
Lecture 11: Red-Black Trees!

Red-Black Tree!

Designed to represent 2-3-4 tree without the
additional link overhead!

A Red-Black tree is a binary search tree in
which each node is colored red or black!

Red nodes represent the extra keys in 3-nodes
and 4-nodes!

2-node = black node!

[Brinton,Rosenfeld,Ozbirn]!

a!a!

Red-Black vs. 2-3-4 Nodes!

3-node = black node with one red child!

4-node = black node with two red children!
•!center value becomes the parent (black) with outside
values becoming the children (red)!

Red-black trees are not unique, but the
corresponding 2-3-4 tree is unique!

or!a b!

a!

b! a!

b!

a b c!

b!

c!a!

[Brinton,Ozbirn]!

Red-Black vs. 2-3-4 Trees!

Red-Black Tree!

Red-black trees are widely used:!
•!C++ STL: map, set, multimap, multiset!
•! Java: java.util.TreeMap, java.util.TreeSet!
•! Linux kernel: linux/rbtree.h!

RBT node representation:!

[Brinton,Rosenfeld,Sedgewick,Walter]!

L!

E!

F!

T!

PARENT! R!

I!

G!

H!

T!

KEY!

COLOR!

The root is black!

The children of
red nodes are

both black!

[Giabbanelli]!

Red-Black Tree Rules and Properties!

Every node is colored either red or black!

External nodes are black!

A Red-Black Tree!

If a node is red, its
children must be black!

30

5

15

10 20

70

50 65

85 60

55
40

80 90

[McCollam]!

Every node is colored
either red or black!The root is black!

External nodes are black!

Black-height bh(x)!

Black-height of node x is the number of black nodes
on the path from x to an external node (including the
external node but not counting x itself)!

Every node has a"
black-height, bh(x)!

For all external nodes,"
bh(x) = 0!

For root x,!
bh(x) = bh(T)!

20

22

25 21

18

17 19

2

1 1 1

2

1

1

0 0 0 0 0 0 0 0

[Walter]!

Every path from a node x to an external node must contain
the same number of black nodes = black-height(x)!

Black-height Rule!

bh =!

bh =!

bh =!

bh =!

bh =!

[McCollam]!

30

5

15

10 20

70

50 65

85 60

55
40

80 90

bh =!

Red-Black Rules and Properties!

1.!Every node is either red or black!

2.!The root is black [root rule]!

3.!External nodes (nulls) are black!

4.! If a node is red, then both its"
children are black [red rule]!

5.!Every path from a node to a null must have the same
number of black nodes (black height) [black-height rule]!
a.! this is equivalent to a 2-3-4 tree being a perfect tree:"

all the leaf nodes of the 2-3-4 tree are at the same level
(black-height=1)!

b.!a black node corresponds to a level change in the
corresponding 2-3-4 tree!

[Walter,Brinton]!

20

22

25 21

18

17 19

Implications of the Rules!

If a red node has any children, it must have
two children and they must be black (why?)!
•! can’t have 2 consecutive reds (double red) on a path!
•! however, any number of black nodes may appear in

a sequence!

If a black node has only one child that child
must be a red leaf (why?)!

[Scott,Ozbirn]!

Red-Black Tree Height Bound!

Red-black tree rules constrain the adjacency of node
coloring, ensuring that no root-to-leaf path is more
than twice as long as any other path, which limits
how unbalanced a red-black tree may become!

Theorem: The height of a red-black tree with n
internal nodes is between log2(n+1) and 2log2(n+1)!

[Walter,Brinton,Singh]!

Red-Black Tree Height Bound!
Start with a red black tree with height h!
(note: height here includes the external nodes)!

Merge all red nodes into their black parents!

h!

[McCollam,Singh]!

Red-Black Tree Height Bound!

Nodes in resulting tree have degrees between 2 and 4!

All external nodes are at the same level"

It’s the equivalent 2-3-4 tree to the red-black tree!!

Height of the resulting tree is h’ " h/2!

h’!

[McCollam,Singh]!

Red-Black Tree Height Bound!

Let h’ " h/2 be the height of the collapsed tree!

The tree is tallest if all internal nodes have degree 2,
i.e., there were no red-node in the original red-black
tree, h’ = h, and number of internal nodes is n = 2h’–1
and h’ = 2 log2(n+1)!

