
Lecture 7: BST Range Search!
k-d Trees!
Binary Space Partitioning Trees!
Nearest-Neighbor Search!

BST Range Search!

Instead of finding an exact match,
find all items whose keys fall
between a range of values, e.g.,
between m and z, inclusive!
!
Example applications:! f!

l!

p!

z!

d!

k!

a!

n!

m!

T :

BST Range Search: Algorithm!
void!
rangesearch(Link root, Key searchrange[],  

Key subtreerange[], List results)!
!
1.  if root is in search range, "

add root to results!
2.  compute range of left subtree!
3.  if search range covers all or "

part of left subtree, search left!
4.  compute range of right subtree!
5.  if search range covers all or "

part of right subtree, search right!
6.  return results!
!
(Other traversal orders are also ok)!

f!

l!

p!

z!

d!

k!

a!

n!

m!

T :

BST Range Search: Example!
rangesearch(T, [m-z], [a-z], results)!
(T’s range is “whole universe”)!
is k in [m-z]?!
does [a-j] overlap [m-z]?!
does [l-z] overlap [m-z]?!
search p’s subtree!
is p in [m-z]? results � p!
does [l-o] overlap [m-z]?!

search m’s subtree!
is m in [m-z]? results � m!
does [l-l] overlap [m-z]?!
does [n-o] overlap [m-z]?!
search n’s subtree!
is n in [m-z]? results � n!

does [q-z] overlap [m-z]?!
search z’s subtree!
is z in [m-z]? results � z!

f!

l!

p!

z!

d!

k!

a!

n!

m!

T :
[a-j] [l-z]

[l-o]

[l-l] [n-o]

[q-z]

[a-z]

k!

p!

m! z!

n!

p!
m!

z!
n!

results:!

searchrange, subtreerange!

BST Range Search: Support Functions!
1.  if root is in search range, i.e.,!

root->key <= searchrange[MAX], and!
root->key >= searchrange[MIN]!
add node to results!
!

2.  compute subtree’s range: replace upper (lower) bound
of left (right) subtree’s range by root->key-1 (+1)!

3.  if search range covers all or part of subtree’s range, "
search subtree!
•  each subtree covers a range of key values!
•  compute overlap between subtree’s range and search range!
•  no overlap if either"
searchrange[MAX] < subtreerange[MIN] or  
searchrange[MIN] > subtreerange[MAX]!

BST Range Search: Other Details !

How to express range when the keys are floats?!
•  be careful with numerical precision and floating point
errors [one of this week’s discussion topic]!

How to support duplicate keys?!
•  be consistent about using ≤ or <"
•  if ≤, the range for the left subtree would be closed, e.g.,

[–∞, 0], and the range for the right subtree half open,
e.g., (0, +∞]!

Multidimensional Search!
Example applications:!

!
!
!
!
!
A k-d tree can handle all these queries with O(log n)
insert and search times (it can also handle partial,
range, and approximate matches)!

k-d Trees!
A k-d tree is a binary search tree (not covered in
textbook, link to original 1975 paper on syllabus)!

At each level of the k-d tree, keys from a different search
dimension is used as the discriminator!
•  keys for any given level are all from the same dimension indicated by

the discriminator!
•  nodes on the left subtree of a node have keys with value < the

node’s key value along this dimension!
•  nodes on the right subtree have keys with value > the node’s key

value along this dimension!

We cycle through the dimensions as we go down the tree!
•  for example, given keys consisting of x- and y-coordinates, level 0

could discriminate by the x-coordinate, level 1 by the y-coordinate,
level 2 again by the x-coordinate, etc.!

H!

k-d Trees: Example!
Given points in a Cartesian plane on the left, "
a corresponding k-d tree is shown on the right!

E! F!

T :

x

y

0 100

A!

G!D!

B! C!

A(50, 50)!

B(10, 70)!

H(30, 60)!

D(25, 20)!

E(40, 85)! G(70, 85)!

C(80, 15)!

F(60, 10)!

disc!

x!
!

y!
!

x!
!
!
y!

k-d Tree Insert!
void kdTree::!
insert(Link &root, Item newitem, int disc)!
{!

if (root == NULL) {!
root = new Node(newitem);!
return;!

