
Data Structures
and Algorithms

Discussion 2: Week of Sep 14, 2011

Contents
! Pointers and references
!  valgrind
! Forward declarations
!  Inheritance and polymorphism
! Virtual functions
! Constructor/destructor

2

�

Pointers

●  A pointer is a variable that contains an address of
some data object in memory (or sometimes, a
function).

●  Declare pointers with the * (star) operator.
Examples:

int* x;
int *x;
char* c;
char *c;

●  Question: what is the difference between placing the
star with the type, and with the variable?

●  Answer: the two are equivalent. We could also
separate the * from both: int * x is perfectly fine.

�

Pointers - initialization
●  We've declared but not defined them. Right now,

they're pointing at whatever happened to be there;
i.e. some random memory location. This is
dangerous.

●  We should initialize our pointers to something. If we
don't yet have anything, it's good practice to initialize
with NULL, (0). NULL means “this pointer isn't (yet)
pointing to anything.”

int* x = NULL;
char* c = NULL;

�

Pointers – Address-of operator
●  We need a way to retrieve the address of data objects

(e.g. variables). Use the address-of operator,
denoted by &.

●  The situation is a little bit different for arrays. Arrays
already denote addresses, so no & is needed:

int myInt = 42;
int* pMyInt = &myInt;

int myIntArray[5] = { 2, 4, 6, 8, 10 };
int* pMyIntArray = myIntArray;

42

�

Pointers – Dereferencing

●  Now we need a way of obtaining the data from a
given address. This is known as dereferencing. * is
the dereferencing operator. You can think of * as
kind of the inverse operator of &.

●  WARNING: There may be confusion between the *
for pointer declaration, and the * for dereferencing.
These are separate things, and can be differentiated
by their contexts.

int myInt = 42;
int* pMyInt = &myInt;
cout << *pMyInt << endl;
(*pMyInt) *= 2;
cout << *pMyInt << endl;
cout << myInt << endl;

�
�
42
84
84

�

	

Pointers – Example 1

●  What will the following function print to the console?
void pointerExample_1(void) {

 int myInt0 = 100;
 int myInt1 = 200;
 int* pMyInt0 = &myInt0;
 int* pMyInt1 = pMyInt0;

 *pMyInt0 += 20;//deref +20
 *pMyInt1 += 40;//deref +40

 cout << myInt0 << endl;
 cout << myInt1 << endl;
 cout << *pMyInt0 << endl;//deref
 cout << *pMyInt1 << endl << endl;//deref

 pMyInt1 = &myInt1;
 *pMyInt0 *= 2;
 *pMyInt1 = myInt0 + *pMyInt0;

 cout << myInt0 << endl;
 cout << myInt1 << endl;
 cout << *pMyInt0 << endl;
 cout << *pMyInt1 << endl << endl;

}

�
�

160
200
160
160

320
640
320
640

�

Pointers – Example 2

●  What will the following function print to the console?

void pointerExample_2(void) {
 const int arraySize = 5;

 int myIntArray[arraySize] = { 2, 0, 6, 8, 10 };
 myIntArray[1] = myIntArray[0] * 2;
 int* myPtr = myIntArray; //no & needed (array is ptr)
 ++(*myPtr);//++ 1st elem of array
 ++myPtr;//++ ptr (to 2nd elem)
 *myPtr *= *(myPtr + 1);// 2nd elem *= deref(3rd elem)
 myPtr += 2;//move ptr to 4th elem
 myPtr[1] *= myPtr[0];//elem right of 4th *= 4th elem
 *myPtr -= 1;//decrement 4th elem

 // display
 for (unsigned int i = 0; i < arraySize; ++i) {
 cout << myIntArray[i] << endl;
 }

}

�
3

24
6
7

80
�

�

Pointers – Array dereferencing, type independence

●  Array subscript operator ([]) is a form of indexed
dereferencing.

●  C++ pointers are strictly typed; can't have an int
pointer point to a char pointer, for example.

int myInt = 42;
int* pMyInt = &myInt;

char c = 'c'
char* pMyChar = &c;

pMyInt = pMyChar; //DOES NOT COMPILE!!!