The tree is shortest if all internal nodes have "
degree > 2, and h’ = h/2; e.g., if all internal nodes "
have degree 4, the number of internal nodes is"
n = 4h’–1 and h’ = log2(n+1)!

In the mixed case, log2(n+1) # h’ # 2 log2(n+1)!

[Singh]!

Red-Black Tree Height Bound "
(Alternate Proof)!

Prove: an n-internal node RB tree has height"
h # 2 log(n+1)!

Claim: A subtree rooted at a node x contains
at least 2bh(x) – 1 internal nodes!

•! proof by induction on height h !

•! base step: x has height 0 (i.e., external node)!
•! What is bh(x)?!

•! 0!

•! So…subtree contains 2bh(x) – 1 "
= 20 – 1 "

= 0 internal nodes (claim is TRUE)!

[Luebke]!

Red-Black Tree Height Bound "
(Alternate Proof)!

Inductive proof that subtree at node x contains at least
2bh(x) – 1 internal nodes!
•! inductive step: x has positive height and 2 children!

•! each child has black-height of bh(x) or bh(x)–1 (Why?)!

•! the height of a child = (height of x) – 1!

•! so the subtrees rooted at each child contain at least "
2bh(x) – 1 internal nodes by induction hypothesis!

•! thus subtree at x contains "
(2bh(x)–1 – 1) + (2bh(x)–1 – 1) + 1"

= 2*2bh(x)–1 – 1 = 2bh(x) – 1 nodes!

[Luebke]!

Red-Black Tree Height Bound "
(Alternate Proof)!

Thus at the root of the red-black tree:!
n " 2bh(root) – 1!

n " 2bh(root) – 1 " 2h/2 – 1 ! ! ! !(Why?)!

log (n+1) " h/2!

h # 2 log(n + 1)!

Thus h = O(log2 n) ! ! !!

[Luebke,Walter]!

By the black-height rule, the additional nodes
in paths longer than the black height of the
tree can consist only of red nodes!

By the red rule, at least 1/2 of the nodes on
any path from root to an external node are
black!

Since the longest path of the tree is h, the
black-height of the root must be at least h/2!

Time Complexity of Red-Black Trees!

All non-modifying BST operations (min, max,
successor, predecessor, search) run in"
O(h) = O(log n) time on red-black trees!
•!small storage issue per node to include a color flag "

(no big deal)!

Insertion and deletion must maintain rules of red-
black trees and are therefore more complex: still
O(log2 n) time but a bit slower empirically than in
ordinary BST!

[Kellih,Walter]!

Red-Black Insert!

1.! as with BST, insert new node as leaf, must be red!
•! can’t be black or will violate black-height rule!

•! therefore the new leaf must be red!

2.! insert new node, if inserting into a 2-node
representation (black parent), done!

3.! if inserting into a 3-node, could result in double red
! need to rotate and recolor nodes to represent a
4-node, with a black parent!

4.! if inserting into a 4-node, “split” 4-node ! recolor
children black, parent red, and “promote” parent!

5.! maintain root as black node!
[Brinton]!

Inserting into a 3-node: Two Cases!

a!

c!w!

b!

2.!

Inserting node b to a black parent that
is part of a 3-node, creating a 4-node,
done!
! inserting a new node to a black parent is

always simple!

Inserting node b to a red parent that is
part of a 3-node, creating double red!
" how to recognize that parent and

grandparent are part of a 3-node?!
!parent is red, grandparent and uncle (w) are black!

" need to rotate to create a new 4-node!

1.! a!

c! b!

[Ozbirn]!

3-Node, Red-Parent!

Make the new node (b) along with
parent (c) and grandparent (a) a 4-

node!

Rotate to make parent (c) the middle
value of the 4-node!

There are four possible combinations
of a, b, and c corresponding to LL, RR,
LR, RL rotations (see next slide)!

As the middle value of a 4-node,
parent (c) will be black, and the two
outer nodes (a) and (b) will be red!

[Ozbirn]!

1.!

w!

a!

c!

b!

3-Node, Red-Parent Rotations!

Single rotation!

Double rotation!

Representing a
4-node,!
parent is black,!
children are red!

[Ozbirn]!

a! c!

b!

w!

R!

L!

a!

c!

b!

v!

R!

L!
c!

a!

b!

w!

R!

R!

a!

b!

c!

v!

L!

L!
c!

b!

a!

Double rotation!

w! v!

Inserting into a 3-Node!

Insert 2!