}!
if (newitem.key[disc] < root->item.key[disc]) // or <=!
insert(root->left, newitem, (disc+1)%dim);!

else if (newitem.key[disc] > root->item.key[disc])!
insert(root->right, newitem, (disc+1)%dim);!

}!

If new item’s key is smaller than root’s along the dimension
indicated by the discriminator, recursive call on left subtree!
else recursive call on right subtree!
In both cases, switch the discriminator before traversing"
the next level of the tree, cycling through the dimensions!

k-d Tree Search!

Search works similarly to insert, using a
discriminator to cycle through the dimensions as
one recurses down the levels: O(log n) time!

The tree we built was nicely balanced!
• if nodes are inserted randomly, on average we will get a
balanced tree: O(log n) time!
• if nodes inserted are sorted, recursively insert the median
of the range to build a balanced tree: O(n log n) time!

k-d Tree Remove!

To remove a node on a level with
discriminator along dimension j :!
•  if the node is a leaf, remove it!
• else if node has right subtree, "
find the j-minimum node in the right subtree!
• replace node with j-minimum node and repeat
until you reach a leaf, then remove the leaf!
• else find the j-maximum node in the left subtree,
replace, repeat, remove!
• j-minimum means minimum along the j dimension,
analogously j-maximum!
•  O(log n) time!

k-d Tree Remove Example!

delete (35,60)!
35,60!

20,45! 60,80!

80,40!

50,30!

60,20!

10,35!

20,20!

70,10!

90,60!

x!

x!

x!

y!

y!

y!

replacement!
x-minimum!

50,30!

20,45! 60,80!

80,40!

50,30!

60,20!

10,35!

20,20!

70,10!

90,60!

x!

x!

x!

y!

y!

y!

replacement!
y-maximum!

k-d Tree Remove Example!

delete (50,30)!

50,30!

20,45! 60,80!

80,40!

60,20!

60,20!

10,35!

20,20!

70,10!

90,60!

x!

x!

x!

y!

y!

y!

replacement!
x-minimum!

50,30!

20,45! 60,80!

80,40!

50,30!

60,20!

10,35!

20,20!

70,10!

90,60!

x!

x!

x!

y!

y!

y!

replacement!
y-maximum!

k-d Tree Remove Example!

delete (60,20)!

50,30!

20,45! 60,80!

80,40!

60,20!

70,10!

10,35!

20,20! 90,60!

x!

x!

x!

y!

y!

50,30!

20,45! 60,80!

80,40!

60,20!

60,20!

10,35!

20,20!

70,10!

90,60!

x!

x!

x!

y!

y!

y!

replacement!

70,10!

leaf node, can
be deleted!

k-d Tree Remove Summary!

50,30!

20,45! 60,80!

80,40!

60,20!

70,10!

10,35!

20,20! 90,60!

x!

x!

x!

y!

y!

delete (35,60)!
35,60!

20,45! 60,80!

80,40!

50,30!

60,20!

10,35!

20,20!

70,10!

90,60!

x!

x!

x!

y!

y!

y!

Multidimensional Range Search!

Example applications:!

What would the kdTree::rangesearch() "
function signature be?!
• What are its formal arguments?!
•  What would it return?!

k-d Tree Range Search!
void!
kdTree::rangesearch(Link root,int disc,  

Key searchrange[],  
Key subtreerange[], List results)!

•  cycle through the dimensions as we traverse down the tree,
same as with kdTree::insert()!

•  searchrange[] holds 2 values (min, max) per dimension!

•  subtree’s ranges are defined for all dimensions!
•  for 2D, both searchrange[] and"
subtreerange[] define a rectangle!

•  for dimension j ’s range, subtreerange[2*j] holds the lower bound,
subtreerange[2*j+1] holds the upper bound"
⇒ these need to be updated as we go down the levels!

Example: Binary Space
Partitioning (BSP) Trees!

Axis-aligned BSP tree: a k-d tree used for spatial
range search, with the following distinctions:!
•  items are stored in leaf nodes only!
• other internal nodes store only the coordinates used to
partition space!
•  an item that spans multiple partitions are stored in all
corresponding leaf nodes!

