
Lecture 10: Multi-way Search Trees:!
•  intro to B-trees!
•  2-3 trees!
•  2-3-4 trees!

k1! k2! k3! …! kM–1!

Multi-way Search Trees!

A node on an M-way search tree 
with M−1 distinct and ordered keys: 
k1 < k2 < k3 < . . . < kM−1, has M 
children {T0, T1, T2, . . . , TM−1}!
!
Every element in child Ti has a value 
larger than ki and smaller than ki+1!
!
Number of valid keys doesn’t have 
to be the same for every node on 
the tree!
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T0! T1! T2! T3! TM–1!
…!

M-Way Search Trees Representation!

A node of an M-way search tree can be represented as:!
!
int m; !m=3;!
struct mnode {!

int in_use;!
Key keys[m-1];!
mnode *children[m];!

}!
!
in_use: how many of the m keys of"

this node are currently in use!

2!

keys!

children!

9! 15! –!

M-Way Search!

Search on an M-way search tree is similar to that on 
a BST, with more than 1 compares per node!
(a BST is just an M-way search tree with M = 2)!
!
If all nodes have M − 1 keys, with linear search on the 
nodes, it takes O(M logM N) time to search an M-way 
search tree of N internal nodes ((M − 1) N keys)!
!
With binary search on the nodes, it takes"
O(log2M logM N) time!



Advantage 1: External Search!

M-way search tree can be used as an index for 
external (disk) searching of large files/databases!

Characteristics of disk access:!
• orders of magnitude slower than memory access!
•  for efficiency, data usually transferred in blocks of 512 
bytes to 8KB!

To speed up external search, put as much data as 
possible on each disk block, for example, by making 
each node on an M-way search tree the size of a 
disk block!

B-Trees!

Invented by Bayer and McCreight in 1972!
A B-tree is a Balanced M-way search tree, M ≥ 2 
(usually ~100)!

Search takes O(log M log N)!
Insertion and removal each takes O(M log N) time!

B-Trees are covered in detail in EECS 484, here 
we look at the in-memory versions: 2-3 trees and 
2-3-4 trees (a.k.a., 2-4 trees)!

Advantage 2: Balanced Search Trees!

AVL trees keep a BST"
balanced by limiting how "
unbalanced a tree can be!

Perfect binary trees are "
by definition balance, but perfect binary trees of height h 
have exactly 2h+1 – 1 internal nodes, so only trees with 
1, 3, 7, 15, 31, 63, … internal nodes can be balanced . . .!

Balance M-way trees prevent a tree from becoming 
unbalanced by storing more than 1 keys per node such 
that the trees are always perfect (but not binary) trees!

BST! 2-3 Tree!

insert 39, 38, ... 32!



2-3 Trees!
Properties (balance condition) of 2-3 trees:!

1.  all leaf nodes at the same level and contain 1 or 2 keys!

2.  an internal node has either 1 key and 2 children"
(a 2-node) or 2 keys and 3 children (a 3-node)!

3.  a key in an internal node is “between” the keys in its 
adjacent children!

Demo: http://slady.net/java/bt/view.php?w=600&h=450!

keys < S! keys > S!

2-node!

keys < S! keys > L!S < keys < L!

3-node!
[Carrano] 

S: Small 
L: Large 

2-3 Tree Example!

[Carrano]!

2-3 Trees Search Times!
A 2-3 tree of height h has least number of nodes 
when all internal nodes are 2-nodes (a BST)!
• since all leaves must be at the same level, the tree is a 
perfect tree and the number of nodes (and therefore 
keys) is n = 2h+1–1 ⇒ h = floor(log2 n)!

A 2-3 tree of height h has the largest number of 
nodes when all internal nodes are 3-nodes!
• number of nodes:!

• number of keys (each node has 2 keys): "
n = 3h+1–1 ⇒ h = floor(log3 n)!

Search time on 2-3 trees: O(log n)!

N = 3i
i=0

h∑ = (3h+1 −1) 2

2-3 Trees Insert!
As with BST, a new node is always inserted as a leaf node!

