EECS 487: Interactive
Computer Graphics

Lecture 3: Introduction to OpenGL and GLUT

The OpenGL Graphics Pipeline

penGL

Vertex - Fragment 5]
5 S [&
k] Processor Processor 2
® 7]
S £
a | o
o . [
< Per-Pixel | |, Texture .
Operations Assembly |
A
= Geometric Pipeline > Pixel Programmable

Pipeline Shader

What is OpenGL?

A set of APIs to interface with penG L
the graphics hardware

« used to manage the GPU resources to render image

« sets up the graphics pipeline for rendering

« deals only with low-level geometric primitives:
points, lines, polygons
+ no commands for drawing high-level objects, e.g., sphere (GLU)
+ no commands for system, 1/O, and windowing or Ul tasks (GLUT/GLFW)

- is hardware-independent

« is cross platform, usually bundled with the OS, windowing
subsystem, and/or graphics card driver software

What OpenGL Does

Draw primitives into the framebuffer

Primitives: R

* points i

+ line segments - geometric
pipeline

- polygons

« application provides vertex data (, Y, 2)

« pixel rectangles
* bitmaps)
- application provides pixel data

~ pixel pipeline

OpenGL 2.1 vs. "Modern” OpenGL

We'll learn how to draw using OpenGL 2.1

immediate drawing mode

+ deprecated since OpenGL 3.0

« but easier to learn with, similar to using an
interpreter vs. a compiler

We'll learn how to use buffers to pass data

to the GPU later in the term

Drawing 101 Examples

To draw a line:
(zl,yl)

Note the
order of
vertices!

glBegin (GL_LINES) ;
glvertex2f (x0,y0);

glVertex2f (x1,yl);

(@)50)

To draw a triangle:
(.)

glEnd() ;

glBegin (GL TRIANGLES) ;
glVertex2f (x0,y0);

glVertex2f (x1,yl);
glVertex2f (x2,v2);

(2Y0) (z.y)) glEnd() ;
To draw a quadrilateral polygon (quad):

glBegin (GL QUADS) ;

(@) (@27,) glVertex2f (x0,y0) ;
glVertex2f (x1,vyl);
glVertex2f (x2,vy2);

1Vertex2f (x3,v3);

(@)50) (@31 gurertex (3, y3)

glEnd() ;

Drawing 101 Immediate Mode

All geometric objects can be represented

as a set of vertices in 2D or 3D

Draw objects by specifying the vertices and
how they are to be connected to form primitives:

1. specify how the vertices are to be connected:

glBegin (connection) ;
2. specify the vertices:

glVertex* (..);

3. specify end of primitive:

glEnd () ;

Connection Types

Pie ® oPs Py
Poe oPy Py
p;® ° ®p; Py
Ps
GL_POINTS
Py
Pie * oPs
Poe oby

P;® o ®Ps
Pg
GL_POINTS

Py Py Py Pg
GL_POINTS

 note vertex orderin

Py

~~P; Py P3
/ Py Po Py
~ 'Ps P; Ps
Pg Pe
GL_LINES GL_LINE_STRIP
Deprecated

Py

NN/

P, b,

P

P P7

P, P

GL_TRIANGLE_STRIP

9

Py Py
Py Py
Py Ps

Pg
GL_LINE_LOOP

Py
7 Py
P7 Ps
Pg

GL_TRIANGLES

Deprecated

* GL_POLYGON and GL_QUADS must be simple and convex!

OpenGL Command Syntax Drawing Block

glBegin (GL LINES) ;

Vertex3fv(. . .) e glVertex2f (x0,y0) ;
- glVertex2f (x1,yl);
[(79Yo) glEnd () ;
Multiple g1Begin () ... glEnd () blocks allowed
basecall argumentcount argument data type vector « each block Speciﬁes a Sing|e type Of pl’lmltlve
2-(z,y) b 8 bit GLbyte omit ‘v’ for scalar form . . . s . .
s . » multiple instances of primitive inside each block allowed
R T,), 2 ub 8bitunsigned GLubyte, GLboolean glVertex2f (x,y)
4-@rawor o et CLehort - loops, conditions etc. inside each block allowed
POSRO s gebt o Glushort - normal C/C++ code and changing attributes like vertex
unsigne
© b CLint, Gosizei color allowed, but not other OpenGL commands
ui 32bit GLuint, GLenum,
unsigned GLbitfield
f 32 bit GLfloat, GLclampf
d 64 bit GLdouble, GLclampd
Drawing 101 Drawing Wireframe Meshes
. Draw polygon boundary edges only:
To draw a 3D triangle mesh: glPolI:;/goZD?ode (GL_FRONT_XND_BgACK, GLZLINE) ;
glBegin (GL_TRIANGLES) ; glBegin (GL_TRIANGLES) ;
+ emit a list of vertices for (int i=0; i < n; i++) { for (int i=0; i < n; i++) {
) : .) glvertex3fv (v[i++]);
every triple makes a face glvertex3fv(v[i++]); SlVertex3ty (vi++]);
glvertex3fv (v[it++]); glVertex3fv (v[i]); :
glVertex3fv(vI[i]); })
! g1End () ; ; ®
glEnd () ;