Example usages:!
• occlusion culling and collision detection in computer
graphics, computer games, robot motion planning!

Axis-Aligned BSP Tree: Idea!
Splitting plane aligned to x, y, or z axis!

Minimal!
 box!

Split along!
plane!

Split along!
plane!

Split along!
plane!

Tomas Akenine-Mőller © 2002!

Axis-Aligned BSP Tree: Build!

Each internal node holds a divider plane!
Leaves hold geometry!

A

B

C

D E

Plane 0

Plane 1a Plane 1b

Plane 2 0

1a

A B

1b

C 2

D E

Tomas Akenine-Mőller © 2002!

Example Use: Collision Detection!
Blue wants to get to
object e!

Blue draws a straight line
from itself to e!

Now it needs to know
which objects in the room
could potentially obstruct
it if it follows this straight
line!

What is the brute force
way of finding potentially
obstructing objects?!

a
f

i

m

d
e

c

b

h

k

j

g

n

l

a

i

m

d
e

c

b

h

k

j

g

n

l

x=30
1

4
x=45

2
y=30

x=52
3

BA

E

C

D

f

Collision Detection with BSP!
Algorithm:!

• use a plane to divide
space into 2 parts!

• objects whose j-
coordinate is smaller than
that of the partition go to
the left subtree!

• objects with j-coordinate
larger than the partition’s
go to the right subtree!

• repeat for the two
partitions, cycling through
the coordinates!

y=45"

Collision Detection with BSP!
In this case, we use:!
x=30, y=30, x=52, y=45!
with the resulting BSP:!a

i

m

d
e

c

b

h

k

j

g

n

l

x=30
1

4
x=45

2
y=30

x=52
3

BA

E

C

D

f

y=45"

1
x=30

A
a, b , g
h, i, j, k

2
y=30

E
l
n

3
x=52

B
d

D
c
e
m

4
y=45

C
f

1
x=30

A
a, b , g
h, i, j, k

2
y=30

E
l
n

3
x=52

B
d

D
c
e
m

4
y=45

C
f

1
x=30

A
a, b , g
h, i, j, k

2
y=30

E
l
n

3
x=52

B
d

D
c
e
m

4
y=45

C
f

1
x=30

A
a, b , g
h, i, j, k

2
y=30

E
l
n

3
x=52

B
d

D
c
e
m

4
y=45

C
f

1
x=30

A
a, b , g
h, i, j, k

2
y=30

E
l
n

3
x=52

B
d

D
c
e
m

4
y=45

C
f

1
x=30

A
a, b , g
h, i, j, k

2
y=30

E
l
n

3
x=52

B
d

D
c
e
m

4
y=45

C
f

1
x=30

A
a, b , g
h, i, j, k

2
y=30

E
l
n

3
x=52

B
d

D
c
e
m

4
y=45

C
f

1
x=30

A
a, b , g
h, i, j, k

2
y=30

E
l
n

3
x=52

B
d

D
c
e
m

4
y=45

C
f

1
x=30

A
a, b , g
h, i, j, k

2
y=30

E
l
n

3
x=52

B
d

D
c
e
m

4
y=45

C
f

1
x=30

A
a, b , g
h, i, j, k

2
y=30

E
l
n

3
x=52

B
d

D
c
e
m

4
y=45

C
f

Collision Detection with BSP!
Blue searches the BSP and
found that at x=30, e is to its
right, so it can ignore objects
a, b, g, h, i, j, k!

At y=30, e is to its left, so it
can ignore objects l, n!
It now knows that it would
potentially have to navigate
around d, f, c, and m!

Of d, f, c, and m, c and m are in
the same area as e, compute
intersection with them first!

✗
✗

a

i

m

d
e

c

b

h

k

j

g

n

l

x=30
1

4
x=45

2
y=30

x=52
3

BA

E

C

D

f

Collision Detection with BSP!

Blue found out that c "
is in its way to e!

So it needs to navigate
around c!

Assumes Blue can query
object c for its dimension,
it now knows that it "
needs to go to (52, 45) "
to navigate around c!