��

Pointers – Typecasting
●  We can, however, cast one data type to another:

int myInt = 42;
int* pMyInt = &myInt;

char c = 'c'
char* pMyChar = &c;

// pMyInt = pMyChar;
pMyInt = reinterpret_cast< int* >(pMyChar);

●  There are several typecasts you can do.
reinterpret_cast could be interpreted as the most
dangerous. static_cast is safer, but there are
situations in which it won't do.

●  Old C-style casts like pMyInt = (int*)pMyChar will still
work, though. These are like reinterpret_cast<>.

��

A few flavors of typecasting explained
●  dynamic_cast <new_type> (expr)

//only for casting a derived class to a base class

●  static_cast <new_type> (expr)

//casting in either direction between derived class and
base class—does not ensure newly-casted object is
complete

●  reinterpret_cast <new_type> (expr)

//binary copy of value from from one ptr to another—
zero typechecking whatsoever

��

Pointers and new
●  Of course, pointers start to become really useful with

new, when we allocate memory on the heap:
//ptr that points to 1st elem of new array
int* pMyIntAry = new int[1000];

//move ptr to index 25 and set value to 1001
pMyIntAry[25] = 1001;

//deallocate
delete[] pMyIntAry;

��

Pointers to pointers (to pointers...)

●  We can also have pointers to pointers:

int myInt = 42;
int* pMyInt = &myInt;
int** ppMyInt = &pMyInt;
// int*** pppMyInt = &ppMyInt;

●  Question: when might this be useful?

●  Question: could we do something like int** ppMyInt =
&&myInt ? What about int myInt2 = **ppMyInt ?

●  Answer: implementing dynamic multi-dimensional arrays,
implementing pass-by-reference for pointers, arrays of
strings, command-line options e.g. main (int argc, char **argv)

●  Answer: &&myInt will generate an error, because you can't
take the address of an address. **ppMyInt will work,
though. It evaluates to myInt. (What about *ppMyInt ?)

int row=4,col=5;

int **a=new int*[row];
int i,j;
for (i=0;i<row;i++) {
a[i]=new int[col];
}
for (i=0;i<row;i++) {
for (j=0;j<col;j++) {
a[i][j]=i+j;
cout<<a[i][j]<<" ";
}�

references

!  A reference is an alternative name for a variable.
!  A reference is not a variable.

 int i = 37;
 int& r = i;

 defines one variable i, and one
reference r.

15

Reference vs. Pointer�
● Once created, a reference cannot be

“reseated” to reference another object
● References cannot be made null (so must

refer to something once created)
● Cannot be uninitialized
● & operator will yield a ptr to referenced obj

�

���
�

Example
//what does this output?
int i = 7;
int& ri = i;
cout << i << endl;
cout << ri << endl;

int* ptr_i = &ri;
cout << ptr_i << endl;
cout << *ptr_i << endl;

16

�
7
7

0x...
7
�

references�

 �

int i = 37;
int& r = i;
�

int i = 37;
Int* r = &i;
�

compare

● In C++ all references must be initialized.
 int& k;
// compiler will complain: error: ‘k’ declared as reference but not initialized

(Most compilers will support a null reference without much complaint, crashing
only if you try to use the reference in some way.)

● There are no operators that operate on
references

int i = 37;
int& r = i; reference
�

int i = 37;
Int* r = &i; address-of
�

���
�

Reference-- usage
!  One convenient application of references is in function

parameter lists, where they allow passing of
parameters used for output with no explicit address-
taking by the caller.

void square (int x, int& result) {
 result = x * x;
}

Call: square(3 , y); //passes read-write y�

void square (int x, int* result){

 *result = x * x;

}

Call: square(3,&y);

Reference�

! Challenge!

int& preinc(int& x) {
 return ++x;//preincrement
}
Call:
int y=1;
preinc(y) = 5; /*returns an
int reference that can then
be manipulated*/�

//same as ++y, y = 5�

Valgrind�
! Command line program

! Allows you to detect and locate memory

leaks

! Usage:
 valgrind –tool = memcheck –leak -check=yes [executable name]

Using Valgrind

! Compile with –g option (just like for gdb)
! To run, just type “valgrind” before your

normal program execution command
" valgrind –leak -check=yes ./myprog
 (detailed memory checking)