Hidden surface removal:
glPolygonMode (GL_FRONT, GL LINE);
. glPolygonMode (GL_BACK, GL_FILL);
// £il1ll w/ background color
rely on z-buffer to remove hidden polygons

+ was once an important problem

Drawing Shaded Polygon Drawing Shaded Polygon

glVertex* () Withina glBegin() ... glEnd() block
- specifies position only + normal C/C++ code and changing attributes like vertex color
« drawn in current color allowed, but not other OpenGL commands

What do these commands draw?
glColor3f(0.0,1.0,0.0);
glBegin (GL TRIANGLES) ;

glVertex2f (x0,vy0);
glVertex2f (x1,vy1l);
glVertex2f (x2,vy2);

What do these commands draw?
glColor3f£(0.0,1.0,0.0);
glBegin (GL TRIANGLES) ;

glVertex3fv(v[it++]);

glColor3f(0.0,0.0,1.0);
glVertex3fv (v[i++]);

glEnd() ; glColor3£f(1.0,0.0,0.0);
glVertex3fv(v[i]);
glEnd () ;
Setting the Rendering Color OpenGL's Utilities

void glColor3f (GLfloat red,
GLfloa ' Points, lines, and polygons are such low-level primitives
GLfloat blue);
, - It would be nice if the graphics APl can
£ for float (single-precision)

« accept some basic higher-level models (GLU)
(a sphere is a sphere is a sphere, after all)

+ handle some basic Ul tasks (GLUT)
« but still be:

« hardware-independent

oid glColor const GLfloat* rgb); - cross platform enG L
v for vector: pass values as array p "

Color value persists until the next g1color () call
— GL state machine

Example of other color functions:
glColor3d () : rgb-double,

GLU is ... g

... a graphics library built on top of
OpenGL 2.1 and provides higher-level ¥
modelling primitives such as:]

- camera and projection controls

« quadrics: sphere, cylinder, disk
* mipmaps

. curves

« surfaces

« tessellation

* NURBS

... deprecated

GL Utility Toolkit

A lightweight library for creating and managing
windows and context for OpenGL apps

Provides a single context
- easy to learn
« but used only for prototyping!

Cross platform

- alternative: GLFW, freeglut (open-source GLUT clone
with extensions)

+ GUI widget toolkits: Fltk, gtk+, Qt, wxWidgets, etc.

Device and Window Abstractions
Application must provide a “context” to OpenGL

Device context:

« abstraction of families of output media,
e.g., screen, off-line image buffer, printer

GL rendering context: ang
« window and data structure i Jf@%gp@
containing all OpenGL o k%ﬁ%/

state info

» multiple OpenGL windows
need different contexts

- e.g., different scenes or
different views of the same scene

— @D

OpenGL and Related APIs

(simplified view)
Application Program

GLU+GLUT gtk+

WGL CoreGL GLX
l OpenGL l
’ Win32 ‘ ’ Quartz Compositor ‘ Xlib
OS (driver)

Hardware: GPU, kbd, mouse, joystick

Event-Driven Programming Typical OpenGL Program Structure

GLUT programs are event-driven

(most modern GUI programs are)
- example events: window resized, covered, exposed,

See the Installing and Using GLUT and OpenGL course note for

sample code (http://www.eecs.umich.edu/~sugih/courses/eecs487/glut-
howto/sample.c)

mouse moved, button clicked, key pressed, etc.

You need to register a callback function (handler) 1. Create a window and bind OpenGL to this window
for each event you want to handle on your own + OpenGL API calls draw/render within this window

« what to use to create the window?
- what to use to interact with the graphics?