Next Blue needs to find
out if any object is in its
way to (52, 45)!

y=45"

1
x=30

A
a, b , g
h, i, j, k

2
y=30

E
l
n

3
x=52

B
d

D
c
e
m

4
y=45

C
f

1
x=30

A
a, b , g
h, i, j, k

2
y=30

E
l
n

3
x=52

B
d

D
c
e
m

4
y=45

C
f

1
x=30

A
a, b , g
h, i, j, k

2
y=30

E
l
n

3
x=52

B
d

D
c
e
m

4
y=45

C
f

1
x=30

A
a, b , g
h, i, j, k

2
y=30

E
l
n

3
x=52

B
d

D
c
e
m

4
y=45

C
f

1
x=30

A
a, b , g
h, i, j, k

2
y=30

E
l
n

3
x=52

B
d

D
c
e
m

4
y=45

C
f

Collision Detection with BSP!

Blue needs to find out if any
object is in its way to (52, 45)!

What objects does Blue need
to compute intersection with?!

Blue is in the left side of the
x=52 partition, and only
object d is on the same side!

So Blue only needs to
compute intersection with d!

✗
✗

✗ ✗

a

i

m

d
e

c

b

h

k

j

g

n

l

x=30
1

4
x=45

2
y=30

x=52
3

BA

E

C

D

f

Collision Detection with BSP!

Now Blue is at (52, 45), it
faces away from y=45, so
it needs to turn around to
go to e!

To get to e, it needs to
find if there are other
objects in its way!

Since it is now in the
same region as e, it only
needs to compute
intersection with other
objects in the region: c
and m!

y=45"

Collision Detection with BSP!
Compared to the brute force method, we only
need to compute intersection with c, m, d, and
c and m again: 5 intersection computations
instead of 3*13 intersections!

Under normal k-d trees, we search both
subtrees when the search range spans both
subtrees!

Under BSP trees however, items that span
subtrees are split into two halves such that
only one subtree needs to be searched!

Fixed-Range Search!

The range searches we have considered all have
fixed ranges specified in world space, e.g.,!

•  of the whole alphabet space, search in range [m–z]"

•  of the whole Cartesian space, search in range"
[(–∞, 6), (–∞, 8)]!

•  find all (or k) departures within 2 hours of noon!
•  relative to local point of reference!
•  but can be transformed into a fixed- and absolute-range query"

in world-space, i.e., [10 am to 2 pm]!

Nearest-Neighbor Search!
In nearest-neighbor search the range is not
pre-specified and is in local space, e.g.,!
• find the ATM machine nearest to me!
• find the k restaurants nearest to me!

[Known as the k-nearest neighbor (k-NN) problem]!

Using k-d tree to support nearest-neighbor
queries in 2D:!
•  not the most efficient solution in theory!
•  but everyone uses it in practice!
•  time complexity: O(n1/2 + k)!

⇐ range not specified!!

Nearest Neighbor Search: Algorithm!
1.  start with a reference point () and an infinite search range!
2.  if root node matches query and the distance from reference

point to root is smaller than current search range, reduce
search range to this distance!

3.  determine whether the reference point is to the left or right
of root (along the discriminating coordinate)!

4.  recursively search the branch of the tree where the reference
point belongs!

5.  upon returning from the recursive search, the search range
may have been further reduced, check to see if the current
search range covers the other branch of the tree that has not
been searched!

6.  if so, recursively search the other branch of the tree;
otherwise prune the other branch!

7.  return results!

[wikipedia]!

void!
nnsearch(Link root, int disc, Key reference,

double *searchradius,  
Key subtreerange[], List results)!

Nearest Neighbor Search!

Assume all data points
match query!

E D G F

[wikipedia]!

Reduce search range from initial infinite value to
distance(reference, A) (A being the root of the k-d tree)!

Current search range covers both children of A!

Nearest Neighbor Search!

E D G F

[wikipedia]!

Reference is to the left of A, search left child of A first!

Found a node (B) closer to reference than A!
Reduce search range to distance(reference, B)!

Nearest Neighbor Search!

E D G F

[wikipedia]!

Since B’s children are not in the new search range, "
we’re done with this branch!

Nearest Neighbor Search!

E D G F

[wikipedia]!

Returning back to A, current (new) search range no
longer overlaps A’s right child, prune the right child,
return result!

