EECS 487: Interactive
Computer Graphics

Lecture 8:
* Anti-aliasing
* Alpha-channel and compositing

Limitations of Raster Images

1. Limitations of discretization: limited resolution
(sampling rate) and dynamic range (quantization
steps (what is quantization?), bits/pixel)

continuous /\/ v("("(“

discrete = — —

3
pixel

2. Computers have finite precision: real numbers are
represented as float or double, causing round-off
errors

Chenney,O’Brien

Cause of Aliasing

Sampling rate (resolution) too low to capture high-
frequency signal (small details in image)

= a high frequency signal reconstructed from samples as a
lower frequency signal (an alias)

Nyquist Theorem: to faithfully reconstruct a signal at
frequency frequires a sampling rate of 2f

Quantization

Partitioning potential signal values into levels and
represent each level with a single number

quantization errors

................................

Signal Digitization

Higher sampling rate and finer quantization levels give better
signal reconstruction but generates higher data rate

Example 1: Example 2:

+ sampling rate: 8 samples/sec + sampling rate: 8 samples/sec

+ quantization: 2 levels = 1 bit per sample < quantization: 4 levels = 2 bit/sample
- datarate: 8 bps - datarate: 16 bps

10

Anti-aliasing

Approach 2: filtering/blurring the jaggies Example:
- instead of simply setting each pixel on or off, a=0.3
« compute the area of a pixel to color,

= translates into and implemented as how much color
(intensity) to give a pixel

. artial coverage
Alpha channel: encodes pixel coverage P g

(or transparency) info

. o = 0: no coverage (= transparent)

« «a = l:full coverage (or 255 = opaque)
+ 0 < a < 1: partial coverage (or translucent)

translucency

Anti-aliasing
Approach 1: increase resolution

Appearance of the textured
polygon in the image

Texture I I
Polygon width i /
12 Pixels @00000000000
6 Pixels eo0e0®O0
4 Pixels @ O O @ \
3 Pixels @ o [
Samples

Problems: -

Gillies&Rueckertog

. result color not to
one plxel scale, example only

Blurring the Edges

Approaches to filtering: A

no filter: point sampling

1. Area sampling (pre-(sample) filtering):

+ compute what the pixel color should be, as an]
average of all fragments covering the pixel
« sample value == computed average color

- theoretically robust, not always practical, e.g., -
requires computation of sub-pixel geometry P"e'f';'lteri area sampling

area(i)
¢ = J‘tx,.c,, o= ——, k fragments
. . o area(pixel)
2. Super-sampling (post-(sample) filtering):
« increase sampling frequency : :
- average down multiple sample values C
* single-pass or multi-pass ° —_—

post-filter: multi-sampling

n
c, :zchxl , eg, w; =1/n, n samples
J=1

Wattoo

Area Sampling Example:
Line Anti-Aliasing

Let (z+1,y’) be on the line and & the distance of y’
from the midpoint (y+0.5):
f@+1,y40.5) = A, +h) — A (x+1) + C /]y +h=y+05
=A0N + AL —A(z+1)+C
=A,0) =A@+ +C+Ah
=f(z+1,y) + hA,
=0+ hA, // assume (z+1,y’) on the line

h=fmid/dx
Ideally, at =, line is at pixel center, then
for0<m<1,-0.5<h<0.5 and pixel

area coverage can be approximated po | 0=h=0S
by a=|h|+0.5 for the “o!’m” pixel 05<h<0
and 1—a for the other pixel d °

Single-pass Super-sampling

Sample at a higher resolution (higher sampling rate),
into a larger buffer = requires a sampling buffer
larger than the framebuffer

Then filter (average) and down sample

Example:

« enlarge an NxM image to 3N*3M (vertex coordinates
need to be adjusted) ,
Virtual Image Final Image

- take 9 (3%3) samples per pixel 1/_,—\‘
« each 3x3 virtual image pixel .A
corresponds to 1 final image pixel | *

- the final pixel’s color is the
average of the 9 samples

Area Sampling Example:
Line Anti-Aliasing

But more likely than not, the line is not at

pixel center:
‘ . 1—h
| < \
‘ ‘ ‘ ‘ ° ° 14+h
then —1<h <1 and

we have 4 cases to consider (in PA1):

* line is below midpoint and y is not incremented:
+ 2 cases, whether line is above or below pixel center

* line is above midpoint and y is incremented:
« 2 cases, whether line is above or below pixel center

Single-pass Super-Sampling Triangle

Change each pixel into a 3x3 block

Example:

X\
X
X

X enlarge X

X X [X X (X X XX

MRRIRR
% Jx Ix [x Px [x]

1 %

down sample

2/9
8/9

1/9]2/9)

Multi-pass Super-sampling

Trade off time for space: instead of a sampling buffer Iarger than
the framebuffer, sample each pixel k times: 1l

- render the image k times in as many passes S R

« for each pass choose a different sub-pixel offset

+ add the resulting image into a multisample buffer

- the final result is averaged out by k and stored in
the framebuffer

~—Haeberli&Akeleygo

Compositing

Combines components from o

two or more images to make |___

a new image . =

* CG FX can be done in layers ~' » TR w R

+ “live action” can be faked G
=

Classical animation technique
(Dlsney) Background Funkhouserog

* superimposition of different layers
on translucent films (celluloids or “cels”)

Multisampling in OpenGL

First obtain a GLUT window that supports multisampling:
glutInitDisplayMode (.. | GLUT MULTISAMPLE) ;