3-node!

4-node!

5

12

5

12 2

[Brinton]!

Inserting into a 3-Node!

Insert 14!
5

12

5

12

14

R

R
single left !
rotation!

12

14 5

[Brinton]!

Inserting into a 3-Node!

Insert 10!
5

12

5

12

10

10

12 5 double
right–left !
rotation!

R

L

[Brinton]!

Red-Black Insert!

1.! as with BST, insert new node as leaf, must be red!
•! can’t be black or will violate black-height rule!

•! therefore the new leaf must be red!

2.! insert new node, if inserting into a 2-node
representation (black parent), done!

3.! if inserting into a 3-node, could result in double red
! need to rotate and recolor nodes to represent a
4-node, with a black parent!

4.! if inserting into a 4-node, “split” 4-node ! recolor
children black, parent red, and “promote” parent!

5.! maintain root as black node!
[Brinton]!

Inserting into a 4-node!

Inserting node d causes double red,"
and d#s parent has red sibling w!
" parent, aunt, and grandparent are part"

of a 4-node!
" need to recolor, to split the 4-node and

“promote” grandparent!
parent and aunt become black"
grandparent becomes red!

If grandparent is root, change it back to black!
Otherwise, insert grandparent to great-
grandparent, applying the same insertion
rules as before depending on whether great-
grandparent is a 2-node, 3-node, or 4-node!

[Ozbirn]!

b!

c!a!

d!d!d! d!

b!

c!a!

d!d!d! d!

Grandparent is root: recolor the two children black!

Insert red grandparent into a 2-node great-grandparent:!

Inserting into a 4-node! Inserting into a 4-node!

After inserting 55, promote red grandparent
to a 3-node, black great-grandparent:!

[Brinton]!

20!

40! 60!

20! 50!

55!

Promoting red grandparent to a 3-node,
red-great grandparent:!

Four cases:!
•!RR: requiring a single left rotation, e.g.,!

Inserting into a 4-node!

R!

R!

•!LL: requiring a single right rotation, e.g.:!

3-Node, Red-Great Grandparent!

P! P!

X!

L!

L!

A! B!

X! G!

•!LR: requiring a double
left-right rotation, e.g.:!

•!RL: requiring a double
right-left rotation, e.g.,!

3-Node, Red-Great Grandparent!

C! D!

B!A!

 P X G !

X

G P

A B C D

P

G

X

A

B

D

C A

G

P

X

B

D

C

L!

R!

A

P

G

X

B

D

C
L!

R!

G

P

X

B

A

D

C

RBT Insertion Examples!

Insert 10 – root, must be black!

10

[Rosenfeld]!

10!

Equivalent
2-3-4 tree:!

Insert 85 (root is now a 3-node)!

10

85

RBT Insertion Examples!

[Rosenfeld]!

10 85!

Equivalent
2-3-4 tree:!

Insert 15!

10

85

15

RBT Insertion Examples!

[Rosenfeld]!

double red!!

Rotate – Recolor (root becomes a 4-node)!

15

10 85

RBT Insertion Examples!

[Rosenfeld]!

10 15 85!

Equivalent
2-3-4 tree:!

Insert 70 (split the 4-node)!

15

10 85

70

RBT Insertion Examples!

[Rosenfeld]!

double red!!

Recolor (root must be black)!

15

10 85

70

RBT Insertion Examples!

[Rosenfeld]!

70 85!

15!

10!

Equivalent
2-3-4 tree:!

Insert 20 (sibling of parent is black, a 3-node)!

20

15

10 85

70

RBT Insertion Examples!

[Rosenfeld]!

double red!!

Rotate (becomes a 4-node) !

15

10 70

20 85

RBT Insertion Examples!

[Rosenfeld]!

15!

10! 20 70 85!

Equivalent
2-3-4 tree:!

Insert 60 (sibling of parent is red, a 4-node, need to split)!

15

10 70

20 85

60

RBT Insertion Examples!

[Rosenfeld]!

double red!!

Recolor (promote middle value, 70)!

15

10 70

20 85

60

RBT Insertion Examples!

[Rosenfeld]!

10! 20 60!

15 70!

85!

Equivalent
2-3-4 tree:!

Insert 30 (sibling of parent is black, a 3-node)!

15

10 70

20 85

60

30

RBT Insertion Examples!

[Rosenfeld]!

Rotate (made a 4-node)!

