CECH Data Structures
and Algorithms

Discussion 3: Week of Sep 21, 2011

Agenda

* Floating Point Numbers
* Hashing

* Recurrence Relations

* Binary Search Tree

Floating Point Numbers

double dl1 = 1.1234;
double d2 = 2.1234;

cout << d2 - dl1 << endl;
// 1 or 1.0000 ?

Floating Point Numbers

double dl1 = 1.1234;
double d2 = 2.1234;

cout << d2 - dl << endl;
// outputs 1

printf(“%.4f\n"”,d2 - dl1);
// outputs 1.0000

Floating Point Numbers

#include <iostream>
#include <iomanip>
using namespace std;
int main()

{

double dl1
double d2

cout
cout
cout
cout
cout
cout
cout

<<
<<
<<
<<
<<
<<
<<

1.1234;
2.1234;
setprecision
dl << endl;
d2 << endl;
setprecision
fixed;
setprecision
setprecision

return 0;

(3);

(9) << d1 << endl;

(3) << d1 << endl;
(9) << d1 << endl;

Floating Point Numbers

if (1 == 1.0000) {
cout << "Equal" << endl;
b
else {
cout << "Not equal" << endl;

¥

Floating Point Numbers

if

}

(

== 1.0000000000000001) {
cout << "Equal" << endl;

else {

cout << "Not equal" << endl;

}

6
Float Limitation
Floatvalue [Hex |Decimal |
1.99999976 Ox3FFFFFFE 1073741822
1.99999988 Ox3FFFFFFF 1073741823
2.00000000 0x4000000 1073741824
2.00000024 0x4000001 1073741825
2.00000048 0x4000002 1073741826

* To store values between 1.99999988 and 2,
you need to either use a double or parse the
input as characters and use a type that has
enough bits to fit

Hashing

* Associative container
— No concept of “previous/next”
— Insert/delete/lookup in O(1) time

* Hash a key into index, store the value into
hash_maplindex]

* Collision resolution
— Separate chaining

— Probing/open addressing
* linear
* quadratic 9

Separate Chaining

Open addressing

keys buckets
Lisa Smith 521-8976
John Smith
Lisa Smith
John Smith 521-1234
Sam Doe Sandra Dee 521-9655
Ted Baker 418-4165
Sandra Dee
Ted Baker
Sam Doe 521-5030

1"

overflow
keys buckets entries
000 x
001 Lisa Smith 521-8976
John Smith
002 x
Lisa Smith : :
151 x
John Smith 521-1234 .-
Sam Doe L] x| SandraDee | 521-9655
153 Ted Baker 418-4165 L]
154 X
Sandra Dee . -
253 x
Ted Baker
254 Sam Doe 521-5030 L]
255 x
10
Quiz for Hashing

* Given n integers, find the one with highest frequency. Return
the smallest one if there’s a tie.

12

Quiz for Hashing

* Given nintegers, find the one with highest frequency. Return
the smallest one if there’s a tie.

* 1. Count the frequency for each integer using hash table
¢ 2.Key is the number, value is the frequency
* 3. Scan the hash table to return the smallest with highest freq

13

Quiz for Hashing

* Given n integers, find the one with highest frequency. Return
the smallest one if there’s a tie.

* 1. Count the frequency for each integer using hash table

* 2.Key is the number, value is the frequency

* 3. Scan the hash table to return the smallest with highest freq
* Complexity? Size of hash table =N

14

Quiz for Hashing

* Given nintegers, find the one with highest frequency. Return
the smallest one if there’s a tie.

* 1. Count the frequency for each integer using hash table

e 2.Key is the number, value is the frequency

* 3. Scan the hash table to return the smallest with highest freq
e Complexity = O(n + N) Size of hash table =N

15

Quiz for Hashing

* Given n integers, find the one with highest frequency. Return
the smallest one if there’s a tie.

* 1. Count the frequency for each integer using hash table

* 2. Key is the number, value is the frequency

* 3. Scan the hash table to return the smallest with highest freq
* Complexity = O(n + N) Size of hash table =N

* What’s our hash function?

16

Quiz for Hashing

* Given nintegers, find the one with highest frequency. Return
the smallest one if there’s a tie.

