CECH Data Structures
and Algorithms

Discussion 6: Week of Oct 10, 2011

e 2-3 Trees
* 2-3-4 Trees
* Red-black Trees

Summary

2-3 Trees

* Balanced tree
* Not a binary tree

* Each node has either
— 1 value and 2 children
— 2 values and 3 children

2 Nodes

* All elements to the left
are less than top
element

* All elements to the right
are greater than top
element

3 Nodes

e All elements to the left

@ are less than first

element

a a G * All elements in the

middle are between the
two top elements

* All elements to the right
are greater than second
element

Inserting Elements

* Find leaf node to insert into.
* If leaf node is a 2-node, just add element

LN Y

0 ® © @@

Inserting Elements

If leaf node to insert into is a 3-node, must
split that node.

Middle element moves to parent
Left element becomes middle child of parent
Right element becomes right child of parent

Example

ptagiy g

A more complicated example

@ * Insert 20

0 n®® @

A more complicated example

@ * Insert 20

RPN

A more complicated example

@ * Insert 20

Coe® © o8

parent

A more complicated example

/ * Insert 20
* M 20t

@O am e
* M 20t

@ @é @ @ pa(:c\e/ﬁt aga?n
* Must split

the children

Soa®

Splitting Root

What if the root has 3 elements?

Make a new root

OROIORO

2-3 Tree Removal

* Easiest case:

— Removing an element from a leaf node that is a 3-
node. Just remove element

— If leaf node you’re removing from is a 2-node. We
need to merge or rotate. Removing an element
from a leaf node that is a 3-node is easy. Just
remove element

* If node is not a leaf node

— Swap element with next biggest element (in-order
successor) and remove from leaf node.

Merging
Merge if sibling (P) Merge ()
is a 2-node r —>
Merge n (S P
elements from S, 0
parent to child Merge to the
May leave % ©
parent node
empty 0 ’ 9 @

Singh,Carrano]

Rotate if sibling
is a 3-node

Redistribute
elements
between sibling
and parent

Take elements
from right sibling
when parent is a
3-node

Rotate o
—>
® ©®

Singh,Carrano]

Removing Non-leaf

* If rotation or merge leaves an empty parent,
must continue up the tree till tree is valid

PS PL
s 71 —
© SO

a b ¢ d e f g

a b c d e f g
. (P) ©
Merging: —>
- Merged node adopts child 9 ‘
a b c a b c

Singh,Carrano]

Rotation:

- New sibling adopts child

Removing Root

* If left with an empty root, simply remove root

’ Empty root New root
—>
a b c
a b c

Singh,Carrano]

Example

ey
® @@5

* Remove 90

* Remove 90

* Swap with
100 and
/ \ remove 90

* Remove 90
* Swap with

100 and
remove 90

* Merge

* Remove 40

* Remove 40
* Merge 25

and 30

* Remove 40

* Merge 25
and 30

* Merge again

Example

* Remove 40

* Merge 25
and 30

o é ‘ * Merge again
80 100

2-3-4 Trees

e Similar to 2-3 Trees

* Nodes can have
— 2 elements, 1 child
— 3 elements, 2 children
— 4 elements, 3 children

Insertion

* |tems inserted at leaf node

* 4 nodes are split early because they cannot
hold another element

* On the way from the root to the leaf split 4-
node that are visited
— Insertion can be done in a single pass

Splitting a 4 node

Without parent SM L) —

Splitting a 4 node

(a

() =

S M L eg

If parent is a 2-node a b c d a bcd
(b)

Hn =

a a

S M L e Q
b ¢ d e b c d e
Carrano]
Example
* |nsert 20

Carrano]

(a) (
20

* Pre-split root

(b) @ © @
(10 () (10 20) (s0)

o
€ f ﬁ e f
OO
a b c d a bcd
(b)
If parent is a 3-node) PMQ
a f ﬁ a f
S M L
b ¢ d e bc de
(o)
() P QM
a b i ab
S M L
Carrano] c d e f cdef
Example
* Insert 70
* Pre-split 4-
@ node
70
(10 20) (40 50 60)

(@

10 20

Carrano]

Carrano]

* |Insert 90
* Pre-split 4-
node

Removal

* Just like 2-3, if node is non-leaf, swap with in
order successor
* Preemptively turn 2-nodes in 3-nodes
— This way deletion can be done in one pass
— Rotate if sibling is not a 2-node
— Merge if sibling is a 2-node