1.  Search for leaf where key belongs; remember the search path!

2.  If leaf is a 2-node, add key to leaf!

3.  If leaf is a 3-node, adding the new key makes it an invalid node 
with 3 keys, split the invalid node into two 2-nodes, with the 
smallest and largest keys, and pass the middle key up to parent!

4.  If parent is a 2-node, add the child’s middle key with"
the two new children, else split parent by Step 3 above!

5.  If there’s no parent, create a new root"
(increase tree height by 1)!

Observation: whereas a BST increases height by extending 
a single path, a 2-3 tree increases height globally by raising 
the root, hence it’s always balanced!



Splitting a Leaf Node!

[Gordon-Ross] 

Splitting a Non-Leaf Node!

[Gordon-Ross] 

Splitting and Raising the Root!

[Gordon-Ross] 

Insert 39!

insert into a 2-node leaf, 
no splitting necessary!

[Gordon-Ross] 



Insert 38!

insert to a 3-node leaf, 
splitting necessary!

✗ 
[Gordon-Ross] 

Insert 38: Split Leaf Node!

insert to a 3-node leaf, 
splitting necessary!

[Gordon-Ross] 

Exercise: Insert 15!
30    50  

40 38 20 10 

39 15 

Exercise: Insert 75 Then 85!



1.  If item to be removed is not in a leaf node, swap with the max 
of the child to the key’s right (the next bigger item, or in-order 
successor)!

2.  If n is a 3-node, "
remove item, done!

3.  else if n is a 2-node:!
while (n has no item &&  

n is not root ) {!
let p be the parent of n;!
let q be the adjacent  

sibling of n (left or right);!
if (q is a 3-node) rotate items;!
else merge nodes;!
n=p;!

} !!
if (n has no item, n must be root)!

the child of n becomes the new root, remove n;!

2-3 Trees Removal!

swap 

Remove 70 

next slide 

[Carrano]!

Remove 65 

✗ 

Removal: Leaf Node!

Merging:!
Sibling is not a 3-node:!
� merge nodes!
� move item from parent to sibling!
� merge to left to fill node left to right 

(think: array)!
� merging could leave"

parent without"
any item!

[Singh,Carrano]!

S: Small 
L: Large 
P: Parent 

Merge 

n 

n 

Merge 

Removal: Leaf Node!
Rotation:!

Sibling is a 3-node: !
� redistribute items"

between siblings 
and parent!

� take from right to 
empty parent right 
to left (think: array 
implementation)! 100 ✗ 

Remove 100 

[Singh,Carrano]!

S: Small 
L: Large 
P: Parent 

Rotate 

n 

Removal: Non-Leaf Node!

Rotation:!

Sibling is a 3-node: !
� redistribute"

items!
� adopt child!
!

Merging:!
Sibling is not a 3-node:  
� merge nodes!
� move item from"

parent to sibling!
� adopt child of n!

If n’s parent ends up without item, apply process on parent!
[Singh,Carrano]!

S: Small 
L: Large 
P: Parent 

PS: Parent of S 
PL: Parent of L 

n 

n 



If merging process reaches the root and root is 
without item � remove root!
!
!
!
!
!
!
!
Observation: whereas a BST pushes “holes” down 
to the leaves, a 2-3 tree percolates “holes” up and 
decreases height globally by lowering the root!

Removal: Root!

[Singh,Carrano]!

Remove 80: Percolated Merging!

can’t redistribute, 
must merge!

✗ 
[Carrano]!

swap!

merge!

Remove 80: Percolated Merging!

violates 2-3 tree property, 
merge recursively up the 
tree!

[Carrano]!

merge!

Remove 80: Percolated Merging!

root is now empty, set 
tree to point to new root!

[Carrano]!

remove 
root!



1.  Removal always begins at a leaf node!

2.  If item to be removed is not in a leaf node, "
swap with in-order successor!

3.  If n is a 3-node, "
remove item, done!

4.  if n is a 2-node:!
while (n has no item &&  

n is not root ) {!
let p be the parent of n;!
let q be the adjacent sibling of n (left or right);!
if (q is a 3-node) rotate items;!
else merge nodes;!
n=p;!