GLUT’s main loop runs without an exit
- if an event occur, its handler is called
- upon handler exit, control returns to the main loop 2. Register event handlers (call-back functions)

A Simple OpenGL/GLUT Program Typical OpenGL Program Structure

#include <GL/glut.h> see sample .C

int main(int argc, char *argv[])

{

3. Set up drawing canvas and coordinate system

glutInit (&argc, argv);
, , , 4. Prepare the canvas: set up OpenGL states
/* Create the window first before drawing! */
glutInitDisplayMode (GLUT SINGLE | GLUT RGBA) ;
/* single buffered, RGBA color (more later) */

glutInitWindowSize ((int)width, (int)height); 5
wd = glutCreateWindow (“Title”); /* wd is the window handle */
L]

/* register callback functions/event handlers */ .
glutRes)¢ “unc () -
glutr n — T name of .

-« callback .

-— .

functions

glutMainLoop () ;
return 0;

Setting Up the Drawing Canvas

Define the screen mapping and coordinate system
(e.g., in reshape ()):

* tell OpenGL to use the whole window for drawing:
void glViewport (0, 0, window width, window height);

* set up orthographic projection:
glMatrixMode (GL PROJECTION) ;
glLoadIdentity ()
glOrtho (0.0, window width, 0.0, window height, -1.f, 1.f);

» we'll see more of this when we discuss transformations;
for now, we use a simple 2D orthographic parallel projection,
looking straight into the scene

Typical OpenGL Program Structure

4. Prepare the canvas: set up OpenGL states

Setting Up the Drawing Canvas

If you don’t plan on changing your coordinate
system or perspective often, set up the canvas
outside the GLUT main loop

More conveniently, change them every time the
window is reshaped

* GLUT calls the reshape () function when a window is
first created, before the first call to the display ()
function

OpenGL State Machine

OpenGlL is a state machine

Majority of OpenGL functions do not cause anything to be
drawn; instead, they modify OpenGL state

The few calls that actually draw a primitive all use the
current state in drawing the primitive
- example draw calls: glVertex, glDrawElements

Application sets and changes state variables by issuing
OpenGL API calls prior to sending down primitives

+ the state variables indicate where and how an application wants a
primitive to be drawn

Example State Variables

« background color

« vertex color

« polygon drawing mode: points, lines, filled
+ camera location, orientation, field of view

- light source: number, color, location

« normal vectors

- material properties
« texture coordinates

« whether to enable depth, transparency, fog
« current viewing and projection transformations (matrices)

The OpenGL Graphics Pipeline

OpenGL State

Vertex
Processor

Fragment

Application

Per-Pixel |

Operations
A

|
Texture
Assembly

[—
1 Rasterization I

Processor

~| Framebuffer

=——> Geometric Pipeline

— —> Pixel
Pipeline

Programmable
Shader

OpenGL Attribute Stack

State variables can be saved on an attribute stack, with
elements pushed to and popped from the stack
« example stack manipulation calls: g1 PushAttrib (), glPopAttrib ()

Primitives drawn will reflect the current state (top of the stack)

OpenGL Attribute Stack

Typical OpenGL Program Structure

5. Loop:
« clear framebuffer
« draw primitives
« complete drawing

Clear Framebuffer

Always clear the color buffer of the framebuffer
before rendering a new frame (what happens
otherwise?)

- set clearing color (could be done outside main loop):

void glClearColor (red, green, blue, alpha);

« perform the actual clear operation

void glClear (GL_COLOR BUFFER BIT);

» can also clear the depth buffer (1, DEPTH BUFFER BIT)

and stencil buffer (GL_STENCIL BUFFER BIT)

Rendering a Line in OpenGL

All GL rendering happens inside the display () handler

For GL window to render a line:
void display(void)

{

/* clear the screen to white */
glClearColor (1.0, 1.0, 1.0, 0.0);
glClear (GL_COLOR_BUFFER BIT);

/* draw line */
glBegin (GL LINES) ;
glVertex2f (x0,y0);
glVertex2f (x1,vyl);
glEnd();
glFlush(); /* force rendering to start */
/* or glFinish() which returns only upon
completion of rendering */

Typical OpenGL Program Structure

« draw primitives
« complete drawing

Completing the Drawing

Issued GL commands may be stuck in buffers along
the pipeline, e.g., waiting for more commands to be
issued before sending them in batch

You need to flush all these buffers if you have no
more commands to issue, to start rendering

*void glFlush (void);

flushes the buffers and starts execution of commands

*void glFinish (void);
waits for commands to finish executing before returning