Nearest Neighbor Search!

E D G F

Nearest Neighbor Search!

[Sellarès]!

In this example, the k-d tree is formed by splitting
planes, similar to an axis-aligned BSP, hence the
internal nodes do not always hold data points!

[Sellarès]!

Nearest Neighbor Search!

Since the root doesn’t hold a data point, the search
range remains at ∞ as we search the right side of
the k-d tree where the reference point is!

[Sellarès]!

Nearest Neighbor Search!

As we traverse to the second level of the k-d tree,
we still cannot reduce the search range!

We’ve reached a leaf node and found two data points
that match our query (assume all data points do),
reduce the search range to the minimum distance
between the reference point and the two data points"

[Sellarès]!

Nearest Neighbor Search!

[Sellarès]!

Returning back to the parent node, we found that the
search range overlaps the range of the right subtree,
search the right subtree"

Nearest Neighbor Search!

[Sellarès]!

Found a closer neighbor in the left branch of the right
subtree, further reduce the search range"

Nearest Neighbor Search!

Using current search range and each subtree’s range,
prune parts of the tree that could NOT include the
nearest neighbor!

[Sellarès]!

Nearest Neighbor Search!

[Sellarès]!

Nearest Neighbor Search!

Using current search range and each subtree’s range,
prune parts of the tree that could NOT include the
nearest neighbor!

[Sellarès]!

To find k nearest neighbors, maintain k current best
instead of just the best [different k from k-d tree]!

Branches are only eliminated when they can't hold
any neighbor closer than any of the k current best!

k Nearest Neighbors Search!

Programming Assignment 2!
Topic: Location-Based Services!

“Consumer and advertiser expenditure on
location-based services (LBS) to approach $10B
by 2016, with search advertising accounting for
just over 50%.” LA Times, 6/10/11!

Due date: Thu, 10/13, 10:00 pm!

To be done individually (no group or team)!

No STL (iostream and string are allowed,
they are part of the C++ standard library, not part
of STL)!

Geographic
Coordinate System!
A point on earth is given by its
latitude and longitude!
!
Latitude 0º is at the Equator!
Latitude 90º is at the North Pole!
Latitude –90º is at the South Pole!
!
Longitude 0º is the Prime Meridian!
Longitude ±180º is a the
International Dateline"
(more or less)!

Standard Coordinate Frame!
The World Geodetic System 84 represents the earth as
an ellipsoid with the origin located at the Earth’s center
of mass (±2 cm)!

WGS84 is the current standard coordinate frame used
by GPS systems!

Lat/Lon of Some Cities on Earth!
City! Latitude! Longitude!

Kinshasa! –4.325! 15.322222!
Istanbul! 41.01224! 28.976018!
Mumbai! 18.975! 72.825833!
Jakarta! –6.2! 106.8!
Shanghai! 31.2! 121.5!
Queenstown! –45.031111! 168.6625!
Honolulu! 21.308889! –157.826111!
San Francisco! 37.7793! –122.4192!
Ann Arbor! 42.281389! –83.748333!
Rio de Janeiro! –22.908333! –43.196389!
Reykjavik! 64.133333! –21.933333!
Casablanca! 33.533333! –7.583333!

Problem Specification!

Read in a “database” of location data!
Each entry consists of:!

lat lon name tag!
where the lat and lon are floats and!
name and tag are single words!

To simplify the assignment, we limit acceptable
latitude to between 0º and 90º and we limit
acceptable longitude to between 0º and –180º
(covering North America)!

Sample Location Database!

42.2893 –83.7391 NorthsideGrill restaurant
42.3036 –83.7090 UMCU bank
42.2831 –83.7485 TheBrokenEgg restaurant
42.2982 –83.7200 GreatPlainsBurger fastfood
42.3033 –83.7053 Evergreen restaurant
42.2785 –83.7413 CometCoffee cafe
42.2845 –83.7463 Yamato restaurant
42.2806 –83.7497 GrizzlyPeak pub
42.2810 –83.7486 Vinology restaurant
42.3030 –83.7066 TCF bank
42.2803 –83.7479 ArborBrewingCompany pub
42.2780 –83.7449 CreditUnion bank
42.2804 –83.7497 Sweetwaters cafe
42.2795 –83.7438 TCF bank

