
EECS	487:	Interactive	

Computer	Graphics	

Lecture	15:		
•  Scenegraph	
•  Lighting	and	Reflection	

Hierarchical	Modeling	
Hierarchical	modeling	is	essential	for	transforming	

objects	with	attached	parts,	e.g.,	in	animation:	
•  eyes	move	with	head	

•  hands	move	with	arms	

•  feet	move	with	legs	

• …	

Without	such	structure	the	model	

falls	apart,	e.g.,	eyes	don’t	follow	

when	head	moves	

This	idea	can	be	extended	to	the	

entire	scene	→	scene	graph	
•  collect	every	objects	into	a	single	hierarchy	

How	to	represent	a	scene?	
•  list	of	objects	
•  transform	of	each	object	
•  can	use	minimal	primitives:	an	ellipse	is	a	transformed	circle	

•  transform	applies	to	points	on	object	

Scene	representation:	data	structures+transforms	

Scene	Representation	

Marschner	

Can	represent	scene	as	a	flat	list	of	objects	
•  but	editing	(e.g.,	delete)	requires	updating	many	nodes	

Scene	as	a	Flat	List	of	Objects	

Marschner	
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Introduce	a	new	abstract	data	type:	group	
•  treats	a	set	of	objects	as	one	object	(group)	
•  contains	list	of	references	to	member	objects	

•  lets	the	data	structure	reflect	the	rendering	structure	
•  enables	high-level	editing	by	changing	just	one	node	

Hierarchical	Representation	

Marschner	

All	parts	of	the	scene	are	represented	in	one	graph	

•  each	node	in	the	graph	is	one	scene	element,	including	

•  objects,	cameras,	lights,	materials,	transformations,	…	

•  switch/select:	specify	which	children	to	enable,	etc…	

•  simulation	procedures,	shaders	

•  other	scene	graphs	

•  simplest	form:	tree	

•  every	node	has	one	parent	

•  interior	nodes	=	groups	

•  leaf	nodes	=	objects	in	the	scene	

•  edges	=	membership	of	object	in	group	

•  transforms	are	associated	with	nodes	or	edges	

•  each	transform	applies	to	all	geometry	below	it	

Scene	Graphs	

Marschner,TP3,Schulze	

Marschner,Schulze	

Scene	Graph	
Example	

The	Graphics	Software	Stack	

graphics	API	
•  interface	to	graphics	hardware,	e.g.,	OpenGL,	

Direct3D

	
GPU	

scene	graph/rendering	engine	
•  as	“scene	graph	API”:	middleware	for	graphics	API	

•  as	“3D	toolkit”:	implement	graphics	functionalities	

commonly	required	in	applications	

applications	
• modeling	programs	use	scene	graph	to	manage	

complexity,	e.g.,	Maya,	3dsmax,	etc.	

•  games,	visualization,	virtual	reality,	web	apps	

Schulze	



Scene	Graphs	

To	draw	the	scene,	the	graph	is	walked	

•  each	time	a	node	is	traversed,	either	the	rendering	

state	is	changed	or	something	is	rendered	with	the	

current	state	

•  an	operation	performed	on	a	node,	such	as	rendering,	

culling,	and	transform,	affects	all	of	its	children	

•  e.g.,	traversing	a	light	node	turns	on	the	light	for	all	its	children	
•  transforms	accumulate	along	path	from	root	to	leaves	

Makes	modeling	and	animation	of	complex	

scenes	easier	by	breaking	them	down	into	a	

hierarchy	of	simpler	ones	with	their	own	local	

behavior	

Chenney	

Scene	Graph	Advantages	

Hierarchical	processing	
•  each	sub-hierarchy	naturally	defines	a	bounding	volume,	

e.g.,	for	culling,	collision	detection,	or	ray-tracing	

computation	

Object-oriented	paradigm	
•  each	object	is	defined	in	its	own	local	coordinate	systems	

• objects	can	have	other	properties	besides	shape	
•  color,	shading	parameters	

•  approximation	parameters	(e.g.,	degree	of	tessellation)	

