RAM	

[Ahn]	

glTexImage2D()

fread()

Setup	PBO	and	map	it	to	client	address:	
•  bind	and	allocate	PBO	

int pbod; glGenBuffers(1, &pbod);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbod);
glBufferData(GL_PIXEL_UNPACK_BUFFER, DATASIZE,

NULL, GL_STREAM_DRAW);	

•  to	map	PBO	to	client	address	space	use:	

char *texture=glMapBuffer(GL_PIXEL_UNPACK_BUFFER,
GL_WRITE_ONLY); // app writes into PBO

	

[Ahn]	

To	bypass	RAM,	read	from	file	directly	into	PBO	
•  read	into	PBO	from	texture	file	with	handle	fin	

fin >> texture;

•  now	we	can	unmap	buffer	from	client	address	space	and	
write/unpack	the	PBO	to	texture	object:	

glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER);
glTexImage2D(..., offset /* instead of pointer */)

glTexImage2D()

fread()

Write	to	PBO	
Bypassing	RAM	

Read	from	PBO	
Bypassing	RAM	

[Ahn]	

Setup	PBO	and	pack	it	with	framebuffer	content:	
•  bind	and	allocate	PBO	

int pbod; glGenBuffers(1, &pbod);
glBindBuffer(GL_PIXEL_PACK_BUFFER, pbod);
glBufferData(GL_PIXEL_PACK_BUFFER, DATASIZE,

NULL, GL_STREAM_READ);	

•  next,	specify	the	framebuffer	to	read	from	and	pack	it	into	the	
bound	PBO	

glReadBuffer(GL_FRONT);
glReadPixels(..., offset /* instead of pointer */)

glTexImage2D()

frwrite()

Image
file

Frame
buffer

[Ahn]	

To	read	from	PBO	directly	to	file:	

• map	PBO	to	client	address	space	
char *image = glMapBuffer(GL_PIXEL_PACK_BUFFER,

GL_READ_ONLY);	// app reads from PBO

•  finally,	dump	the	PBO	directly	to	image	file	with	handle	fout	
and	unmap	buffer	from	client	address	space:	

fwrite(image, sizeof(char), DATASIZE, fout);
glUnmapBuffer(GL_PIXEL_PACK_BUFFER);

glTexImage2D()

frwrite()

Image
file

Frame
buffer Read	from	PBO	

Bypassing	RAM	
Double	Buffering	

[Ahn]	

Since	fileóPBO	transfer	is	done	by	the	CPU	and	
PBOótexture/framebuffer	is	done	by	the	GPU,	the	two	
can	happen	asynchronously	
•  glMapBuffer()	waits	if	GPU	is	busy	with	buffer	
•  glBufferData()	with	NULL	pointer	detaches	existing	buffer	
object,	which	will	be	freed	when	GPU	is	done	with	it	

We	can	use	double	buffering	to	speed	things	up:

double-buffered	unpack	 double-buffered	pack	

[Ahn]	

int i=0;
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbods[i]);
glBufferData(GL_PIXEL_UNPACK_BUFFER, size, 0, GL_STREAM_DRAW);
texture = glMapBuffer(GL_PIXEL_UNPACK_BUFFER, GL_WRITE_ONLY);
fin >> texture; // blocking
glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER);
while (not done) {

glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbods[i]);
glTexSubImage2D(); // non-blocking

i = (i+1)%2;
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbods[i]);
glBufferData(GL_PIXEL_UNPACK_BUFFER, size, 0,

GL_STREAM_DRAW); // to prevent MapBuffer() from blocking
// if TexSubImage2D() from previous iteration is not done

texture = glMapBuffer(GL_PIXEL_UNPACK_BUFFER, GL_WRITE_ONLY);
fin >> texture; // blocking
glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER);

}

Double	Buffered	
Unpack	

[Ahn]	

int i=0;
glReadBuffer(GL_FRONT);
glBindBuffer(GL_PIXEL_PACK_BUFFER, pbods[i+1]);
glBufferData(GL_PIXEL_PACK_BUFFER, size, 0, GL_STREAM_READ);
glBindBuffer(GL_PIXEL_PACK_BUFFER, pbods[i]);
glBufferData(GL_PIXEL_PACK_BUFFER, size, 0, GL_STREAM_READ);
glReadPixels(..., 0 /* offset */); // non-blocking
while (not done) {

glBindBuffer(GL_PIXEL_PACK_BUFFER, pbods[i]);
// MapBuffer blocks until ReadPixel is done
image = glMapBuffer(GL_PIXEL_PACK_BUFFER, GL_READ_ONLY);
fwrite(image, sizeof(char), size, fout);
glUnmapBuffer(GL_PIXEL_PACK_BUFFER);

i = (i+1)%2;
glBindBuffer(GL_PIXEL_PACK_BUFFER, pbods[i]);
// fwrite() is blocking
glReadPixels(..., 0 /* offset */); // non-blocking

