
Lecture 2: Algorithm Analysis!
(Review of Some 203 Material)!

The Importance of Runtime Cost!
Amazon claims that just an extra one tenth of a second
on their response times will cost them 1% in sales"
[http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it]!

Google said they noticed that just a half a second
increase in latency caused traffic to drop by a fifth "
[http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html]"
!

Measuring Runtime Cost!

How do you measure runtime cost?!
!
!
Assume can search"
10 names/ms!
!
!

An 8-year old may take longer!!

Population (size)! Linear! Binary!

EECS281 (230)! 23 ms! 0.8 ms!

UM (40 000)! 4 secs! 1.5 ms!

MI (9 mil)! 15 mins! 2.3 ms!

Shanghai (23 mil)! 38 mins! 2.4 ms!

US (311 mil)! 8 hours 38 mins! 2.8 ms!

China (1.3 bil)! 1 day 13 hours! 3.0 ms!

World (6.9 bil)! 8 days! 3.3 ms!

How to Measure Runtime Cost?!

Using wall-clock time to measure runtime cost
can be tricky:!
• depends on cpu speed!
• depends on cpu load(!)!
• (but we’ll come back to this later)!
!
Note: runtime cost == runtime complexity"

== runtime == complexity"
== time complexity!

How to Measure Runtime Cost?!
Instead we use operation count to measure
runtime cost:!
•  pick one operation that is performed most often

(e.g., ADD, SUB, MUL, DIV, CMP, LOAD, or
STORE)!
•  count the number of times that operation is

performed!

Roofing Problem’s Runtime Cost!
A builder can carry two tiles on his shoulder as he climbs up the ladder"
He then climbs down and carries two more tiles up the ladder"
Each round trip (up and down the ladder) costs $2!

• What is the cost to build a shed (8 tiles)?"
2*ceil(8/2)=8!
• What is the cost to build a gazebo (128 tiles)?"

2*ceil(128/2)=128!
• What is the cost to build a house (2048 tiles)?"

2*ceil(2048/2)=2048!
!

What is the ONE operation we counted in
this case?!

Operation Count: findMax()!
Write a function that given an array of N
elements finds the index of the largest element!
Example:!
• int findMax(int *a, int N)!
•  given int a=[3 8 2 7 9 1 5]!
• findMax(a, 7) = 4!

Operation Count: findMax()!
What is the fixed cost of the algorithm?!
!
Which operation should we count to compute
the variable cost?!
!
How many times is this operation executed in
the worst case?!

A More Complicated Function!
void!
f(int N, int *p)!
// p an array N integers!
{!
int i, j, k, l;!
i = N*2; j = i+1;!
k = i-3*400*j; l = k/2;!
if (l < 0) { i = N+j; } else { i = log2(k); }!
for (i = 0; i < N; i++) { j = p[i]*3; }!
for (i = 0; i < N; i++) {!
for (k = i; k < N; k++) { j = p[j]*3; }!
}!
return;!

}!

How do we go
about computing
the time
complexity of
this function?!

Four Accounting Rules!
Rule 1: Consecutive Statements: S1; S2; S3; … ; SN;!

The runtime R of a sequence of statements is the
runtime of the statement with the max runtime: "
max(R(S1), R(S2), …, R(SN))!
!
!

Rule 2: Conditional Execution: if (S1) S2; else S3;!
The runtime of a conditional execution is"
max(R(S1), R(S2), R(S3))!

i = N*2; j = i+1;!
k = i-3*400*j; l = k/2;!

if (l < 0) { i = N+j; }
else { i = log2(k); }!

Four Accounting Rules!
Rule 3: Iteration/Loop: for (S1; S2; S3) S4;!

The runtime of a loop with N iterations is"
max(R(S1), N*R(S2), N*R(S3), N*R(S4))!
!

Rule 4: Nested Loop:!
for (S1; S2; S3) { for (S4; S5; S6) { S7; } }!
Count inside out: the"
runtime is the max of the "
runtime of each"
statement multiplied"
by the total number of"
times each statement is executed!

for (i = 0; i < N; i++) { j = p[i]*3; }!

for (i = 0; i < N; i++) {!
for (k = i; k < N; k++) {  
 j = p[j]*3;  
}!

}!

A More Complicated Function!
void!
f(int N, int *p)!
// p an array N integers!
{!
int i, j, k, l;!
i = N*2; j = i+1;!
k = i-3*400*j; l = k/2;!
if (l < 0) { i = N+j; } else { i = log2(k); }!
for (i = 0; i < N; i++) { j = p[i]*3; }!
for (i = 0; i < N; i++) {!
for (k = i; k < N; k++) { j = p[j]*3; }!
}!
return;!

}!

What is the
time complexity
of this function?!

Aside: Arithmetic Series!
What is the sum of all integers from:!
•  0 to 4 inclusive?!
•  1 to 25 inclusive?!
•  3 to 12 inclusive?!

Operation Count: computeRank()!
Write a function that given an unsorted array a of N
elements computes an array r, where r[i] is the rank
of a[i] in a!

The rank of an element is: the number of elements in
the array that is smaller than it, plus the number of
elements to its left that is equal to it!

Example:!
• void computeRank(int *a, int *r, int N)!
•  given int a=[4 3 9 3 7]!
•  results in r=[2 0 4 1 3]!

What Affects Runtime?!

The algorithm !

Implementation details!
•  skills of the programmer!

Compiler (and options used)!
• g++ -g (for debugging)!
• g++ -03 (for speed)!

CPU/memory speed!
•  and workload (other programs running concurrently)!

Amount of data processed (N = input size)!

Runtime Scalability!

If N (problem size) is small, longish runtime is tolerable,!
for large N (N > 104, or N → ! in general), only
algorithms with low time complexity are usable!

Scalability: an algorithm/data structure is not scalable!
if its complexity grows so fast that it requires more
resources than available for the expected input size!

More generally: an algorithm/data structure is not
scalable if its complexity grows faster than the rate of
increase in input size!

Runtime vs. Input Size!
Rate of growth of runtime depends mostly on input
size, independent of most other factors!
• CPU speed, compiler, etc.!

In algorithm analysis, "
we’re usually only"
interest in large N,"
larger than some n0!

To ease discussion, "
we usually compare"
the complexity of"
our algorithm against "
some well-known “landmark” functions!

input size (N)!

ru
nt

im
e

(R
)!

f(N) = N!

g(N) = N2!

n0 = 1!

constant: 1!
logarithmic: log N!

square root: "N!

linear: N!

loglinear: N log N!

quadratic: N2!

cubic: N3!

in general, polynomial: Nk, k " 1!

exponential: aN, a > 1, "
usually a = 2!

factorial: N!!

Landmark Functions!