•  user	interaction,	etc	…	

•  property	nodes	can	be	applied	to	sub-hierarchy,	
e.g.,	paint	entire	window	green	

• objects	are	self-contained	and	re-usable	
•  instancing:	an	object	can	be	a	member	of	multiple	groups	

TP3,Marschner	

Allow	multiple	references	to	nodes	

•  reflects	more	of	drawing	structure	

•  allows	editing	of	repeated	parts	in	one	operation	

Instancing	Example	

Marschner	

Multiple	Instantiations	

Object	defined	once,	used	many	times,	

in	many	places	in	the	scene	

•  an	object	with	multiple	instantiations	has	multiple	parents	
•  not	the	“make	a	copy”	instantiation	of	C++	

•  transforms	still	accumulate	

along	path	from	root	to	leaf	

•  objects	may	have	multiple	paths	

from	root	to	leaves	

•  transform	may	be	different	

for	each	instance	

• graph	is	no	longer	a	tree,	
but	a	directed	acyclic	graph	

(DAG,	no	cycle)	

Schulze,Marschner,James	



Scene	Graph	Toolkits	and	APIs	
No	broadly	accepted	standard	

APIs	focus	on	different	applications	
•  OpenSceneGraph	(openscenegraph.org)	
•  scientific	visualization,	virtual	reality,	GIS	
•  optimized	for	memory	requirements	

•  open	source	version	of	historical	scene	graph	APIs	for	SGI	IRIS	GL	
•  Open	Inventor	(oss.sgi.com/projects/inventor/)	
•  OpenGL	Performer	(oss.sgi.com/projects/performer/)	

•  Ogre3D	(www.ogre3d.org)	and	a	host	of	others	
•  games,	optimized	for	high-performance	rendering	(speed)	

•  Javascript	scenegraphs,	WebGL	compatible:	
•  three.js	(threejs.org)	
•  “a	lightweight	3D	library	with	a	very	low	level	of	complexity”	

•  sceneJS	(scenejs.org)	
•  CAD,	medical,	and	engineering	visualization	

•  Modeling	systems’	proprietary	libraries	
•  optimized	for	editing	flexibility	

Basic	Scene	Graph	Operations	

High-level	scene	management	

•  edit	transformation	
•  need	good	UI	

•  transform	object	in	world	coordinate	frame	
•  traverse	path	from	root	to	leaf	

•  grouping	and	ungrouping	

•  re-parenting	
•  moving	node	from	one	parent	to	another	

Marschner	

Common	Functionalities	

Resource	management	
•  asset	management	(geometry,	textures,	materials,	

animation	sequences,	audio)	

•  shader	management	

• memory	management	

• multi-threading	

•  (server	clustering)	
	

Rendering	libraries:	
•  bump	mapping	

•  shadows	

•  particle	system	

Schulze	

Performance	Optimizations	
Culling	
•  early	discard	of	invisible	parts	of	scene	

Level-of-detail	
•  use	lower	poly	count	version	for	distant	(small)	object	

Computing	bounding	volume	hierarchy	for	
•  culling	
•  collision	detection	
•  rendering,	e.g.,	ray-tracing,	qsplat	

Scene	graph	compilation/optimization	
•  render	objects	with	similar	attributes	(textures,	materials,	

shaders,	geometry)	in	batches	
•  efficient	use	of	low-level	API	

•  avoid	state	changes	in	rendering	pipeline	

Serious	scene	graphs	should	have	

implementation	of	these	techniques	
Schulze	



Scene	Graph	Encoding	

Collada	
•  asset	exchange	using	an	XML	schema	
•  e.g.,	passing	models	to	a	physics	engine	

•  asset	transformation	from	high-level	modeling	

description	to	platform-specific	optimized	description	

•  can	describe	everything	to	do	with	a	scene:	

geometry	with	full	skinning,	advanced	

material	and	visual	effects,	animation,	

physical	properties	and	collisions	

custom	tools	

Maya

Scene	Graph	Encoding	
X3D (web3d.org)
• VRML	with	XML	syntax,	replaced	VRML	in	July	2004
•  primary	goal	is	for	interactive	visualization	of	3D	assets	