@G

ol @

* Remove N

* RotatesoR
is not a 2-
node

Rotate

* Remove N

()
o * Rotateso R
@/ @ is not a 2-
(ac) CeD) node

* Rotateso N
is not a 2-
node

Rotate Rotate

e * Remove N * Remove N

()
Rotate so R o * RotatesoR

@/ @ is not a 2- @/ @ is not a 2-
@ © <D node (Cac) (¢) () node

* Rotateso N * Rotateso N
is not a 2- is not a 2-
node node
* Remove N * Remove N
Merge Merge

* Remove | * Remove |
@/®\® * MergesoH @ * MergesoH
isnot a 2- / isnot a 2-
Cac) @/ é node (®) (1) node
* Mergesolis
not a 2-node

Remove |

Merge so H
is not a 2-

Con ot

* Mergesolis
not a 2-node

o

* Remove |

Remove |

o * MergesoH
/ is not a 2-
o> node

* Mergesolis
not a 2-node

* Remove |

Red-Black Trees

* Converts 2-4 trees into binary trees

* Red-Black Trees are BSTs where every node is
colored red or black

Converting from 2-4 to red-black

* 2 Node becomes a black node
X o

* 3 Node becomes a black node with one red

T

* 4 Node becomes a black node with 2 red
children

a bec

Converting from 2-4 to red-black

— ©00 o
o2

o
0

Example Red-Black Tree

Root node is black—>
Red nodes
have black \

\

chlldren

% ﬁ{@ B I
Null nodes are black

- Every node is either red or black
- Each path from root to null have the same number of black nodes.

Red-Black Properties

Every node is either red or black
The root is black
External Nodes (nulls) are black

If a node is red, both children are black

Every path from a node to a null has the same
number of black nodes (the black height)

* |f x is an external node

Black Height

* Black-height of node x is the number of black
nodes on the path from x to an external node
(including the external node but not counting
x itself)

/ a2
— bh(x)=0 1

Red-Black Tree Height

* The height of a red-black tree with n internal
nodes is between log,(n+1) and 2log,(n+1)

* Height is constrained to O(logn)

Insertion — Bottom Up

New nodes are inserted as leaf nodes

Must insert red node, inserting black violates
black height rule

If parent is black, done.

If parent is red, violates “Red must have two
black children” rule.

Insertion

* If sibling of parent is black, rotate.

fo= 2

* May need to double rotate

el

Recoloring

* If sibling of parent is red, recolor.

m—)

* Now that cis red, may cause double red again
— Fix that double red the same way

oe\o

Example

* |nsert K

Example

* |nsert K

* Fix double
red by
recoloring

Example

* |nsert K

* Fix double
red by
recoloring

* Root must
remain black

Example

* Insert N

N * Insert N

Q ﬁ * Fix double
G red by
h tating
° ro

Removal

e Either removes a red or a black node
* If red, doesn’t violate any rules
* If black, could potentially violate rules

7N * Insert N
Q G\ * Fix double
G ° red by
rotating
Removal

If removing red leaf, just remove and you’re done

If it is a single child parent, must be black. Delete,
and recolor it’s child (which must be red) black.

If the node has two children, swap node with in
order successor

— If in-order successor is red, remove it and you're
done
— If in-order is a single child parent, apply previous rule

Example Example

© o e © o B

Example Example

Q * Remove X . Remove X
,Q b * Deleteit Q b * Deleteit
e e ° e e e ° * Recolor child
o o o o black

Colored Edges

* Colored edges definition

— child pointers are colored
red or black

— the root has black edges

— pointer to an external
node is black

— no root-to-external-node @
path has two consecutive
red edges

— every root to externa;/
node path
has the same number of
black edges

Black-Leaf Removal

* To remove black leaf, replace the node with an
external node and color the edge “double
black”

color
.~ undetermined
v > .
u u ®

* To eliminate double black edge:
— If there is a red edge nearby, turn that black.
— Also can rotate or recolor

[saltenis]

Black Sibling with black nephew

* Sibling becomes red

* If parent is red, becomes black

[saltenis]

Black Sibling with red nephew

* Rotate and recolor red nephew
p S

[saltenis]

Example Example

* Remove D * Remove D
Q D * SwapD & E e D * SwapD & E
G e G ° e Q e ° * Delete D
o PN o PN

Example Example

* Remove D

* Remove D
Q' D e SwapD &E o D * SwapD&E
G G ° e Delete D ° G e ° * Delete D

° G “ * Double black G “ * Double black

external node external node

* Rotate and
recolor