15

10 70

30 85

60 20

RBT Insertion Examples!

[Rosenfeld]!

10!

15 70!

85!20 30 60!

Equivalent
2-3-4 tree:!

Insert 50 (sibling of parent?)!

15

10 70

30 85

60 20

50

RBT Insertion Examples!

[Rosenfeld]!

double red!!

Insert 50 (promote middle value, 30,"
causing another"
double red;"
sibling of"
30’s parent,"
70, is black,"
! 70 is in"
a 3-node; with 30 it"
becomes a 4-node"
and needs to be rotated)!

15

10 70

30 85

60 20

50

RBT Insertion Examples!

[Rosenfeld]!

R

L
double red!!

Insert 50 (promote middle value, 30,"
causing another"
double red;"
sibling of"
30’s parent,"
70, is black,"
! 70 is in"
a 3-node; with 30 it"
becomes a 4-node"
and needs to be rotated)!

15

10

70

30

85 60

20

50

RBT Insertion Examples!

[Rosenfeld]!

R

double red!!

15 30 70!

Double Rotate – Recolor!

30

15 70

20 85 10
60

50

RBT Insertion Examples!

[Rosenfeld]!Demo: http://gauss.ececs.uc.edu/RedBlack/redblack.html!

10! 50 60! 85!20!

Equivalent
2-3-4 tree:! RBT Removal!

If we delete a node, what was"
the color of the node removed?!

•!Red? easy, since!
•!we won't have changed any black heights,!
•! nor will we have created 2 red nodes in a row;!
•! also, it could not have been the root!

•!Black?!
•! could violate any of root rule, red rule, or black-height rule!

[Walter]!

Red-Black Tree Removal!
Observations: !
•!if we delete a red node, tree is still a red-black tree!
•!a red node is either a leaf node or must have two children!

Rules:!
1.! if node to be deleted is a red leaf, remove leaf, done!
2.! if it is a single-child parent, it must be black (why?);"

replace with its child (must be red) and recolor child black!
3.! if it has two internal node children, swap node to be

deleted with its in-order successor!
•! if in-order successor is red (must be a leaf, why?), remove leaf, done!
•! if in-order successor is a single child parent, apply second rule!

In both cases the resulting tree is a legit red-black tree"
(we haven’t changed the number of black nodes in paths)!
4.! if in-order successor is a black leaf, or if the node to be

deleted is itself a black leaf, things get complicated . . .!

RB-Trees: Alternative Definition!

Colored edges definition!
1.! child pointers are colored red or black!

2.! the root has black edges!

3.! pointer to an external node is black!

4.! no root-to-external-node path has two
consecutive red edges!

5.! every root to external node path"
has the same number of black edges!

color of node =="
color of incoming edge!

[Singh]!

10

7

8

5

30

40

20

25

35

45

60

3

1

Black-Leaf Removal!
We want to remove v, which is a black leaf!
Replace v with external node u, color u double black!

To eliminate double black edges, idea:!
•! find a red edge nearby, and change the pair "

(red, double black) into (black, black)!
•! as with insertion, we recolor and/or rotate!
•! rotation resolves the problem locally, whereas"

recoloring may propagate it two levels up!
•! slightly more complicated than insertion!

color"
undetermined!

[!altenis]!

Red Sibling!

If sibling is red, rotate such that a black node becomes
the new sibling, then treat it as a black-sibling case
(next slides)!

u

u

[!altenis]!

Black Sibling and Nephew/Niece!

If sibling and its children are black, recolor
sibling and parent!

If parent becomes double black, percolate up!

u
u

u
u

[!altenis]!

Black Sibling but Red Nephew!

If sibling is black and one of its children is red,
rotate and recolor red nephew involved in rotation!

u

u

u

u

[!altenis]!

Remove 9!

[!altenis]!

sibling and its children
are black, recolor sibling
and parent!

Red-Black Tree Removal Example!

Remove 8:!

[!altenis]!

not a black leaf,
no double black!

Red-Black Tree Removal Example!

Remove 7:!

[!altenis]!

sibling is black and one of
its children is red, rotate
and recolor red nephew
involved in rotation!

Red-Black Tree Removal Example! Efficiency of Red Black Trees!

Insertions and removals require additional time
due to requirements to recolor and rotate!

Most insertions require on average a single
rotation: still O(log2 n) time but a bit slower
empirically than in ordinary BST!

[Kellih]!