}

Double	Buffered	
Pack	

Texture	Filtering	

Mipmapping	
• mip	⩴	“multum	in	parvo”	(many	things	in	a	small	place)	

Summed-area	table	

Anisotropic	filtering	

Texture	Filtering	

Mipmapping	
• mip	⩴	“multum	in	parvo”	(many	things	in	a	small	place)	

Summed-area	table	

Anisotropic	filtering	

Interpolated	texture	coordinates	(s, t) are	continuous	
values,	texture	image	is	discretely	indexed	
How	to	compute	the	color	of	a	pixel?	
	
Nearest	neighbor	(point	sample),	
use	color	of	closest	texel:	
	
Simple	and	fast,	but	low	quality	
	
OpenGL:	glTexParameteri(GL_TEXTURE_2D,

GL_TEXTURE_MIN_FILTER,
GL_NEAREST);	

Texture	Value	Interpolation	

Linear	interpolation	in	2D:	

	
OpenGL:	

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER, GL_LINEAR);

Bilinear	Interpolation	

Heckbert89	

e = (1− u)a + ub
f = (1− u)c + ud

p(u,v) = (1− v)e + vf
= (1− u)(1− v)a + u(1− v)b + (1− u)vc + uvd

Magnification:	texture	is	too	small	for	
polygon/triangle	(not	whole	surface)	
• nearest	neighbor	point	sample:		
texel	repeated,	causing	aliasing	
•  (bi)linear	interpolation:	blurring		

Minification:	many	texels	per	pixel	
• nearest	neighbor	point	sample:	
aliasing	causing	moire	pattern	
• mipmapping	with	trilinear	interpolation	
•  GL_LINEAR_MIPMAP_LINEAR

Fitting	Texture	to	Primitive	
portion	of	
a	texel	

texel	 pixel	

Magnification	 Minification	
texture	 texture	polygon	 polygon	

Minification:	Mipmapping	
Many	texels	map	(shrunk)	into	a	single	pixel	
• need	to	average	effects	of	many	texels:	expensive	
• precompute/prefilter	texture	maps	of	decreasing	resolutions:	
lessens	interpolation	errors	for	smaller	textured	objects	
•  image	pyramid	

•  halve	width	(s)	and	height	(t)		
when	going	upwards	(d, d ≥ 0)	

•  filtering	while	down	sampling	
•  simple	box	filter		
(average	over	4	“parent	
texels”	to	form	a	“child	texel”)	

•  or	some	other,	better	filter	

s
t

d
RTR3	

Finding	the	Mip	Level	

One	simple	way	to	compute	d (level	of	detail):	

	
•  compute	number	of	texels	per	pixel	
•  approximate	coverage	with	square	
•  e.g.,	given	a	texture	of	128×128	texels	
•  for	a	128×128	polygon,	d = log2(1) = 0
•  for	a	64×64	polygon,	4	texels	per	pixel,	d = log2(√4) = 1

pixel	projected	
to	texture	space	

texel	

Akenine-Möller02	

!

A = approx.!area!of

!!!!!!quadrilateral

!!!!!!(in!#texels/pixel)

d = log2 A
d	too	large:	
�	gives	overblur	

d	too	small:	
�	fails	to	anti-alias	

texel/pixel	coverage:	2.5:1

texture	

polygon	

Trilinear	Interpolation	
Given	texels	in	2	levels,	do	trilinear	interpolation:	
•  bilinear	interpolation	in	each	level	
•  linear	interpolation	across	levels	

	
	
	
	
	
(can	also	use	nearest	neighbor	instead)	

Akenine-Möller02	

t

s

d

level n+1

level n

(s, t, d)

GL_TEXTURE_MIN_FILTER
GL_NEAREST_MIPMAP_NEAREST GL_LINEAR_MIPMAP_NEAREST

GL_LINEAR_MIPMAP_LINEAR
(trilinear)