! The errors memcheck flags depend on the
execution path:
•  You need to run a suite of test cases to find

bugs

Example Program
#include <stdlib.h>

void f(void) {

 int* x = malloc(10 * sizeof(int));
 x[10] = 0; // problem 1: heap block overrun

} // problem 2: memory leak -- x not freed

int main(void) {

 f();
 return 0;

}

Example Output: error 1

==19182== Invalid write of size 4
==19182== at 0x804838F: f (example.c:6)
==19182== by 0x80483AB: main (example.c:11)
==19182== Address 0x1BA45050 is 0 bytes after

a block of size 40 alloc'd
==19182== at 0x1B8FF5CD: malloc

(vg_replace_malloc.c:130)
==19182== by 0x8048385: f (example.c:5)
==19182== by 0x80483AB: main (example.c:11)

Example output: error 2

==19182== 40 bytes in 1 blocks are
definitely lost in loss record 1 of 1

==19182== at 0x1B8FF5CD: malloc
(vg_replace_malloc.c:130)

==19182== by 0x8048385: f (a.c:5)
==19182== by 0x80483AB: main (a.c:11)

Classes and Structs

! What are the differences between classes
and structs in C++?
" classes default to private access
" structs default to public access
" structs are mostly used for backward

compatibility with C

Forward Declarations
!  Let the compiler know that the definition is

coming later.
" Must use pointers (size isn’t known yet)
/*acknowledges
class B’s
existence
but not impl*/
class B;
class A
{
 public:
 B*;
 myB;
 void f(B* b)
}

class A;

class B
{
 public:
 A*
 myA;
 void f(A* a)
}

Inheritance and Polymorphism

! Allow us to specify relationships between
types
" Abstraction, generalization, specification
" The “is a” relationship
" Examples?

! Why is this useful in programming?
" Allows for code reuse
" More intuitive/expressive code

Code Reuse

! General functionality can be written once
and applied to *any* derived class

! Derived classes can have selective
specialization by adding members or
implementing virtual functions

Generic Programming
!  Data-type independent way of programming

!  Generic classes and functions are written as
templates that can be instantiated with different
data types to create specialized classes and
functions of those data types

!  Instantiations done statically at compile time
!  How else to program in a data-type independent

way?

Dynamic Binding and
Polymorphism
!  Another data-type independent way of

programming

!  Multiple classes have different
implementation of the same method with
the same (overridden) name and
interface

!  At runtime, the system dynamically
decides which method to call (bind to)
based on object type, thus enabling
polymorphism

Virtual Function
!  If a derived class is cast as its base class and

the two classes share an overridden function,
that of the base class will be called unless the
function is virtual—then the derived class
function is called. A virtual func is override-able

class Base
{
 public:

 int f();
 virtual int g();
};
class Derived: public Base
{
 public:
 int f();
 int g();
};

Derived obj;!
Base *bp = &obj; //
cast to base!
Derived *dp = &obj;!
!
bp�f(); //base f()!
dp�f(); //base f()!
bp#g(); //base g()!
dp#g(); //derived g()!
!

Virtual Functions
● A virtual function is a method in a base class that

can be overridden by a derived class method.
class base
{ public:

 void virtual print() { cout << "calling base.print().\n";}
};

class derived : public base
{ public:
void print() { cout << "calling derived.print().\n";}
};

int main()
{
base A; derived B; base *pb;
A.print(); // calls base::print()
B.print(); // calls derived::print()
pb = &B;
pb->print(); // what does this call?
}

Virtual Functions
● A virtual function is a method in a base class that

can be overridden by a derived class method.
class base
{ public:

 void virtual print() { cout << "calling base.print().\n";}
};

class derived : public base
{ public:
void print() { cout << "calling derived.print().\n";}
};

int main()
{
base A; derived B; base *pb;
A.print(); // calls base::print()
B.print(); // calls derived::print()
pb = &B;
pb->print(); // what does this call?
}

Output looks like
calling base.print().
calling
derived.print().
calling
derived.print().�

Template vs. Virtual Function

! Which is preferred? Why?

! Template is instantiated statically
during compile time, more efficient,
but code usuallly hard to read (and
write)

! Virtual function is bound
dynamically at runtime, less
efficient, but code easier to
maintain !