42.2984 –83.7195 Qdoba fastfood
42.2780 –83.7409 Ashley's pub
42.2984 –83.7195 Panera bakery
42.2846 –83.7451 Zingerman's restaurant
42.2797 –83.7496 WestendGrill restaurant
42.2808 –83.7486 KaiGarden restaurant
42.2909 –83.7178 UMCU bank
42.2806 –83.7493 CafeZola restaurant
42.3047 –83.7090 Kroger supermarket
42.2830 –83.7467 NoThai fastfood
42.3048 –83.7083 AABank bank
42.2827 –83.7470 CafeVerde cafe
42.2780 –83.7449 UMCU bank
42.2828 –83.7485 Heidelberg pub
42.2792 –83.7409 PotBelly fastfood

In one column:!

Problem Specification!

You can assume there will be no duplicate records
(all four fields being the same) in the database!

The lat/lon may be duplicated, but as long as the
name and/or the tag is different, records with the
same lat/lon are not considered duplicates!

We limit the lat/lon precision to 4 decimal places
(±0.0001°), which translates to about 11 m
longitudinal distance at the equator and about
5.56 m longitudinal distance at latitude 60°!

Problem Specification!

The database is followed by a single blank line and
one or more queries!

There are three types of queries (not ordered):!
1. exact-match query, led by an ‘@’ sign:!

@ 42.2982 –83.7200"
@ 42.2984 –83.7195"
@ 42.2980 –83.7109"

2. range-match query, led by an ‘r’:!

r 42.2806 –83.7493 0.0004"
r 42.2812 –83.7521 0.002"

Problem Specification!

3.  nearest neighbor query, led by an ‘n’ sign:!

n 42.2785 –83.7461 bank"
n 42.2785 –83.7461 bookstore"
n 42.3033 –83.7078 bank"
n 42.3034 –83.7078 bank"

Problem Specification!
The two floats following the ‘@’ and ‘r’ signs
should be obvious!
!
The third float following the ‘r’ sign specifies the
search range from the provided location, in degree!
!
We limit the range to be at most 0.5 degree from
the provided location, so in total the search range is
limited to 1 degree (enough to cover the New York
Metropolitan Area or the Tokyo/Yokohama
megalopolis, the two largest urban conglomerations
in the world, by area)!

Problem Specification!

Given the acceptable lat/lon and the limit on
search range, the acceptable latitude on a range
search is limited to 0.5º to 89.5º and the
acceptable longitude is limited to –0.5º to –179.5º!
!
No need to translate degree to linear units!!

Problem Specification!
The tag following the lat/lon in nearest location
search is the queried tag, i.e., a record matches
the query only if the record contains the same tag
as the queried tag!
!
To simplify implementation, we will use a
“bounding box” covering the search radius to
perform nearest neighbor search!
!
void!
rangesearch(Link root, int disc, Key reference,  

double *searchradius, Key bbox[],  
Key subtreerange[], List results)!

Bounding box search range covers the circle whose
radius is the distance between the reference point
and the nearest neighbor !

distance(A, B) = √(Bx – Ax)2 + (By – Ay)2!

[Sellarès]!

Nearest Neighbor Bounding Box!
data matches query!
data does not match query!

[Sellarès]!

Bounding box is shrunk as a nearer neighbor is found!
!
A data point is considered a “neighbor” only if its tag
matches that of the queried tag"

Nearest Neighbor Bounding Box!
data matches query!
data does not match query!

Output! Given the above database and queries,
the output of your program should be:!
42.2982 -83.7200 GreatPlainsBurger fastfood"
42.2984 -83.7195 Panera bakery"
42.2984 -83.7195 Qdoba fastfood"
No record found"
42.2806 -83.7493 CafeZola restaurant"
42.2806 -83.7497 GrizzlyPeak pub"
42.2804 -83.7497 Sweetwaters cafe"
No record found"
42.2780 -83.7449 CreditUnion bank"
No record found"
42.3030 -83.7066 TCF bank"
42.3036 -83.7090 UMCU bank"

@ 42.2982 –83.7200"

@ 42.2984 –83.7195"

"
@ 42.2980 –83.7109"

r 42.2806 –83.7493 0.0004"

"
"
r 42.2812 –83.7521 0.002"
n 42.2785 –83.7461 bank"
n 42.2785 –83.7461 bookstore"

n 42.3033 –83.7078 bank"
n 42.3034 –83.7078 bank"

Location-Based Search!
Finding exact matches:!
•  must be implemented using hashing!