Schulze08	

Use	textures	from	different	
mipmap	levels	as	one	moves	
towards	the	horizon	

Specifying	the	Mipmap	Image	
Manually	specify	a	different	texture	image	for	each	level:	
glTexImage2D(target, level, internalFormat, width,

height, border, format, type, teximage)
// target:	GL_TEXTURE_2D
// level: mipmap level, 0 if not mipmapping
// teximage: pointer to image in memory

Or	generate	mipmap	pyramid	automatically	
by	using	one	of:	
•  glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP,
GL_TRUE); // must	be	called	BEFORE	glTexImage2D()

•  glGenerateMipmap(GL_TEXTURE_2D);
// must	be	called	AFTER	glTexImage2D(),	used	with	FOB	

•  gluBuild2DMipmaps(); // deprecated

Setting	Mipmap	Parameters	
 glTexParameteri(target, pname, param);
where	
•  target	is	GL_TEXTURE_2D
•  pname	is	a	parameter	name	that	you	want	to	change:	
•  GL_TEXTURE_WRAP_T
•  GL_TEXTURE_WRAP_S
•  GL_TEXTURE_MIN_FILTER
•  GL_TEXTURE_MAG_FILTER

•  param	is	the	parameter	value	to	change	to	

For	example:	
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_LINEAR_MIPMAP_NEAREST) // or GL_NEAREST_MIPMAP_NEAREST
or GL_LINEAR_MIPMAP_LINEAR (trilinear)

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_LINEAR) // or GL_NEAREST

Limitations	of	Mipmapping	
1. Area	over	which	to	compute	pixel	value	(i.e.,	texel	

coverage)	is	always	as	a	square	(isotropic	filtering)	
2. Fixed	filters:	only	a	pre-determined,	fixed	number	

of	area	sizes	are	available,	i.e.,	mip	levels	are	fixed	
in	number	and	pre-determined	

	

Result:	overblurred	

Pre-compute	area-sum,	but	filtering	(size	of	
area	to	average	from)	to	fit	pixel	is	done	on-
the-fly,	only	when	texel	coverage	is	known	

Advantages:	
•  no	pre-determined	mip	levels,	
texture	can	be	shrunk	to	custom	size	
•  no	need	to	keep	multiple	tables	
•  texel	coverage	can	be	rectangular	in	shape	
(but	still	isotropic)	

Summed-Area	Tables	
Table	contains	two-dimensional	cumulative	distribution	
function:	keep	sum	of	everything	above	and	to	the	left	
	
	
	
	
Recall	from	calculus:	
	
or	in	discrete	form:	

Summed-Area	Tables	

f (x)dx =
a

b

∫ f (x)dx −
−∞

b

∫ f (x)dx
−∞

a

∫

f [i]
i= k

m

∑ = f [i]
i=0

m

∑ − f [i]
i=0

k

∑

Popovic09	

texel	

texel	
value	

Average	texel	value	in	
area	covered	by	pixel:	
(55−5+1−18 = 33)/6

pixel	

Disadvantages:	
•  requires	four	table	lookups	
•  and	more	memory	to	keep	
the	larger	summed	values	
(2-4	times	the	original	image)	

Gives	less	blurry	textures	
summed-area	tables	

	
	
	
	

nearest	neighbor 	bilinear	

Summed-Area	Tables	
aschilda	

Problem	with	Isotropic	Filtering	
Uniform	averaging	(isotropic	filtering)	in	screen	space	
becomes	non-uniform	(anisotropic)	in	texture	space	

Crow84	

Problem	with	Isotropic	Filtering	
Texture	distortion	happens	not	only	due	to	surface	
curving,	but	also	due	to	perspective	projection	

screen	

texture	

pixel	

line of
anisotropy

pixel’s �
cell

pixel space

Summed-area	table	is	constrained	to	axis-aligned	
rectangle	

Alternative:	approximate	quad	with	several	smaller	
mipmap	samples	along	line	of	anisotropy	
• line	of	anisotropy	along	the	
longer	of	the	quad	edges	
• use	the	shorter	of	the	quad	
edges	to	determine	level	
• number	of	samples	=		
ratio	of	long/short	quad	edges	

Pixel	color	is	weighted	average	of	the	samples	

Anisotropic	Filtering	

RTR	