•  specifies	behaviors	and	interactions	and	includes	
•  a	run-time	model	that	enables	viewing,	navigation,	picking,	and	scripting	

•  an	API	to	manipulate	the	scene-graph	at	runtime	

X3DOM	
• HTML5/X3D	
integration	

•  declarative	3D	(vs.	

procedural	WebGL)	

• x3dom.org	
view3D 
(PA2,4) 
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Object	Appearance	in	CGI	

Object	appearance	in	CGI	depends	on	its	

•  shape:	the	geometry	of	its	surfaces	and	position	wrt	camera	

•  shade:	its	illumination	environment	and	optical	properties	

Rendering	program	separates:	

•  geometric	processing:	transformation,	hidden	surface	
removal,	etc.	from	

•  optical	processing:	propagation	and	filtering	of	light	



Illumination	Models	
A	rendering	process	can	be	modeled	as	an	integral	
equation	representing	the	transport	of	light	through	
the	environment	�	the	rendering	equation	

Local	illumination:	an	approx.	of	the	rendering	eqn.	
•  assumes	light	is	scattered	only	once:	light	from	light	source	
is	reflected	by	a	surface	and	modulated	on	its	way	towards	
the	eye	

Global	illumination:	
•  light	rays	traveling	from	light	to	surface	may	be	
•  blocked	by	intervening	surfaces	(shadows)	or		

•  bent	or	scattered	by	intervening	material	
(refraction	and	atmospheric	effects)	or		

•  light	arriving	at	a	surface	may	come	indirectly	via	another	
surface	(reflection	and	color	bleed)	

Global	Illumination	Effects	

Properly	determining	the	right	color	is	really	hard	
•  translucency	
•  refraction	
• particle	scattering	
•  color	bleed	

Local	Illumination	

A	photograph	of	a	lit	sphere	
shows	not	a	uniformly	
colored	circle	but	a	circular	
shape	with	many	gradation	
or	shades	of	color,	giving	
the	impression	of	3D 
	

Local	illumination	consists	of	two	major	aspects:	

1.  light	source	distribution	function	
2. surface	reflectance	distribution	function	

Light	Sources	

Light	is	approximated	by	the	RGB	components	

emitted	from	the	light	source	

	

For	light,	the	RGB	coefficients	represent	

percentages	of	full	intensity	of	each	color	

•  c = (1.0, 1.0, 1.0)	is	white	

•  c = (0.5, 0.5, 0.5)	is	white	at	half	intensity,	

which	appears	gray	



Light	Sources	

Grassman’s	Laws:	

•  if	two	lights	emit	at	c1 = (R1, G1, B1)	and	
c2 = (R2, G2, B2),	the	light	that	arrives	
at	the	eye	is	

c = c1⊕ c2 = (R1 + R2, G1 + G2, B1 + B2)	
•  scaling	light	intensity:	c(s a) = s c(a)

a b

Light	Sources	

Types	of	light	sources	

• point	light,	e.g.,	light	bulb:	light	direction	
changes	over	surface	

• directional	light,	e.g.,	sunlight:		“distant”	light,	
direction	is	constant	

• spotlight:	point	source	with	directional	fall-off	

• area	source:	luminous	2D	surface:	radiates	light	

from	all	points	on	surface,	generates	soft	shadows	
spotlight	directional	point	light	

Point	and	Directional	Sources	

Point	light:	

•  light	arriving	at	a	point	(x)	on	the	surface	
•  l	always	points	towards	the	light	

•  must	be	normalized	

•  to	specify	an	OpenGL	light	at	light	position	(1, 1, 1):	
Glfloat light_position[] = { 1.0, 1.0, 1.0, 1.0 }; 
glLightfv(GL_LIGHT0, GL_POSITION, light_position);	

Directional	light:	l(x) = llight

•  the	l	vector	does	not	vary	across	the	surface	
• OpenGL	light	shining	from	direction	(1, 1, 1):	
Glfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 }; 
glLightfv(GL_LIGHT0, GL_POSITION, light_position); 

l(x) =
plight -x
p

light
-x

x

plight

Spotlight	

Point	source,	with	intensity	a	function	of	–l,	
specified	with:	