Constructor/destructor�
constructors - used to set up new
instances

• default - called for a basic instance
• copy - called when a copy of an instance is
made (assignment)
• other - for other construction situations

destructors - used when an instance is
removed

The Default Constructor
!  A default constructor has no arguments, it is called when

a new instance is created
"  C++ provides a default constructor that initializes all fields to

0
!  To write your own, add following to your class:

class MyClass {
 public:
 …
 MyClass() { // repeat class name, no
 code here // return type
 }
}

Example Default Constructor
class Robot {
 public:
 static int numRobots = 0;
 Robot() {
 numRobots++;
 locX = 0.0;
 locY = 0.0;
 facing = 3.1415 / 2;
 }
 private:
 float locX;
 float locY;
 float facing;
}

Destructor
!  A destructor is normally not critical, but if your class

allocates space on the heap, it is useful to
deallocate that space before the object is destroyed
"  C++ provides a default destructor does nothing
"  can only have one destructor

!  To write your own, add following to your class:
class MyClass {
 public:
 …
 ~MyClass() {
 code here
 }
}

Example destructor
class Robot {
 public:
 char *robotName;
 Robot() {
 robotName = 0;
 }
 void setRobotName(char *name) {
 robotName = new char[strlen(name)+1];
 strcpy(robotName,name);
 }
 ~Robot() {
 delete [] robotName;
 }
}

Creating Objects and
Dynamic Arrays in C++
!  new calls default constructor to create an object
!  new[] calls default constructor for each object in an

array
"  no constructor calls when dealing with basic types (int,
double)

"  no initialization either

!  delete invokes destructor to dispose of the object
!  delete[] invokes destructor on each object in an

array
"  no destructor calls when dealing with basic types (int,
double)

!  Use delete on memory allocated with new
!  Use delete[] on memory allocated with new[]

Array Destructor
For array of objects, the following suffices:

~Array()
{
 if (data != NULL)
 {
 delete[] data; // Object destructor will free
 data = NULL; // any memory pointed to by object
 }
}
But need “deep” destructor for array of pointers:

~Array()
{
 if (data != NULL)
 {
 for (int i =0; i < length; i++)
 {
 if (data[i])
 {
 delete data[i];
 }
 }
 delete[] data;
 data = NULL;
 }
}

Question
class myObj {

int len;
int *data;

public:
myObj(int len=10) {
if (len) {
data = new int[len];

}
}
~myObj() { if (data) delete data; }

};

myObj *arr1 = new myObj[10];
myObj **arr2 = new myObj*[10];

Do we need to do
“deep” destruct on
both arr1 and arr2?

The Copy Constructor
!  A copy constructor is used when we need a special

method for making a copy of an instance
"  example, if one instance has a pointer to heap-

allocated space, important to allocate its own copy
(otherwise, both point to the same thing)

!  To write your own, add following to your class:
class MyClass {
 public:
 …
 MyClass(const MyClass& obj) {
 code here
 }
}

Example Copy constructor
class Robot {
 public:
 char *robotName;
 void setRobotName(char *name) {
 robotName = new char[strlen(name)+1];
 strcpy(robotName,name);
 }
 Robot(const Robot& obj) {
 robotName = new char[strlen(obj.robotName)+1];
 strcpy(robotName,obj.robotName);
 }
}

Find the error
class Array
{
 public:
 int size;
 int* data;

 Array(int size): size(size), data(new int[size]) { }

 ~Array()
 {
 delete[] data;
 }
};

int main()
{
 Array first(20);
 first.data[0] = 25;
 {
 Array copy = first;
 std::cout << first.data[0] << " " << copy.data[0] <<std::endl;
 } // (1)
 first.data[0] = 10; // (2)
}

25 25
Segmentation fault

#include <iostream>
using namespace std;
class Array
{
 public:
 int size;
 int* data;

 Array(int size): size(size), data(new int[size]) { }

Array(const Array& copy)
 : size(copy.size), data(new int[copy.size])
{
 std::copy(copy.data, copy.data + copy.size, data);
}

 ~Array()
 {
 delete[] data;
 }
};

int main()
{
 Array first(20);
 first.data[0] = 25;
 {
 Array copy = first;
 std::cout << first.data[0] << " " << copy.data[0] <<std::endl;
 } // (1)
 first.data[0] = 10; // (2)
}

46

Array Class: Copy Constructor
Array(const Array& a) {
length = a.getLength();
data = new int[length];
for (unsigned i =0; i< length; i++) {

data[i] = a[i];
}

}

Allows
for:

Array a(2); // Array a is of length 2
Array b(a); // Array b is a copy of a

What’s the big-Oh complexity of making a copy?

