CECH Data Structures
and Algorithms

Discussion 4: Week of Sep 26, 2011

Outline

* BST Range Search
* K-D Trees and Multi-dimensional Search
* Nearest Neighbor Search

Binary Search Tree Review

* |nvariants:
— Left nodes are always < current node.
— Right nodes are always > current node value.

* Therefore:

— At each node, we can split the search space in
half, enabling O(logn) search times.

Range Search

* Regular Search:

node * query(node * root, int target val) {
if (target_val == root->value)
return root;
if (target_val < root->value)
return query (root->left, target val);
if (target_val > root->value)

return query (root->right,
target val);

}




Range Search Range Search

* In order to be able to query a range, what * In order to be able to query a range, what
should we do? should we do?

— What should we return?

Range Search Range Search
* In order to be able to query a range, what * In order to be able to query a range, what
should we do? should we do?
— We should return a list of matches — We should return a list of matches

— Recursive or Iterative? — Recursive




Range Search — Recursive Definition

* Take 5 minutes to develop a recursive

definition.

* On a node of value x:

— 1. What if min < max < x?
— 2. What if min <= x <= max
— 3. What if x < min < max?

Range Search — Recursive Definition

1. What if min < max < x?

— Xis not in the set, search more to the left if
possible.

2. What if min <= x <= max

— Xisin the set, add it, and then search both sub-
trees if possible.

3. What if x < min < max?

— X is not in the set, search more to the right if
possible.

vector<node *> BST::range_query(int start_range, int end_range) {

}

vector<node *> answers;
range_query_h(root_node, start_range, end range, answers);

return answers;

void BST::range_query h(node * current, int start_range, int end range,

vector<node *>& answers) {
if (end range < current->val) {
range_query_h(current->left, start_range, end_range, answers);
return;

}

if (start_range <= current->val && end range >= current->val) {
range_query_h(current->left, start_range, end_range, answers);
answers.push_back (this);
range_query_ h(current->right, start_range, end range, answers);
return;

}

if (start_range < current->val) {
range_query_ h(current->right, start_range, end _range, answers);
return;

}
assert (0); // something really bad happened

K-D Trees Review

Like Binary Search Trees except:
— Each node has multiple keys.

— At each branch, you consider a different key to
split on.

Due to similarity, you can easily adapt the
algorithms for querying BSTs for use in K-D
trees.




Multi-dimensional Search

* BST version:
— 1. if goal < current node value, return left
— 2. if goal == current node value, return the node
— 3. if goal > current node value, return right

* How to modify this for K-D trees?

Multi-dimensional Search

* K-D Tree version:

— 1. if goal[dim] < current node value[dim], dim = (dim+1) %
total_dim, return left

— 2. if goal[dim] == current node value[dim], return the node

— 3. if goal[dim] > current node value[dim], dim = (dim+1) %
total_dim, return right

* How to modify this for K-D trees?
— Keep track of which dimension you are searching.

— As you keep searching down, be sure to keep track of which
dimension the nodes are being split on.

Nearest Neighbor Search

* Goal:

— Given a point in a K-dimensional space, find the
closest point stored in a data structure.

Nearest Neighbor Search

* Goal:

— Given a point in a K-dimensional space, find the
closest point stored in a data structure.

e Use a K-D Tree!




Nearest Neighbor Search

* Steps:
— 1. Start with root node and use depth-first search to
find where you would insert the node if you were
inserting it. Save this as current best

— 2. Go up one node. If it’s better than closest best, it
becomes closest best.

— 3. Check whether there could be any points on the
other side of the splitting plane by checking the
distance between the target node and the splitting
plane.

— 4. Repeat steps 2-3 until you are at the root node.

Nearest Neighbor Search
* Given a K-D Tree with the points:

— Find the point closest to (3, 2) (manhatten space)

3

¢E

Nearest Neighbor Search

* 1. Depth-first Search to E.

Nearest Neighbor Search

* 1. Depth-first Search to E.
e 2. Eis the best distance = 3.




Nearest Neighbor Search Nearest Neighbor Search

* 1. Depth-first Search to E. 1. Depth-first Search to E.

e 2. Eisthe best distance = 3. 2. E is the best distance = 3.
* 3.Go backto C: 3. Go back to C:
— Cis not closer (3 away). No nodes below C. — Cis not closer (3 away). No nodes below C.

4. Go back to A.

— Ais not closer. Check if other side of A could be
closer. Abs(Goal.x — A.x) = 1 < 3. Check other side.

Nearest Neighbor Search Nearest Neighbor Search
* 1. Depth-first Search to E. * 3. Go backto C:
e 2.Eisthe best distance = 3. — Cis not closer (3 away). No nodes below C.
* 3. Go backto C: * 4. Go back to A.
— Cis not closer (3 away). No nodes below C. — Ais not closer. Check if other side of A could be

closer. Abs(Goal.x — A.x) = 1 < 3. Check other side.
— Ais not closer. Check if other side of A could be 5. DFSto D. Dis closer than E (2 away)

closer. Abs(Goal.x — A.x) = 1 < 3. Check other side. 6. Go back to B.
5. DFS to D. D is closer than E (2 away) — B is not closer. No nodes below B.

4. Go back to A.




Nearest Neighbor Search

4. Go back to A.

— Ais not closer. Check if other side of A could be
closer. Abs(Goal.x — A.x) = 1 < 3. Check other side.

5. DFS to D. D is closer than E (2 away)

6. Go back to B.
— B is not closer. No nodes below B.

7. Go back to the A. Checked both sub-trees,
therefore done.