* 1. Count the frequency for each integer using hash table

¢ 2.Key is the number, value is the frequency

* 3. Scan the hash table to return the smallest with highest freq
* Complexity = O(n + N) Size of hash table =N

* What’s our hash function?

— int hash(int value) { return value; }

17

Quiz for Hashing

* Given n integers, find the one with highest frequency. Return
the smallest one if there’s a tie.

* 1. Count the frequency for each integer using hash table

* 2.Key is the number, value is the frequency

* 3. Scan the hash table to return the smallest with highest freq
* Complexity = O(n + N) Size of hash table =N

* What’s our hash function?

— int hash(int value) { return value; }
— Does not work for hash(-1)

18

Quiz for Hashing

* Given nintegers, find the one with highest frequency. Return
the smallest one if there’s a tie.

* 1. Count the frequency for each integer using hash table
e 2.Key is the number, value is the frequency
* 3. Scan the hash table to return the smallest with highest freq
e Complexity = O(n + N) Size of hash table =N
* What’s our hash function?
— int hash(int value) { return value; }

— Does not work for hash(-1)
— How about { return abs(value); } ?

19

Quiz for Hashing

* Given n integers, find the one with highest frequency. Return
the smallest one if there’s a tie.

* 1. Count the frequency for each integer using hash table
* 2. Key is the number, value is the frequency
* 3. Scan the hash table to return the smallest with highest freq
* Complexity = O(n + N) Size of hash table =N
* What’s our hash function?
— int hash(int value) { return value; }

— Does not work for hash(-1)
— How about { return abs(value); } ?

20

Quiz for Hashing

* Given nintegers, find the one with highest frequency. Return
the smallest one if there’s a tie.

* 1. Count the frequency for each integer using hash table

¢ 2.Key is the number, value is the frequency

* 3. Scan the hash table to return the smallest with highest freq
* Complexity = O(n + N) Size of hash table =N

* What’s our hash function?

int hash(int value) { return value; }

Does not work for hash(-1)

How about { return abs(value); } ?
Does not work for (-27231), can’t store 2731 (> INT_MAX)

21

Quiz for Hashing

* Given n integers, find the one with highest frequency. Return
the smallest one if there’s a tie.

* 1. Count the frequency for each integer using hash table

* 2.Key is the number, value is the frequency

* 3. Scan the hash table to return the smallest with highest freq
* Complexity = O(n + N) Size of hash table =N

* What’s our hash function?

int hash(int value) { return value; }

Does not work for hash(-1)

How about { return abs(value); } ?
Does not work for (-2431), can’t store 2231 (> INT_MAX)
More importantly, input distribution decides output distribution

22

Quiz for Hashing

* Given nintegers, find the one with highest frequency. Return
the smallest one if there’s a tie.
* 1. Count the frequency for each integer using hash table
e 2.Key is the number, value is the frequency
* 3. Scan the hash table to return the smallest with highest freq
e Complexity = O(n + N) Size of hash table =N
* What’s our hash function?
— int hash(int value) { return value; }
— Does not work for hash(-1)
— How about { return abs(value); } ?
— Does not work for (-2731), can’t store 2731 (> INT_MAX)
— More importantly, input distribution decides output distribution
{return abs(value % LARGE_PRIME); }

23

Recurrence Relations

* Usually used to analyze algorithm runtimes.

* Many algorithms loop on a problem set, do something each
time, and create smaller sub-problems to solve. This is the
idea behind a recurrence relation.

* To solve them — think!

— How is this problem set changing each time? Decreasing
exponentially? Variably? Constantly?

— How many new sub-problems are being created each time?

24

Recurrence Relations

¢ Recurrence relations are those that are defined in terms of
themselves.

5(0) =0
S(n)=n+5S(n-1)

* What’s the closed form of S(n)?

25

Recurrence Relations

* Recurrence relations are those that are defined in terms of
themselves.

5(0) =0
S(n)=n+5S(n-1)

* What’s the closed form of S(n)?

* S(n)=n+(n-1)+..+1+0
* S(n)=n*(n-1)/2

26

Master Theorem

Suppose
T(n)=a * T(n/c) + f(n)

where a>=1, c>1 and n/c means either [n/c] or |n/c|

Then

* 1) If f(n)=0(n"(log a-¢)) for some £>0, then
T(n)=O(n"log_a)

* 2) If f(n)=0(n"log.a), then T(n)=O((n*log.a)logn)

* 3) If f(n)=C2(n"(log.a+¢)) for some >0 and if
a*f(n/c)<kf(n) for some constant k<1 and all
sufficiently large n, then T(n)=0 (f(n))

27

Recurrence Relations

 How would we express the Fibonacci sequence as
a recurrence relation?