~Array() {
if data){
delete[] data ; // data are ints
data = NULL;

}
}

Assume data are ints:

1 step
1 step

Total: O(1)!

An int has no destructor

Array of Objects: Destructor
~Array(){
if (data != NULL){
delete[] data;
// Object destructor will free
// any memory pointed to by object
data = NULL;

}
}

at most n times (assume destructor is O(1))

1 step

Total: O(n)!

What if data is of primitive type (e.g., int, char,
double)?

Array of *Object: Delete
~Array(){
if (data != NULL){
for (int i =0; i < length; i++) {

if (data[i]) delete data[i];
}
delete[] data;
data = NULL;

}
}

at most n times
(assume destructor is
O(1))

1 step

Total: O(n)!

1 step

Other constructor
!  It is often useful to provide constructors that allow the

user to provide arguments in order to initialize
arguments

!  Form is similar to the copy constructor, except
parameters are chosen by programmer:
class MyClass {
 public;
 …
 MyClass(parameters) {
 code here
 }
}

Example constructor
class Robot {
 public:
 Robot(float x, float y, float face) {
 locX = x;
 locY = y;
 facing = face;
 }
}
calling:
 Robot r1(5.0,5.0,1.5);
 Robot r2(5.0,10.0,0.0);
 Robot* rptr;
 rptr = new Robot(10.0,5.0,-1.5);

A Combination constructor
Can combine a constructor that requires arguments with the

default constructor using default values:
class Robot {
 public:
 Robot(float x = 0.0, float y = 0.0,
 float face = 1.57075) {
 locX = x; locY = y; facing = face;
 }
}
calling:
 Robot r1; // constructor called with default args
 Robot r2(); // constructor called with default args
 Robot r3(5.0); // constructor called with x = 5.0
 Robot r4(5.0,5.0; // constructor called with x,y = 5.0
 …

Hiding the Default constructor
!  Sometimes we want to make sure that the user gives

initial values for some fields, and we don’t want them
to use the default constructor

!  To accomplish this we declare an appropriate
constructor to be used in creating instances of the
class in the public area, then we put the default
constructor in the private area (where it cannot be
called)

Example constructor
class Robot {
 public:
 Robot(float x, float y, float face) {
 locX = x;
 locY = y;
 facing = face;
 }
 private:
 Robot() {}
}
calling:
 Robot r1(5.0,5.0,1.5);
 Robot r2; // ERROR, attempts to call default constructor

Array Constructor
class Array {
unsigned int length; // array size
int* data; // array data

public:
// Constructor:
Array(unsigned len=0):length(len) {
data = (len ? new char[len] : NULL);

}
};

Usage: Array a(10);

Queue Constructor
class Queue {
Array queue; // array as queue

public:
// Constructor:
Queue(unsigned len=0) { ... }

};

Preferred usage: Queue q(10);
to declare a queue of 10 (initial) elements

How to write the constructor?

Queue Constructor: Bad
Attempt
class Queue {
Array queue; // array as queue

public:
// Constructor:
Queue(unsigned len=0) {
queue = Array(len); // NOT (Why not?)

}
};

Preferred usage: Queue q(10);
to declare a queue of 10 (initial) elements
How to write the constructor?

Queue Constructor: Bad
Attempt

Queue(unsigned len=0) {
queue = Array(len); // NOT (Why not?)

}

Inefficient:
•  a new array of length len is constructed

and copied over to queue
•  the new array is deconstructed

Potential bug:
•  if data is an array of pointers instead of array of objects, the pointers will

be freed when the new array is destructed, so the pointers copied to
queue will be pointing to junk

Constructor Initialization List
class Queue {
Array queue; // array as queue

public:
// Constructor:
Queue(unsigned len=0) : queue(len) {}

};

Usage: Queue q(10);

Initialize without creating a copy