•  position:	the	location	of	the	source	
glLightfv(GL_LIGHT0,GL_POSITION,light_posn);	

•  direction	(sdir):	the	center	axis	of	the	light	

glLightfv(GL_LIGHT0,GL_SPOT_DIRECTION,light_dir);	
•  intensity	maximal	along	direction	sdir

•  when	light	moved,	direction	must	be	updated	along	with	position	

•  cut-off	(α):	how	broad	(in	degree)	the	beam	is	
glLightfv(GL_LIGHT0,GL_SPOT_CUTOFF,45.0);	
•  intensity	falls	off	angling	away	from	sdir

•  exponent	(sexp):	how	the	light	tapers	off	at	the	edges	of	the	cone	
glLightfv(GL_LIGHT0,GL_SPOT_EXPONENT,1.0);	
•  intensity	scaled	by	exponent:	sspot = max(−l • sdir, 0)sexp	

Spotlight	

� 

−l

(cosα)sexp

sdir

α



OpenGL	Light	Sources	

glLightfv(lightname,param,value) 
•  parameters	

• GL_AMBIENT 
• GL_DIFFUSE 
• GL_SPECULAR 

• GL_POSITION	
• GL_SPOT_DIRECTION 
• GL_SPOT_CUTOFF 
• GL_SPOT_EXPONENT 

• GL_CONSTANT_ATTENUATION 
• GL_LINEAR_ATTENUATION 
• GL_QUADRATIC_ATTENUATION 

How	Lights	Are	Positioned	

All	computations	are	carried	out	in	eye	coordinates	

•  store	lights	in	eye	coordinates	

•  lights	converted	to	eye	coordinates	using	current	
ModelView	transform	

•  lights	move	with	eye	
•  default	GL_LIGHT0	–	directional	from	the	back,	

with	specular	component	

•  glEnable(GL_LIGHTING); 
•  glEnable(GL_LIGHT0); 
•  don’t	forget	to	set	the	normals	properly		

Why	is	Winter	Light	Weaker	

than	Summer	Light?	

The	amount	of	light	received	and	reflected	by	a	surface	

depends	on	angle	of	incidence	(θ)	
•  bigger	at	normal	incidence	

•  smaller	slanted,	by	how	much?	

•  Lambert’s	Cosine	Law:		

proportional	to	cos	θ	

Durand,	FvD94

n

surface	

θ

n

Surface	2 Surface	1

n

dA

dA cos θ
θ

π/2 − θ

Recall:	

sin	(π/2	–	θ) = cos	θ	

Surface	Normal	
The	intensity	of	a	surface	color	depends	on	the	

orientation	of	the	surface	wrt	the	light	and	viewer	

The	surface	normal	vector	describes	

this	orientation	at	a	point	

•  is	perpendicular	to	the	tangent		
plane	of	the	surface	(recall	

how	to	transform	normals)	

•  is	often	called	just	“the	normal	

vector”	or	“the	normal”	

• will	use	n	or	N	to	denote	

Normals	are	either	supplied	

by	the	user	or	automatically	computed	

surface	

normal	

light	

direction	



Specifying	Normals	

Normals	can	be	specified	using	glNormal3*() 

Normals	are	associated	with	vertices	

Specifying	a	normal	sets	the	current	normal	
•  remains	unchanged	until	user	alters	it	

•  usual	sequence:	
glNormal3, glVertex, 
glNormal3, glVertex, 
glNormal3, glVertex,… 

Normals	are	not	normalized	by	default	
•  can	be	automatically	normalized	by	calling	
glEnable(GL_NORMALIZE)	or	
glEnable(GL_RESCALE_NORMAL) 
•  but	this	is	slow,	instead	normalize	as	needed 

Material	Appearance	

Factors	effecting	materials	appearance	
•  color	
•  texture	
•  intensity	and	shape	of	highlights	
•  glossiness	

