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End-to-End Learning Approach to Visual Recognition




Supervised Learning Reaches Superhuman Performance
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Deep Learning Is Successtul But Too Specialized

Semantic Classification Instance

Segmentation Classification + localization

Object detection segmentation
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High-level: Models trained for one task do not work for another.



Deep Learning Is Successtul But Too Specialized

[Low-level: Models trained on one data kind do not work tor another.



Deep Learning Is Successtul But Too Specialized
"A Car Parked On The Side of The Road"

[Low-level: Models trained on one data kind do not work tor another.



Natural Learning of Vision: No Semantic Supervision
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[Linda Smith: [Jayaraman S. et al, PLoS ONE 2015; Clerkin et al, TRSB 2017; Slone et al, DS 2019]






Newborn Visual Recognition from Slow Smooth Videos

[Justin Wood et al, 2016] :
A smoothness constraint on the
development of object recognition.

The development of newborn object
recognition 1n fast and slow visual worlds.




What Can A Model Learn from Nothing but Data?
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From Undivided Sensation to Bounded Rationality
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universal but brittle

primal sketch
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Bottom-Up Approach to Visual Recognition
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My Research: Unsupervised Learning of Mid-Level Vision

2.5D-sketch




Mid-Level Vision
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My Research: Unsupervised Learning of

POUTE
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Unsupervised Learning: Segment Objects, Ditterentiate Them, Parse into Parts
| AMD, NeurlIPS 2021; NPID, CVPR 2018; CLD, CVPR 2021; HSG, CVPR 2022}

generic objectness individual objects hierarchical parts
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Mid-Level Vision Is the Key
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J. J. Koenderink: Edges Are Imposed, Not Detected

Three drawings by Salvador Dali, all depicting human figures. They are imme-
diately seen as such. Consider what might be common to them.




Unsupervised Ambient Sound Recognition for Localization / Navigation
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[ BatVision, ICRA 2020, CVPRW 2020; Audio-NPID, ICASSP 2021 ]



Objective: What Is A Baby Supposed to Learn?
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Objective: What Is A Baby Supposed to Learn?

Novice infant
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Diffterent Skills ILearned at Diftferent Times

Sit Crawl Cruise Walk

[ Credit: Karen Adolph ]



Diftferent Skills Learned with Different Bodies
12 months

/6 cm

[ Credit: Karen Adolph ]



Different Skills LLearned with Diftferent Data

Walks Alone G

Stands Alone

Cruising =

Pulls to Stand

>
& Crawling

Sits without Support
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Skills I.earned with Diftferent Sensitivities to Errors

Example #2: High-impact errors Infant walking is full of errors:

(negative reward) shape learning But falls are low impact
g 2% o =y

Robinovitch (2018). Databrary. https://nyu.databrary.org/volume/739 Adolph (2012) Psych Sci; Han & Adolph (2021) Dev Sci



Learn the Simultaneous Development of Action and Perception

We see 1n order to move
We move 1n order to see

During the process we learn both how/what to see/move

TABLE 1. MARR’S THREE LEVELS OF EXPLANATION FOR COGNITIVE CAPACITIES
(Marr 1982, 24).

Computational Theory Representation and Algorithm  Hardware Implementation
What 1s the goal of the How can this computational How can the representa-
computation, why 1s it theory be implemented? In tion and algorithm be
appropriate, and what 1s particular, what 1s the repre- realized physically?
the logic of the strategy sentation for mput and
by which 1t can be car- output, and what 1s the al-
ried out? gorithm for the

transformation?



Some Questions to Ponder

®* How does our blurry visual system learn to acquire a clear image?
®* How do we start to see depth from 2D images?

® How do we start to see colors? And colors of what?

® How do we learn ocular motor control?

®* How do we learn reaching and grasping?

® How do we learn locomotion?

®* How do we learn manipulation?





