EECS 487: Interactive
Computer Graphics

Lecture 10:
* Homogeneous Coordinates
* Affine Transforms
* Transforming Normals

Points vs. Vectors

A point is a fixed location in space
* can’t add two locations (Detroit + Chicago?)
* can't multiply (the lat/lon of) a location by a scale (9xDetroit?)

But subtracting two points gives a vector that describes

the motion from one location to another: u =q—p

(if we treat points as vectors, adding two points

does give their midpoint, but that's by virtue of vector addition)

Or the vector can describe the location that is some
displacement away from a given location: q=p +u

On the other hand, since a vector consists only of
magnitude and direction, it doesn’t make sense to
talk about moving/translating a vector

Lozano-Perezo1

Points vs. Vectors

A point is a fixed location in space

A vector can be considered a displacement
or motion between points

Addition and scalar multiplication are
well defined for vectors

« the addition of 2 vectors is the urv

concatenation of 2 displacements

v

U, Vo U +VU

ut+v= u |+ v, |=| u +y u u
u, v, u, +V2

« multiplying a vector by some factor u

scales the displacement

Lozano-Perezo1

Coordinate System

. . P
Given a point p=[}
P,

we usually understand it to j

mean a point in the Cartesian

coordinate frame with origin
ato:p=o0+p,i+ p,jwhere P,

i and j are the standard basis o i

[t

. Py
In matrleorm:p:o+[i j }! :o+[(1) (1)
Py

Py

Lozano-Perezo1

Origin and Change of Frame

Basis
Coordinates themselves (p,, p,) are not geometric entities
What is a basis? « they are just scalar coefficients
.)) . - a basis is required for a set of coordinates to represent a vector
A linearly independent set of vectors whose linear - aframe is required for a set of coordinates to represent a point
combinations include all vectors in the space (there « coordinate frame := origin + basis A

are infinitely many bases for any given space)
A linear transform changes the basis of a

. . coordinate system, but not the origin:
What does it mean for a set of vectors to be linearly Y °

. p=Mp=pu+py i
Independent? y A vector basis
No vector in the set is a linear combination of the An affine transform can change both the 'Y
others basis and the origin of the coordinate frame:
p=Mp+it=putpyv+t
An affine frame
Lozano-Perezo1
Homogeneous Coordinates Homogeneous Coordinates
Vectors live in linear space (R?) and can be Attribute Vet Point
operated by linear transforms (rotate and scale) Representation
T
Points live in Euclidean space (E3) and can be y
operated by Euclidean transforms (translate and rotate) 0 1
Represent magnitude location

The coordinate frame a point lives in

and direction
requires the specification of a basis p=putpyv+

d bsolut . Origin relative absolute
and an absolute origin
g P. Transformations linearscale Euclidean translate
A vector space is completely defined = [u v] P, androtate and rotate
by a relative set of coordinate basis,
irrespective of origin ;D More ggnerglly, homogeneous coordlnatgs increase
D. dimensionality by adding one extra coordinate w
wW=pu+pvVv= I: u v :I p homogeneous * recall: coordinates are not geometric entities,
® Y ¥ coordinates

they are just scales of basis vectors

Lozano-Perezo1

Homogeneous Coordinates

For now we assume w is always | or 0, representing, x
respectively, a point, preserving origin, or a vector y

Often, wis not stored, which requires different
operation routines for points and vectors

To extract the Cartesian coordinates in

. wx T
Euclld.ean space out of homogeneous wy |/wee| v
coordinates, divide by w ” :

Affine Matrices

In matrix form, an affine transform always looks like:

m m
M 11 12 MH"
= m, m =
f 21 22 0 1
0 0 1
where M, is a linear matrix
Translation Rotation Scaling
10 cosp —sing s, 0
T(H)=| 0 1 R(p,0)=| singp cosyp S(s,.s)= 0 s,
0 0 1 0 0 1 0 0 1

Curlesso8

Translation: Tra nS|atiOn Wlth
v arby Homogeneous

_ _ Coordinates

in matrix form:

BRI

y'=dr+ey+

p'=Mp+

with homogeneous coordinates:
7' a b T ar+by+
y o=l d e y |=| drx+ey+
1 00 1 |1 1

p'=T(t)p = translation can now be combined
with the other affine transforms!

Durando8

Affine Transforms of
Homogeneous Coordinates

Affine transforms, i.e., multiplication by an affine
matrix, of homogeneous coordinates leaves w

unchanged .
mll ml2 t X

my My I y
0 0 1

Rotation Around Arbitrary Point

So far we have only considered rotation about the origin
z' cosp —sing O T
Y |=| sinp cosp O y
1 0 0o 1 1

qmg’ %{w
\/ z

Chenney

Rotation Around Arbitrary Point

What if we really want to rotate about the object center,
not the origin?