For	surface	color,	the	RGB	coefficients	

represent	percentages	of	reflected	

proportions	of	each	color	

Ngan,Hanrahan	

OpenGL’s	Simple	Reflectance	Model	

If	the	light	is	emitting	cl = (Rl, Gl, Bl)	and	the	
material	reflects	cm = (Rm, Gm, Bm),	the	light	that	
arrives	at	the	eye	is	c = cl ⊗ cm = (Rl Rm, Gl Gm, Bl Bm)
	

A	red	ball	in	white	light	reflects	red	

and	absorbs	green	and	blue	

	

A	red	ball	in	green	light	appears	black	

(no	light	is	reflected)	

OpenGL	Lighting	and	Reflectance	
/*  Initialize material property, light source,  
    lighting model, and depth buffer. */ 
void init(void)  
{ 
   GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 }; 
   GLfloat mat_shininess[] = { 50.0 }; 
   GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 }; 
 
   glClearColor(0.0, 0.0, 0.0, 0.0); 
   glShadeModel(GL_SMOOTH); 
 
   glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); 
   glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess); 
 
   glLightfv(GL_LIGHT0, GL_POSITION, light_position); 
 
   glEnable(GL_LIGHTING); 
   glEnable(GL_LIGHT0); 
   glEnable(GL_DEPTH_TEST); 
} 
 



Clamping	vs.	Scaling	

RGB	coefficients	must	be	in	[0.0, 1.0]	range	
	

Reflected	color	c = (c1⊕ c2) ⊗ cm=�
[(R1 + R)Rm2, (G1 + G2)Gm, (B1 + B2)Bm] may	have	

component	> 1.0,	e.g.,	bright	orange	is	(2.5, 1.5, 0.5)	
•  if	clamped	to	1.0,	(1.0, 1.0, 0.5)	is	yellow	

•  if	scaled	by	1/2.5	instead,	we	get	(1.0, 0.6, 0.2),	
which	retains	the	original	orange	hue	and	saturation	

Microfacet	Theory:	model	surface	as	a	collection	

of	tiny	mirrors	[Torrance	&	Sparrow	1967]	
	

	

	

Example	of	microfacet	distribution:	

•  surface	of	the	ocean	
•  viewer	sees	“bright”	pixels	

•  when	microfacets	are	pointing	

halfway	between	the	sun	and	the	eye	

•  other	microfacets	are	obstructed,	

either	in	shadow	or	hidden	

Torrance-Sparrow	Reflectance	Model	

Durand	

Microfacet	Model	[Cook&Torrance82]	
Reflectance	at	(l,	v)	is	a	product	of	the	
•  number	of	mirrors	oriented	halfway	between	l	and	v,	
•  percentage	of	unblocked	mirrors,	and	

•  Fresnel	coefficient:	fraction	of	light	reflected	(not	absorbed),	

function	of	angle	of	incidence	and	index	of	refraction	

Durand	

l

v

h

Lozano-Perez	

Measure	of	Reflectance:	BRDF	

ωo 

ωi 

ρ (θi, φi, θo, φo) 

Different	material	emits,	absorbs,	

or	reflects	light	differently	

Bidirectional	Reflectance	Distribution	Function	(BRDF)	

ρ (ωi, ωo):	
•  ratio	of	radiance	incoming	from	one		

direction	that	gets	reflected	in	

another	direction	
•  relates	incoming	light	energy	to	outgoing	

•  function	based	on	directions	of	incidence	and	view	

•  unifying	framework	for	many	materials	

•  (assume	isotropic	material,	reflectance	

is	invariant	to	rotation	about	the	normal,	

unlike	velvet	or	satin,	e.g.)	



Hanrahan	

Types	of	Reflection	

We	generally	recognize	3	types	of	reflection:	
	

Ideal	Specular	
• Reflection	Law	

• Mirror	

Ideal	Diffuse	
•  Lambert’s	Law	

• Matte	

Rough	Specular	
• Directional	diffuse	
• Glossy	

How	to	Obtain	BRDF?	

Gonioreflectometer	

Ward,Hanrahan	


