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Introduction

« grasping: controlling an object by applying forces and torques
* high-dimensional search: pose, joint angles, contact points

« quality of grasp hypothesis evaluated on task-specific metrics (e.g. stability)
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Fig. 3: Typical stages for grasping an object. Our review focuses on grasp synthesis, the first stage in the grasping process.
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Robot hardware: end effectors

o iR
Parallel jaws Soft grippers Dextrous articulated hand
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Analytical approaches

« grasp: set of forces and torques on an object
« fixturing: find a grasp that keeps the object in equilibrium
« manipulation: find a grasp that moves the object in a specific way

« analytical approaches often require full knowledge of object properties

source
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https://arxiv.org/pdf/1905.00134.pdf
https://sir.upc.edu/projects/kinematics_dynamics_control_practicals/kinematics/index.html

Key terms

4-DoF grasp: top-down; position of end effector in x-y-z, rotation about z

6-DoF grasp: position of end effector in SE(3) (3D position, 3-axis rotation)

approach vector: line along which the end effector approaches the target

antipodal points: pairs of points with collinear and opposite normal vectors

[41]

Figure 6. We use training data generated with a physics simulator.
The colored dots around the objects depict successful grasps for a
bowl (left) and a box (right). For each continuous grasp subspace
an exemplary gripper pose is shown.
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Data-driven approaches

« grasping simulators (Graspit!, Simox)

hand-designed features

grasping with only RGB or RGB-D

supervised learning: where to grasp

& ;.— ':41:‘; )’.(:.’-'. i.l'-.‘ Ay bo [23]

[24]



Sampling-based deep learning approaches

1. sample information

a. randomly or systematically sample grasp pose in Euclidean or latent space
b. remove infeasible grasps (collisions, empty grasps)

c. generative models for learning distribution: VAEs, GMMs, GANs

2. evaluate sample according to (learned) quality function

3. (optionally) refine sample using optimization (grad. descent on quality function)

VAE training [203] Test-time architecture [203]
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Exemplar methods

« Key idea: maintain database of successful grasps, find most applicable example
« Patten [131]: metric learning to encode objects with similar geometry

« Mahler [34]: CNN to provide similarity metric, then sample from known grasps

[131] [34]

Max Pooling l—}l PCA I—> P ( O)

New mput

| T ~TRI] Iy

Grasp proposal h
f : generation i

A

Feature (query) Nearest neighbor

Grasp pose estimation for a new input

-, - B

‘Depth image &
Save | grasp pose |

‘\.__\_Q_bjcct O

Surface normal & feature VD-NOC ROI

Storing a successful experience

FIGURE 1 | Overview of storing and retrieving experience with the incremental grasp learning framework.




Regression

* Process entire sample space simultaneously (end-to-end)

* predict grasp parameters, quality from single network

« full 6-DoF pose output
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(a) CVAE architecture we use in our experiments. Dotted arrows denote components used during training, dashed arrows are components
used during testing, and solid arrows are used for both training and testing. The CNN Module is expanded in (b).
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Regression: simplifying techniques

« difficult to regressin 6DoF

« can used  reduced-dimensional representations 194]

« solve for remaining DoF based on regressed grasp
« discretize sample space [81] <
« assume grasping centroid [86]

« predict contact point, conditional grasp [100]

Fig. 3. Our grasp representation: ¢ depicts an observed contact point. a
and b constitute the 3-DoF rotation, w is the predicted grasp width, d the
distance from baseline to base frame. In pink we show the five gripper
points v that we used in the [, 4_ s loss.
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Off-policy RL: learning from demonstrations

« Song [122]: Q-learning from human demonstrations with hardware

« deterministic policy on learned Q-function
« Wang [127]: DDPG from demonstrations, transfers from PyBullet sim to real

« demos from optimization-based motion and grasp planner (“expert”)
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Fig. 2. Hardware setup. Our low-cost handheld device (left) consists of a plastic grabber tool equipped with an RGB-D camera and a servo that controls the
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interface that enables untrained people to collect grasping data in almost any environment.



On-policy RL: learning from demonstrations
« training with experiences from most recent policy (PPO, DQN, A2C, TRPO)

« Kawakami [125]: separate {orienting, approaching, closing} into separate tasks
« start with imitation learning (collected with VR), then PPO for each task

 Mandikal and Grauman [121]: actor-critic reward based on CNN for affordances

[125]

Fig. 1: VR interface for robot control
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Fig. 2: Affordance anticipation. a) Training images generated from 3
thermal maps from ContactDB. Green denotes label masks overlaid on images.
b) Sample predictions for seen and novel objects from ContactDB and 3DNet,
respectively. Our anticipation model predicts functional affordances for novel
objects and viewpoints (e.g., graspable handles and rings).
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p _ Fig. 3: Overview of our GRAFF model. a) In Stage I, we train an
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affordances along with other visuomotor sensory inputs (RGB-D image +
hand joint variables) to learn a stable grasping policy.