Next enable multisampling before rendering:
glEnable (GL_MULTISAMPLE) ;

Then render as usual

Multisample buffer: an additional color buffer
« same spatial dimensions as the framebuffer
- greater color resolution and range (-1,1)

Matte

Matte: a mask used in
compositing to protect a part
of the background image

* paint the background image

* put on the matte

* where the matte is white, paint on
the foreground object

Chenney

Blue Screen Matting

Background image (e.g., weather map) generated separately

Foreground image created with blue or green background (a
matte)

Insert non-blue foreground
pixel into background

Really hard:
* lighting change background color

* shadows, color bleed,
transparent objects

* hairis partly background

* modern system uses
computer vision

Pixel Coverage

Anti-aliasing and compositing both deal with
pixels with ambiguous detail
« anti-aliasing: how to carefully smooth down the detail

« compositing: how to account for the detail when
combining images

In both cases, simple binary “in” or “out” values

are insufficient:

« causes jaggies in compositing, similar to point-sampled
rasterization

« same problem, same solution: need intermediate values

Digital matte: store the matte along
with the foreground image; pixels on
the matte has full transparency,
foreground pixels full opacity

Alpha Channel: Digital Mattﬁ 5 *
L]

Alpha channel: simulates the matting of
celluloid layers
- usually process layers back to front

But avis useful for more than matting:
« to encode transparency

« to encode partial coverage for anti-aliasing!
» to encode the shape of an object (“sprite”)

Lozano-Perez&Popovico1

Alpha Channel

Encodes pixel coverage (or transparency) info Example:
. a = 0: no coverage (= transparent) a=023
« «a = I:full coverage (= opaque, or 255)

« 0 < a < 1: partial coverage (or translucent)

- controls the amount of foreground and background

pixel colors used when linear interpolating images in
composition: ¢, = a;¢; + (1-ay) ¢, partial coverage

translucency

Funkhouserog

Compositing Translucent Objects

Consider the composition on the right:

* two colors: ¢, and ¢,

«two a’s: oy and oy

« how much of Bis blocked by A?

« how much of B shows through A?

« resulting composition: C = “A over B”
ce=ayuc,+ (1) a,e
ac=a,+ (I-ay) ag

« but it turns out ¢ - is not just the color of C,
it's actually the color of C pre-multiplied by
o, so if it's to be used in further
compositing, it doesn’t need to be multiplied
by - again

Compositing Opaque Objects

Funkhouserog

How do we combine 2 partially covered pixels?

- “over” is not the only possible combination V
+ 12 reasonable combinations:

a2 A

clear AoverB

< A ° Nk Compositing factors
)\ assuming pre-

BinA AoutB BoverA AinB multiplied a:

< \< >/ X Example usage:

«C=AoverB

cc=F,c¢,+Fzcy
=c, + (I-ay)

cac=F o, +Fpoy
=, + (I-oy) ap

BoutA AatopB BatopA Axorb

R‘AB

4

Operation

Clear

A

B
Aover B
BoverA 1-
AinB
BinA
AoutB
Bout A
A atop B
Batop A
A xorB

- -

58‘5 c;a{pﬁ-nc—uc;ﬂ

RN

! = o oy

gfag°f e~y

Porter&Duff84

Pre-Multiplied o

Instead of storing (R, G, B, a) in a pixel,
store (aR, aG, aB, a)

- v value constrains color magnitude

- « shapes sprite

» mathematically clean: multiple composites are well defined

To display and operate on the actual color, extract
RGB by dividing by a:
» o= 0is no color (or black)

- division by small « loses some precision, usually ok (and
would have had to be done on composite color to extract
RGB anyway)

Blending and Compositing in OpenGL

First allocate space for the alpha component:
glutInitDisplayMode(... | GLUT ALPHA);

Then enable blending:

co=ac,+(-a)e, a.=a,+(1-a))a,
glEnable (GL BLEND) ;
glBlendFunc (GL_SRC_ALPHA, GL ONE MINUS SRC_ALPHA) ;

OpenGL blending factors:
+ GL_ONE, GL_ZERO
+ GL_SRC_ALPHA, GI,_ ONE MINUS_SRC ALPHA

Fragment Tests

Before a fragment becomes a pixel,
there are several fragment tests/
merging operations to check
whether the fragment belongs in
the framebuffer

- a fragment may be discarded or merged
with another as the result these tests

Application

| Vertex Processing |

l

| Primitive Processing |

. rIGyIIICII.L rrucessiy .

Framebuffer

Display

Anti-aliasing vs. Visibility Culling

Coupling of visibility determination and

sampling (aliasing)
- anti-aliasing blurs geometry
- accurate occlusion culling requires

sampling of exact (sharply defined) geometry

- can't have both ®

A partial solution:

- anti-aliased geometry does not occlude completely

« occluded objects bleed through the seams

« but anti-aliased geometry can be occluded by exact

geometry

Akeleyoy

Fragment Tests

To
amebuffer

) cropping: draw only
windows given area of window ~ transparency
Fragment Pixel Alpha
.) Scissor
+ Ownership L Test L Test
Associated Test (RGBA Only)
Data
visibility counting
Depth buffer Stencil
Test Test
Framebuffer J Framebuffer 4}
i Logic
po| Blending . -] -
(RGBA Only) Dithering op v
Framebuffer J Framebuffer J
using alpha, trade off spatial determine how a pixel is updated:
compositing resolution for copies over, XOR, OR, AND, etc.

color resolution

(useful for bitblt and undo (XOR), e.g.)