} !!
if (n has no item, n must be root)!

the child of n becomes the new root, remove n;!

Remove 37 Then 70!

[Carrano]!

Remove 37!

[Carrano]!

swap!

Remove 37!

[Carrano]!

merge!

rotate!

Remove 70!

[Carrano]!

swap!

merge!

merge!



Remove 70!

[Carrano]!

50 80 

38 

2-3-4 Trees!

Similar to 2-3 trees!
• also known as 2-4 trees!
• demo: http://www.cse.ohio-state.edu/~bondhugu/acads/234-tree/index.shtml!
4-nodes can have 3 items and 4 children!
!
!
!
!
!
Why bother? Unlike with 2-3 trees, insertions and 
removals in 2-3-4 trees can be done in one pass!

4-node!

[Singh,Carrano]!

2-3-4 Tree Example!

[Carrano]!

a 4-node 

2-3-4 Trees Insert!
Items are inserted at leaf nodes!

Since a 4-node cannot take on another item, "
4-nodes are preemptively split up during the 
insertion process!

On the way from the root down to the leaf: "
split up all 4-nodes “on the way”!
� insertion can be done in one pass"

(in 2-3 trees, a reverse pass is likely necessary)!
� no worrying about overflowing a node when we actually 

do the insertion−the only kind of node that can 
overflow (a 4-node) has been made a 2- or 3-node!

[Singh,Carrano]!



2-3-4 Trees Insert!

Splitting a 4-node!

S: Small 
M: Medium 
L: Large 

[Carrano]!

2-3-4 Trees Insert!
Splitting a 4-node 
whose parent is a 
2-node!

S: Small 
M: Medium 
L: Large 
P: Parent 

[Carrano]!

Splitting a 4-node 
whose parent is a"
3-node!

2-3-4 Trees 
Insert!

S: Small 
M: Medium 
L: Large 
P: Parent 
Q: Parent 

[Carrano]!

2-3-4 Trees Insert Example!

Inserting 60, 30, 10, 20, 50, 40, 70, 80, 15, 90, 100!

... 50, 40 ...!

20 
pre-split 

20 

[Carrano]!



Inserting 50, 40, ...!

... 70, ...!

70 
pre-split 

2-3-4 Trees Insert Example!

[Carrano]!

2-3-4 Trees Insert Example!

Inserting 70 ...!

... 80, 15 ...!

70 

[Carrano]!

2-3-4 Trees Insert Example!

Inserting 80, 15 ...!

... 90 ...!

90 
pre-split 

[Carrano]!

2-3-4 Trees Insert Example!

Inserting 90 ...!

... 100 ...!

90 

100 
pre-split 

 
raise 
root 

[Carrano]!



2-3-4 Trees Insert Example!

Inserting 100 ...!

100 

[Carrano]!

2-3-4 Trees Removal!

Removal always begins at a leaf node "
� swap item of non-leaf node with in-order successor!

Whereas a 4-node can overflow during insertion, 
a 2-node can become empty during removal!

On the way from root down to the leaf: "
turn 2-nodes (except root) into 3-nodes"
� prevents a 2-node from becoming an empty node!
� deletion can be done in one pass"

(in 2-3 trees, a reverse pass is likely necessary)!

[Singh,Carrano]!

Removal: 2-Node � 3-Node!

Rotate: if adjacent sibling is a 3- or 4-node "
� redistribute items from sibling!
� adopt child!

30  50 

10  20 40 

25 35 

Rotate 20  50 

30  40 10 

25 

delete 35 

Merge: if adjacent sibling is a 2-node!
� redistribute item from parent "

parent has at least 2 items, unless it’s root!
� merge nodes!

30  50 

40 

25 35 

10 

Merge 

10  30  40 

35 25 

50 

Removal: 2-Node � 3-Node!

delete 35 



Root merge: if parent is root and both parent 
and adjacent sibling are 2-nodes!
� merge with parent and sibling!

