CECH Data Structures
and Algorithms

Discussion 1: Week of Sep 7, 2011

MichiganEngineering

" JEE
Contents

m C++ Input/Output
m getopt

m Makefile

m gdb

m Unit Testing

y MichiganEngineering
4

" S
C++ Input/Output

<ios> <istream> <iostream> <fstream> <sstream>
. - | ifstream
| ins_base | ||stream ! :I istringstrearn
P TEnEE o]
- . | fstream -
| ios | | iostream ! stringstream
+
~——1 [ofsream]
ofstream
ostream I\ ostringstream
<ostream>] cout, cerr, clog
filehuf
[seams | TR | vy
cplusplus.caom <streambuf>

http://www.cplusplus.com/reference/

MichiganEngineering

O

" S
C++ Input/Output

cin: read from stdin

cout: write to stdout

cerr: write to stderr

ifstream: open files with read permission

fstream: open files with read & write
permission

y MichiganEngineering
4

* JEEE—
PA1

Input/output is redirected from files
./path281 < input.txt > output.txt

“<“ and “input.txt” are not command line args,
do not appear in char** argv

You can use
cin.get (), cin.unget (), getline(cin, wvar),

cin >> var

MichiganEngineering 5

" S
Read char by char

int main(int argc, char** argv)

{

while(cin.get() != -1)

{
cin.unget();
char ¢ = cin.get();
cout << c;

}

return 0;

y MichiganEngineering
4

* JEE
Read line by line

int main(int argc, char** argv)

{

string s;
while(getline(cin,s))
{

cout << s << endl;

}

return 0;

MichiganEngineering
O

Command Line

Option: defines how the program should run
Argument: input to the program

$ Is —a (-a is an option)

$ Is *.cpp (*.cpp is an argument)

$ mysqgl —p —u username (username is required by option —u)

Py MichiganEngineering 8

" JE
getopt
. getopt greatly simplifies command-line argument parsing.

. We pass it argc and argv, as well as optstring, which is a
character array containing all available option characters.

After an option character, you can specify a : to indicate
that the option has a required parameter. :: denotes that
the argument is optional.

. getopt returns the option if it successfully found one.

. Otherwise, it might return : which indicates a missing
parameter

. Or it might return ? which means one of the option characters
was unknown

. Oritwill return -1 if it is at the end of the option list

MichiganEngineering
’ 4

]
getopt — external variable soup

. getopt gets and sets some external variables on execution:

If you set opterr to something other than zero, then if
there is an error, it will be output to stderr.

For unknown option characters/unknown arguments,
getopt stores the value in optopt.

optind contains the index of the next element of argv
scheduled to be processed.

For options that accept arguments, optarg is set with the
value of the argument.

- Windows users can get wingetopt from:
http://note.sonots.com/Comp/CompLang/cpp/getopt.html

. Let's look at an example.

MichiganEngineering 10
’ 4

* JEE
getopt

#include <unistd.h>
#include <stdio.h>

int main (int argc, char **argv) {
int aflag = 0; int bflag = 0;
char *cvalue = NULL;
int index, c;
opterr = 0; // extern var

while ((c = getopt (argc, argv, "abc:")) != -1) {
switch (c) {
case 'a':
aflag = 1; break;
case 'b':
bflag = 1; break;
case 'c':
cvalue = optarg; break;
case '?':

if (isprint (optopt)
fprintf (stderr, "Unknown option “-%c'.\n", optopt);
else
fprintf (stderr, "Unknown option character “\\x%x'.\n", optopt);
return 1;
default:
abort ();
}

printf ("aflag = %d, bflag = %d, cvalue = %s\n",
aflag, bflag, cvalue);

for (index = optind; index < argc; index++)
printf ("Non-option argument %s\n", argv[index]);
return 0;

) P MichiganEngineering 1

* JEE
getopt

% testopt
aflag = 0, bflag = 0, cvalue = (null

% testopt -a -b
aflag = 1, bflag = 1, cvalue = (null

% testopt -ab
aflag = 1, bflag = 1, cvalue = (null

% testopt -c foo
aflag = 0, bflag = 0, cvalue = foo

% testopt -cfoo
aflag = 0, bflag = 0, cvalue = foo

% testopt argl
aflag = 0, bflag = 0, cvalue = (null)
Non-option argument argl

% testopt -a argl
aflag = 1, bflag = 0, cvalue = (null)
Non-option argument argl

% testopt -c foo argl
aflag = 0, bflag = 0, cvalue = foo
Non-option argument argl

% testopt -a -- -b
aflag = 1, bflag = 0, cvalue = (null)
Non-option argument -b

5 Testopt —a =

alag - 1, bflag = 0, cvaluelaatnhl P)

Non-option argument - p ichiganEngineering
- 4

" S
Compiling: The old way

m g++ main.cpp filel.cpp file2.cpp -0 main
Way too long to re-type over and over.

m Potential Problems:

g++ main -o main.cpp

g++ main.cpp -o main.cpp
= What happens in the two above commands?