« What about the tribonacci sequence?

28

Recurrence Relations

+ How would we express the Fibonacci sequence as
a recurrence relation?

F(0)=0, F(1)=1, F(n)=F(n-1) + F(n-2)

+ What about the tribonacci sequence?
T(0)=1, T(1)=1, T(2)=2, T(n)=T(n-1)+T(n-2)+T(n-3)

29

Recursive Functions

* We can use the following method to define a function
with the natural numbers as its domain:

1. Specify the value of the function at zero.

2. Give arule for finding its value at any integer
from its values at smaller integers.

» Such a definition is called recursive.

30

Recursive Functions

* Example:

« f(0)=

e f(n+1) 2f(n) + 3

« f(0)=3

« f(1)=2f(0)+3=23+3=9
« f(2)=2f(1)+3=2.9+3 =21
« f(3)=2f(2) +3=2.21+3 =45
o f(4)=2f(3)+3=245+3 =93

31

Recursive Functions

* How can we recursively define the factorial function
f(n)=n!?

. f(0)=1
. f(n+1)=(n+ 1)f(n)
. f(O):

. f(1)=1f(0) = 1+1 =1
.« f(2)=2f(1)=241=2
. f(3)=3f(2)=32=6
. f(4) = 4(3) = 4+6 = 24

32

Recursive Function

Iterative version of factorial function
1 if n=0

factorial(n) =
nx(ml)xm2)x..x2x1 if n>0

33

Iteration vs. recursion

Some things (e.g. reading from a file) are
easier to implement iteratively

Other things (e.g. mergesort) are easier to
implement recursively

Others are just as easy both ways

When there is no real benefit to the
programmer to choose recursion, iteration is
the more efficient choice

It can be proved that two methods performing the
same task, one implementing an iteration
algorithm and one implementing a recursive
version, are equivalent

34

BST

* Binary Tree
— Every node has 0, 1, 2 children

* Full Binary Tree
— Every node other than leaves has 2 children
— All leave nodes have same path length
— Also called proper binary tree, strictly binary tree

* Complete Binary Tree
— Every level above the last level is completely filled
— Nodes in the last level are as far left as possible

* Binary Search Tree

— Ordered binary tree 35

BST

Node {
Key;
Value;
Node* left;
Node* right;
}

all keys in left subtree < current key < all keys in right subtree

36

BST
| |AverageCase ___[WorstCase |

Search
Insert

Delete

37

BST
| lAverageCase __|WorstCase |

Search O(log n) O(n)
Insert O(log n) O(n)
Delete O(log n) O(n)

38

Inserting a node to BST

void insert(nodex &root, key, value)
{
if (root == NULL) {
root = new node(key,value);
}
else if (key < root->key) {
insert(root->left, key,value);
+
else {
insert(root—>right, key,value);
+
}

39

Inserting a node to BST

void insert(nodex &root, key, value)
{
if (root == NULL) {
root = new node(key,value);
}
else if (key < root->key) {
insert(root->left, key,value);
}
else {
insert(root->right, key, value);
}
}

Can you write it as a non-recursion?

40

Inserting a node to BST

void insert(nodex &root, key, value)
{

if (root == NULL) {
root = new node(key, value);
return;
}
nodex cur = root;
while (true) {
if (key < cur—>key) {
if (cur—>left == NULL) {
cur->left = new node(key, value);
break;
b
else
cur = cur—>left;
}
else {
if (cur—>right == NULL) {
cur->right = new node(key, value);
break;

else
cur = cur—>right;

Delete a node from BST

* Deleting a leaf (node with no children): Deleting
a leaf is easy, as we can simply remove it from
the tree.

* Deleting a node with one child: Remove the
node and replace it with its child.

* Deleting a node with two children: Call the node
to be deleted N. Do not delete N. Instead, choose
either its in-order successor node or its
predecessor node, R. Replace the value of N with
the value of R and then delete R. (Why R cannot
have more than 2 children?)

42