40 

25 35 

10 

30 Merge 

10  30  40 

35 25 

Removal: 2-Node � 3-Node!

delete 35 

2-3-4 Trees Removal Summary!
On the way from root down to the leaf: "
turn 2-nodes (except root) into 3-nodes!

Rotate: if adjacent sibling is a 3- or 4-node"
� redistribute items from sibling, take from right!
� adopt child!

Merge: adjacent sibling is a 2-node!
� redistribute item from parent;"

parent has at least 2 items, unless it’s root!
� merge nodes, merge left!

Exercise: remove"
32, 35, 40, 38, 39, 37, 60!

[Carrano]!

Remove 32, 35, 40, 38, 39, 37, 60!

[Carrano]!

37  50!

39!30 35! 70 90!

10 20! 38! 40! 60! 80! 100!36!32 33 34!✗ 

Remove 32!

37  50!

39!30 34! 70 90!

10 20! 38! 40! 60! 80! 100!33! 35 36!✗ 

Remove 35!
pre-rotate!

Remove 32, 35, 40, 38, 39, 37, 60!

[Carrano]!

Remove 40!

pre-rotate!

37  50!

39!30 34! 70 90!

10 20! 38! 40! 60! 80! 100!36!33!

37  70!

90!30 34! 39 50!

10 20! 38! 40! 60! 80! 100!33! 36!



Remove 32, 35, 40, 38, 39, 37, 60!

[Carrano]!

Remove 40!

pre-merge! 37  70!

50!30 34!

38 39 40!10 20!

90!

60! 80! 100!36!33!

37  70!

90!30 34! 39 50!

10 20! 38! 40! 60! 80! 100!33! 36!

✗ 

Remove 32, 35, 40, 38, 39, 37, 60!

[Carrano]!

Remove 38!

pre-rotate!

37  70!

50!30 34!

38 39!10 20!

90!

60! 80! 100!36!33!

34  70!

30!

38 39!

37 50!

10 20!

90!

60! 80! 100!36!33! ✗ 

Remove 32, 35, 40, 38, 39, 37, 60!

[Carrano]!

Remove 39!

pre-merge!

34  70!

30! 37 50!

10 20!

90!

60! 80! 100!36! 39!33!

34  70!

30!

36 37 39!10 20!

90!

60! 80! 100!

50!

33! ✗ 

34  70!

30!

36 37!10 20!

90!

60! 80! 100!

50!

33!

Remove 32, 35, 40, 38, 39, 37, 60!

[Carrano]!

Remove 37!

pre-merge!

36 37!

30 34 50!

10 20!

90!

60! 80! 100!

70!

33! ✗ 



Remove 32, 35, 40, 38, 39, 37, 60!

[Carrano]!

Remove 60!

pre-merge!

30 34 50!

10 20!

90!

60! 80! 100!

70!

33! 36!

30 34!

36 50 60!10 20!

90!

80! 100!

70!

33! ✗ 

root not pre-merged!!

Compared to 2-3 Trees!
Insertion and deletion are easier for 2-4 tree!
• one pass!
• no need to percolate over/under-flow node "

all the way back up to root!

But at the cost of:!
• extra comparison in each node!
• wasted space in each node (a 2-node is actually a"

4-node with two empty slots and 2 null pointers)!
• pre-emptive splitting of 4-nodes pre-allocates space that 

may not be needed right away � further wasting space!
• number of NULL pointers in a tree with N internal 

nodes is 4N – (N – 1) = 3N+1   !

[Rosenfeld,Brinton]!

Implementation!
While 2-3 trees and 2-4 trees are conceptually clean, 
their implementation is complicated because!
• we need to maintain multiple node types and !
• there are a lot of cases to consider, such as whether we are!
•  redistributing from a left sibling or a right sibling!
•  merging with a 2-node or a 3-node!
•  merging with the small or the large item of the parent!
•  passing a node to a 2-node or to a 3-node parent!
•  filling the small, middle, or large item slot at the parent!
•  adopting a left child or a right child!
•  rotating left or right!
!
It would be nice if we could simplify these cases and reduce the 
amount of wasted space by turning 2-3 and 2-4 trees into binary 
trees …!

[Rosenfeld]!