MichiganEngineering 13

" S
The Solution: Makefiles

m The command becomes
make

Compare to
g++ main.cpp filel.cpp file2.cpp -0 main

MichiganEngineerin
Py g g] 14

" S
Structure of a Makefile

m The file must be called 'Makefile’
m |t consists of rules as follows:

Target name Files this target depends on

(if any of these have changed, re-run this target)

main.o: main.h main.cpp

gttt -¢ main.cpp -© Main.o

Required tab Stuff to execute

(Y ou must indent this (only runs if any of the dependencies have

line with a tab) changed since last time you ran 'make’)
MichiganEngineering 15

O

Dependencies

lall: data.o i0.0 main.o
1 gcc data.o 10.0 mwain.o -o myexecutable |
|data.o: data.c data.h
1 gee -c data.c

10.0: 10.C 10.h
gce -¢ 10.¢

Il main.o: main.c data.h io.h common.h

10
_‘__ —— ..\— I gece -c main.c
clean:
) Im *.o myexecutable
I

d;tac d:t:hl mamc commonh mhl 10.¢
—— f B

MichiganEngineering 16

make

m make is a utility that can simplify the building process.
As the size of a C++ project grows, it becomes critical to
modularize the code for the sake of both the build time
and for the sanity of the programmer (and the grader!).

m make is better than a shell script because it detects the
files that have been changed and only recomplies and
relinks when needed.

m make looks at a file called Makefile, created by you, to
determine the dependency graph of your project.

y MichiganEngineering
‘<’ 4

" JEE
make

e Let's look at an example 3-file project.

classname.h

void writeClassName (void);
classname.cpp

#include <iostream>

using namespace std;

void writeClassName (void) {

cout << "Hello EECS 281!" << endl;

}

hello.cpp

#include <iostream>
#include "classname.h"

using namespace std;

int main(void) {
cout << "Hello world!" << endl;
writeClassName () ;

}

y MichiganEngineering
‘<’ 4

" JEEE
make - Makefile

e Here is our simple Makefile:

top-level dependency
helloWorld281: hello.o classname.o
g++ hello.o classname.o -o helloWorld281

hello module
hello.o: hello.cpp classname.h
g++ -c hello.cpp

the classname module
classname.o: classname.cpp classname.h
g++ -c classname.cpp

e We define a dependency graph in Makefile. To the left of the colon
is a label often denoting a file. To the right are dependencies. For
example, helloWorld281 depends on hello.o and classname.o.

e The indented lines are, in a nutshell, the commands executed to
create the object denoted by the label. Compiled in order. These
lines must be indented.

e # denotes comments

MichiganEngineerin
O 9 9 q 19

make — macros

e It's possible to define and use macros in your Makefile:

OBJECTS = hello.o classname.o
CPPFLAGS = -c -Wall

top-level dependency
helloWorld281: $(OBJECTS)
g++ $(OBJECTS) -o helloWorld281

hello module
hello.o: hello.cpp classname.h
g++ $(CPPFLAGS) hello.cpp

the classname module
classname.o: classname.cpp classname.h
g++ $(CPPFLAGS) classname.cpp

clean the project
clean:
rm -rf *o helloWorld281l

e Note above we've also defined a “clean” operation. This is an

action, not a g++ operation. To use, type make clean at the
command prompt.

Py | MichiganEngineering 20

make - sub-makefiles

e You can also embed other makefiles inside Makefile. This allows
you to modularize your build process even further. To specify a
make file with a different name than Makefile, use the -f option:

make -f MyOtherMakeFile

MichiganEngineering 91

O

" JEE
make
e make is a powerful and complex utility, and we're just barely

scratching the surface. For more information, do a man make or
check out one of the many tutorials on the web.

e http://www.eng.hawaii.edu/Tutor/Make/

. MichiganEngineering 22
‘-’ 4

" O
Makefiles Summary

m Basic syntax
Target: sources
[tab] system command
m To run a makefile, simply use:
make -f makefilename
m BUT, if you simply name your makefile
“Makefile”, then you only have to type:
make

MichiganEngineering

O

Makefiles Summary

Suppose we run the following command to compile our
program:

g++ main.cpp hello.cpp factorial.cpp -0 hello
Then we can do the same thing in our makefile by just
doing this:
all:

g++ main.cpp hello.cpp factorial.cpp -0 hello
Remember tabs, of course

All is default target for makefiles. That's why it works
here.

y MichiganEngineering
‘<’ 4

" S
Makefiles Summary

m Dependencies are important!

m Here is an example makefile for the same source code:
all: hello
hello: main.o factorial.o hello.o
g++ main.o factorial.o hello.o -o hello
main.o: main.cpp
g++ -Cc main.cpp
factorial.o: factorial.cpp
g++ -c factorial.cpp
hello.o: hello.cpp
g++ -c hello.cpp
clean:
rm -rf *o hello

m What advantages does this code have?