•  figure out: what hash function to use!

•  figure out: how to resolve collisions!

•  assume your program will be used all over the
acceptable region!

Finding range and nearest neighbor matches:!
•  must be implemented using k-d tree!
•  search range forms a rectangle/bounding box!

•  no need to implement node removal!

•  may assume database is not sorted!

k-d Tree!
level.right(disc) lat lon name tag!
0.-1(0) 42.2893 -83.7391 NorthsideGrill restaurant!
 1.0(1) 42.2831 -83.7485 TheBrokenEgg restaurant!
 2.0(0) 42.2806 -83.7497 GrizzlyPeak pub!
 3.0(1) 42.2804 -83.7497 Sweetwaters cafe!
 4.1(0) 42.2797 -83.7496 WestendGrill restaurant!
 5.1(1) 42.2806 -83.7493 CafeZola restaurant!
 3.1(1) 42.2810 -83.7486 Vinology restaurant!
 4.0(0) 42.2808 -83.7486 KaiGarden restaurant!
 4.1(0) 42.2828 -83.7485 Heidelberg pub!
 2.1(0) 42.2785 -83.7413 CometCoffee cafe!
 3.0(1) 42.2780 -83.7449 CreditUnion bank!
 4.0(0) 42.2780 -83.7449 UMCU bank!
 4.1(0) 42.2780 -83.7409 Ashley's pub!
 3.1(1) 42.2845 -83.7463 Yamato restaurant!
 4.0(0) 42.2803 -83.7479 ArborBrewingCompany pub!
 5.1(1) 42.2830 -83.7467 NoThai fastfood!
 6.0(0) 42.2827 -83.7470 CafeVerde cafe!
 4.1(0) 42.2795 -83.7438 TCF bank!
 5.0(1) 42.2792 -83.7409 PotBelly fastfood!
 5.1(1) 42.2846 -83.7451 Zingerman's restaurant!
 1.1(1) 42.3036 -83.7090 UMCU bank!
 2.0(0) 42.2982 -83.7200 GreatPlainsBurger fastfood!
 3.0(1) 42.2909 -83.7178 UMCU bank!
 3.1(1) 42.2984 -83.7195 Qdoba fastfood!
 4.0(0) 42.2984 -83.7195 Panera bakery!
 4.1(0) 42.3047 -83.7090 Kroger supermarket!
 2.1(0) 42.3033 -83.7053 Evergreen restaurant!
 3.0(1) 42.3030 -83.7066 TCF bank!
 3.1(1) 42.3048 -83.7083 AABank bank!

PA2 Grading Criteria!
Working, efficient solution (75%):!
• autograder will use –O3 compile flag for timing,
so make sure your Makefile also uses the"
–O3 flag!

Test cases (20%)!

Code is readable, well-documented (5%):!
• pay attention to PA1 grade report and avoid
being penalized for the same stylistic issues!

Files Organization!
How would you organize your code into files?!

Alternative 1: main.cpp (NOT)!

Alternative 2: main.cpp, hash.h, hash.cpp,
kdtree.h, kdtree.cpp, array.h, array.cpp,
linkedlist.h linkedlist.cpp, location.h,
location.cpp (NOT)!

Alternative 3: lbs281.cpp, adts.h, hash.h,
kdtree.h, location.h, location.cpp!

Your choice would be different, but try not to split it
up into too many files!!

Time Requirements!

Task!
Lines of
Code!

% Total Time!

design (and writing spec)! n/a (2 days)!
parse input (incl. unit test)! 42! 4!
hashing (incl. unit test)! 132! 27!
kdtree insert! 88! 7!
kdtree range search! 142! 23!
kdtree nearest neighbor! 130! 38!
whole globe (excl. nn)! 102! +28!

How long does it take to do PA2?!