« translate to origin
« apply rotation matrix p’ wn
« translate back to original position

composition

y y Eossible only
y use of
° Homogeneous
Coordinates!
o T
y y

Chenney

Rotation Around Arbitrary Point

What happens if we apply the same transform to an
object not centered at the origin?

x' cosp —sing 0 z
y' =] sing cosp O y
1 0 0 1 1
y
?
X T

Chenney

Scaling About Arbitrary Point

Similarly for scaling, we have only considered scaling object
about the origin

T s, 00 T
Y= 0 s, 0 y
1 0 0 1 1

Applied to an object not about the origin shows a translation
side-effect that is proportional to the scaling factor

N

e 0y

A VA

S(1/2,2)
—_—

x

Scaling About Arbitrary Point

How do we scale an object about an arbitrary point?
e translate to origin
* apply scaling matrix p’ =T'STp
e translate back to original position

(9"
| Y
SR
s e -5

Foley etal. 94

Scaling About Arbitrary Axis

Scaling about arbitrary axis:
* translate axis center to origin
* rotate axis to align with one
of the coordinate axes
* scale as desired
* rotate back to original orientation
* translate back to original position

p’ =T 'R-'SRTp

O’Brieno8

Scaling About Arbitrary Axis

Our scaling matrix assumes scaling about coordinate axes only

0

z' Sy 0 T
yI|=| 0 s 0 y
1 0 0 1 1

How do we
scale about
arbitrary axis?

4> ==
Transforms Composition
Is Non-commutative

O’Brieno8

Scale then translate: p’= T(Sp) = TSp

‘ an Scale(2, 2) k(z’ 2 Translate(3, 1) L’ 1'
(0, 0) 0,0

Translate then scale: p’= S(Tp) = STp

q q (8’ 4)
‘) Translate(3, 1) 3 1ﬂ(4’ 2) Scale(2, 2) (6, 2).
(0, 0)

Durando8

Transforms Composition
Is Non-commutative

Scale then translate: p’ = T(Sp) = TSp

[t

Translate then scale: p’= S(Tp) = STp

HHEN,

S O =
S = O
—_ =
S O N
S o O
=)
S O N
(el S BN]
p— ()

|
|

ST

S O N
S o O
- O O
S O =
S = O
_— (D
S O N
S o O
—_ N N

v

transformed normal no longer
perpendicular to surface!

Commutative Exceptions

T(t1)T(t2) = T(tz)T(t1) = T(tl + tz)

S(s._,s.)S(s.,s.)=S(s_,s.)S(s_,s):S(szlszz,sylsyz)

il N Ty Y2 Ty 7" Y2 ! N
R(¢,,0)R(p,,0)=R(p,,0)R(p,,0) =R(p, +p,,0) 2D only!

S(s,.s,)R(,0) =R(4,0)S(s,,s,) for isotropic S only!

So How Do We Do It Right?

Observe: normals are defined by surface tangent

n n’
Original Incorrect Correct

Pick any vector tin the tangent plane,

how is it transformed by matrix M? t* =M t
« a vector tangent (t) transformed (t’)
would still be the tangent of the surface

Cause: affine transformation maps parallel lines to
parallel lines, but not so for perpendicular lines

Transforming Normal Why Does the Normal

tis perpendicular to normal n: Sometimes Transform Correctly?
n-t=0
Wt=0 u Properties of similitudes:

« maintains “similar” shape (similar

Tye _ Trax-l _
nlt=n"M Mt=0 triangles, circles map to circles, etc.)

(nTM_l)(Mt) =0 t « angles are preserved
@)t' > - distances are changed by a fixed ratio
s perpendlcular to\normal n’: - MHT=AM 0dy o it
(MY = AM / —_Similitudes
n" t' = n'=M")n= n Translation .
n’ T e (MY exists as long as [M| = 0, Identit .
n_ t M doesn‘tinclude projection en I. y Scaling
_ M" Rotation)
= ~ W,
n' =(M")'n
Durandos Durandog a.k.a. Orthogonal Transforms
Inverting Transformations Orthogonal Matrix

MM'=MM=1 M h | i iff
In general, M"' undoes the effect of M Is an orthogonal matrix ift:
In general, compute inverse using the adjoint method, «M'l=MT
Cramer’s rule, LU decomposition, Gaussian M| =1
elimination, or invert SVD matrices « its columns (and rows) form an orthonormal basis:
Special (simple) cases: - columns a-re orthogonal: col, * col, =0
* translation: a translation in the opposite direction: T-! (t) = + and of unit length [|col,|| = [|col,|[= 1

T=1) « M must be a square matrix
* (axis-aligned) scaling: S-(s,, s,, s.) = S(1/s,, Us,, 1/s,)
* rotation: transpose (R is orthogonal) - for M orthonormal, if N is orthogonal, so is NM
* swap order and invert M =M,M,M, cosp SiIlgD

each transform, e.g., MM = M- (M- (M- _ -

(TOR0)" — R(—p0) T(_1) I=M"M=M, (M, (M; M, M,)M, R(p,0)=

_ A glaA— sing cosp
M 1 — Ml 1M21M3l

O’Brieno8

Orthogonal Matrix

Lets and t be the two rows of R(p,0):
s = [cosp —sinp]Tandt = [sing cosp]”

coSs —sin
Ripo)s=| = 7
singp cosyp
CcoS —sin
R(p,0)t= .90 v
singp cosyp

RR” = cosy —sing
B sing cosyp

Levoyo8

cos(p
—sing
siny

COS(

cosp sing |
—sinp cosy B
~RR"=I=RR"=R"'=R’
= R is an orthogonal matrix!

o