On-policy RL: viewpoint search

« Chen[129]: A2C to optimize viewpoint first
« CNN to predict 6-DoF grasp pose (GPD)

« dense reward for increasing visible portion of object of interest

« sparse reward for grasping
« real viewpoint data collected using a turntable

* this “real embodied simulator” improves sim-to-real transfer
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On-policy RL: contact force input

 Merzic[119]: TRPO using contact feedback as input
« entirely in simulation environment: Gazebo ¢ & & &

N

« simulated contact force measurement + proprioception

« perfect or noisy knowledge of object pose ?I Qi«": ?{ §v %_
* reward based on weighted combination:

Fig. 1: Examples of learned grasp strategies using a multi-
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Fig. 4: Breakdown of a single grasping episode.
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Supporting methods based on deep learning

 Deep learning can also be used in certain part of the grasping pipeline to

Improve the success rate of a grasping task

 Shape approximation

 Affordance
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Supporting methods | Shape approximation

« Shape completion:

Estimate the full object model from partial view
« Sample grasps around completed shape

Better capture the geometry & Uncertainty

(b) Point Cloud (c) Segmented and Meshed (d) CNN Input

(e) CNN Output (f) Fast Mesh (g) Detailed Mesh (h) Grasp Planning
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Supporting methods | Shape approximation

« Shape completion as auxiliary task:

Exploit the synergy between grasping and shape completion

« Obtain more informed quality function or regression model
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Supporting methods | Shape approximation
« Other

. Visual-tactile grasping:
. [44] gather tactile info to complete the shape during grasping

« Approximates the object using shape primitives [147]
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Supporting methods | Affordance

« Success of grasping -> additional considerations for what kind of task it is

used for

 Geometry -> higher-level reasoning (functional)
« Methods

« Segmentation + analytical
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« Affordance-aware quality function

4
o
-

e
A -

g g
N

Al
scissors, handover

M UNIVERSITY OF MICHIGAN




Dataset design

* Object sets

 Household items such as food, toys and tools.
 YCB, BigBIRD, KIT

Al ““

« Large-scale object model repositories i)

« ShapeNet [157], 3DNet [158], Grasp [36],
. PSB [159], ModelNet [160] R 1 e o v e e | e oo o she sk penatten

coffee can, cracker box, box of sugar, tomato soup can; middle row: block; middle row: scissors, padlock and keys, markers (two sizes),
mustard container, tuna fish can, chocolate pudding box, gelatin box, adjustable wrench, phillips and flat screwdrivers, wood screws, nails
potted meat can; front: plastic fruit (lemon, apple, pear, orange, (two sizes), plastic bolt and nut, hammer; front: spring clamps (four
banana, peach, strawberries, plum). sizes).

960009..

Fig. 2: Kitchen items in the YCB Object Set: back row: pitcher, Fig. 4: Shape items in the YCB Object Set: back: Mini soccer ball,
bleach cleanser, glass cleaner; muddle row: plastic wine glass, softball, baseball, tennis ball, racquetball, golf ball, front: plastic
enamel-coated metal bowl, metal mug, abrasive sponge; front: chain, washers (seven sizes), foam brick, dice, marbles, rope, stacking
cooking skillet with glass lid, metal plate, eating utensils (knife, blocks (set of 10), credit card blank.
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Dataset design

 Procedurally Generated Datasets

GraspNet-1Billion

Scene-level
4 Grasp Poses

Object-level 4
Grasp Poses "~ Object 6D Poses
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Dataset design | Data representation

 Point cloud
 Image
 Voxel Grid

Input Format | Number of times used
fl Point Cloud 2
{ Depth Image 15
4
i RGB-D Image 12
| Voxel Grid 10
1) Segmentation Mask 9
g Other 10

grasp pose XQ(S, W)
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Benchmark | Experimental Evaluation

« Usually evaluated in real world
« Real world evaluation carries more weights

 Most works study robot arm, some use mobile arm or

humanoid
Y
& PR w7 \
- i
= y | &
Franka Panda Franka gripper Dexterous hand
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Category Popularity
Robot Arm 66
Humanoid | 6
Mobile Arm 3
Not Used 7




Benchmark | Object Configurations

« Singulated
 Piled clutter

e Structured clutter

Singulated Piled clutter Structured clutter
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Benchmark | Performance metrics

« Grasp Success Rate: The percentage of successful grasps

« Completion/ Clearance Rate: The percentage of objects that are removed
from the clutter (No. of Objects Grasped / Total No. of Objects in Clutter).

« Coverage: The percentage of sampled ground truth grasps that are within a
threshold distance of any of the generated grasps.

« Computation Time: Time required to compute grasp hypothesis generation.
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Discussion




Discussion and future directions

Many papers do not consider the semantics of the scene, focusing mostly on
geometry. They also do not generally predict motion; manipulation is often handled
separately, with the object assumed to be held firmly.

What level of understanding of the scene is required for (meaningful) grasping
tasks? How about coupled planning and prediction?
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Discussion and future directions

Most papers use vision as the sole modality of perception.

What other modalities do you think are helpful for grasping, and why?

 Tactile information:

« predictif the grasp is robust
* slip detection
« account for uncertainty of object pose

* reconstruction of shape

« Sound | il

When vision is occluded,
S=~-- the agent uses sound to
localize the keys
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Discussion and future directions

« Most works try to find a collision-free path to the grasp pose. However, it's not

always possible to find a collision-free path

 when the scene is densely cluttered

 when the grasp pose is occluded

* Instead of avoiding contact, how to leverage contact for better grasping?
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