MichiganEngineering

GNU Debugger (gdb)

m Text-based debugging tool

m Useful for solving segmentation faults
Program received signal SIGSEGV, Segmentation fault.

or memory issues, e.g., index out of bounds

m When compiling, add -g to Makefile
Adds debugging symbols to binary

p y | MichiganEngineering 2%

"
gdb Usage
m TO start gdb, type gdb <exe name>

d gpl.html>
ribute it.
ying™

4-redhat-linux-gnu”...

m At this point, gdb is waiting. To start the
program, type run <command line>

MichiganEngineerin
2> ¢} L] [+] 27

gdb Helpful Commands

(r) un: start the executable

(b) reak: sets points where gdb will halt

where: prints function line where seg. fault occurred

(b) ack (t) race: prints the full chain of function calls

(s) tep: executes current line of the program, enters function calls
(n) ext: like step but does not enter functions

(c) ontinue: continue to the next breakpoint

(p) rint <var>: prints the value of <var>

watch <var>: watch a certain variable

(1)ist <line num> :list source code near <line_num>
kill: terminate the executable

(g)uit: quit gdb

p Y MichiganEngineering 28

" I
gdb Live Example

m See live example...

MichiganEngineerin
Py J 9 g 29

* J
Unit Testing

m Unit testing is a methodology by which you test the
software of your program.

m Tests are unit tests because they usually operate on a
small, specific part of the system.

m They are organized in classes.

m We can implement an extremely simple version of unit
testing with assert.

y MichiganEngineering 37
4

" JEE—
Unit testing

m assert is the most important macro in C++ (at least in
terms of debugging).

m We assert that something is true. If, when the
program counter reaches an assert and the expression
turns out to be false, it triggers a breakpoint, and we
break into the code.

m It's incredibly useful and convenient. Use it!
assert(3==3);// OK
assert(false == false); // OK
assert(myFunc(123)); // OK if myFunc returns true
assert(5 == 2+ 2); // Will break into code!!!!

MichiganEngineering

O

" JEE
Unit Testing

PowerRaiser.h

class PowerRaiser {
public:
PowerRaiser (unsigned int base);

unsigned int getBase() const;
unsigned int raise(unsigned int power) const;

private:
unsigned int base ;
Vi

y MichiganEngineering
I 4

* JEEE
Unit Testing
PowerRaiser.cpp

PowerRaiser: :PowerRaiser (unsigned int base)
base_(base)

{

}

unsigned int PowerRaiser::getBase () const {
return base ;

}

unsigned int PowerRaiser::raise(unsigned int power) const {
if (0 == number) {
return 1;
} else {
return base_ * raise(power - 1);
}
i , MichiganEngineering
= 4

" J—
Unit Testing

PowerRaiserTest.h

class PowerRaiserTest {
public:
void runAllTests();
void testGetBase();
void testGetPower () ;

P MichiganEngineering
4

Unit Testing
PowerRaiserTest.cpp

void PowerRaiserTest::testGetBase() {
PowerRaiser p(10);
assert(10 == p.getBase());

}

void PowerRaiserTest::testGetPower () {
PowerRaiser p(3);
assert(1 == p.raise(0));
assert(3 == p.raise(1));
assert(9 == p.raise(2));
assert(4782969 == p.raise(12));
assert(15625 == PowerRaiser(5).raise(6));
assert(1000000 == PowerRaiser(10).raise(6));

}
void PowerRaiserTest::testAll() {

testGetBase () ;
testGetPower () ;

MichiganEngineering 42

e

" JEE———
Unit Testing
m Each time we make a change to the code base, we

run all unit tests to make sure that all of the
functionality is still there.

m If an error occurs, it signals a bug. We can figure out
where it is with our tests, identify it immediately, and
correct it.

m Or, if the bug cannot be resolved, we can revert our
code (using SVN or CVS, for example) to the prior
state.

m Thus, code repositories play a big part in unit testing.

Py MichiganEngineering 43

